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A B S T R A C T

The main subject of this PhD thesis is the study of (1, Æ ¸)-

identifying codes in digraphs. The results presented in this work are

divided into three parts. The first one focusses on the structural prop-

erties of digraphs admitting a (1, Æ ¸)-identifying code for ¸ Ø 2. In the

second part, we deal with the study of (1, Æ ¸)-identifying codes in line

digraphs. Finally, in the third part we approach the problem from an

algebraic perspective.

A (1, Æ ¸)-identifying code in a digraph D is a dominating subset C

of vertices of D such that all distinct subsets of vertices of cardinality

at most ¸ have distinct closed in-neighbourhoods within C. In the

first part of the results, we prove that if D is a digraph admitting a

(1, Æ ¸)-identifying code, then ¸ Æ ”̂≠(D) + 1, where ”̂≠(D) denotes

the minimum in-degree among all the vertices with at least one out-

neighbour. Once this upper bound is established, we give some su�cient

conditions for a digraph D, with ”̂≠(D) Ø 1, to admit a (1, Æ ¸)-

identifying code for ¸ œ {”̂≠(D), ”̂≠(D) + 1}. As a corollary, a result by

Laihonen [45] (that states that a k-regular graph with girth at least 7

admits a (1, Æ k)-identifying code) is extended to any graph of minimum

degree ” = k Ø 2 and girth at least 7. Moreover, we show that every

1-in-regular digraph has a (1, Æ 2)-identifying code if and only if the

girth of the digraph is at least 5. We also characterise all the 2-in-regular

digraphs admitting a (1, Æ ¸)-identifying code for ¸ = 2, 3.

In the second part, we prove that every line digraph of minimum

in-degree 1 does not admit a (1, Æ ¸)-identifying code for ¸ Ø 3. Then,

we give a characterisation of a line digraph of a digraph di�erent from a

directed cycle of length 4 and minimum in-degree 1 admitting a (1, Æ 2)-

identifying code. The identifying number of a digraph D, ≠æ“ ID(D), is



the minimum size among all the identifying codes of D. We establish for

digraphs without digons (symmetric arcs) with both vertices of in-degree

1 that ≠æ“ ID(LD) is lower bounded by the number of arcs of D minus

the number of vertices with out-degree at least one. Thus, we show

that ≠æ“ ID(LD) attains the equality for a digraph having a 1-factor with

minimum in-degree 2 and without digons with both vertices of in-degree

2. We conclude by giving an algorithm to construct identifying codes

in oriented digraphs with minimum in-degree at least 2 and minimum

out-degree at least 1.

In the third part, we give some su�cient algebraic and combinatorial

conditions for a 2-in-regular digraph to admit a (1, Æ ¸)-identifying

code for ¸ œ {2, 3} by combining the results of the first part of this

thesis with some algebraic results. As far as we know, it is the first

time that the spectral graph theory has been applied to the identifying

codes. We present a new method to obtain an upper bound on ¸ for

digraphs by considering the positive and negative entries of eigenvectors

associated with a negative eigenvalue of the adjacency matrix of the

digraph. Likewise, we analyse the possible scope of using eigenvalue

zero for the same purpose. The results obtained in the directed case

can also be applied to graphs.

Mathematics Subject Classifications: 05C69, 05C20, 05C50.

Keywords: adjacency matrix, graph, digraph, dominating set, edge-

identifying code, eigenvalues, eigenvectors, identifying code, line digraph,

separating set, spectra, 1-factor
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1
I N T R O D U C T I O N

In the last hundred years, Graph Theory has gained more attention

from researches due, among other reasons, to its beauty and multiple

applications in several areas such as computer science, biology, social

science, and chemistry. In this work, we focus on the study of (1, Æ ¸)-

identifying codes in digraphs, which is a generalisation of the concept of

identifying codes, first introduced for graphs by Karpovsky, Chakrabarty,

and Levitin [44].

In the first part of this introduction, we give a few definitions

regarding identifying codes together with some previous results needed

in this work. In Section 1.2, we give a summary of the previously

existing literature regarding identifying codes in digraphs and describe

the contribution of the work presented in this thesis. In Section 1.3, we

explain the structure of this thesis.

1.1 preliminaries

Since the introduction of identifying codes in graphs, motivated by

solving fault diagnosis problems in multiprocessor systems, this concept

has been widely studied partly due to its role in modelling di�erent

situations, such as emergency sensor networks in facilities (see e.g.

Ray, Ungrangsi, Pellegrini, et al. [54]), routing in networks (see e.g.

Laifenfeld, Trachtenberg, Cohen, et al. [49]), and analysis of secondary

RNA structures (see e.g. Haynes, Knisley, Seier, et al. [41]). Let us
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explain in a simple way how the modelling of the fault diagnosis in

multiprocessor systems works based on [14, 44]. The purpose of fault

diagnosis is to test the system and locate exactly where the problem

of the network is, that is, to locate the fault processors. The idea is to

select some processors (constituting the code) to carry out a diagnosis.

A processor belonging to the code, called codeword, tests itself and all

the processors linked to it. Whenever a codeword detects a fault, it

sends an alarm signal. It is expected, for a good diagnosis, that once

some alarms are activated, to be able to determine where exactly the

fault is.

Given a multiprocessor system, we can associate it with a graph

G = (V , E) such that V represents the processors and E the links

between the processors. If there is just one fault at the time, we

will need an identifying code to determine where exactly the fault

is once some alarms are activated. If there can be at most k fault

processors at the time, then we will need what is called a (1, Æ k)-

identifying code. In the literature a large and rapidly growing number

of papers related to identifying codes in graphs, can be found (see, e.g.,

[2, 3, 4, 8, 12, 20, 21, 22, 23, 33, 35, 38, 40, 44, 45, 50, 52]). Moreover, an

online bibliography, constantly updated, on topics regarding identifying

codes and some other related concepts is maintained by Lobstein [48].

Given a digraph D, let d(u, v) denote the distance from u to v in D,

that is, the length of any shortest directed path from vertex u to vertex v,

if v is reachable from u, and d(u, v) = Œ otherwise. For any vertex v œ

V (D) and any integer t Ø 0, define B≠
t (v) = {u œ V (D) | d(u, v) Æ t}

and B+
t (v) = {u œ V (D) | d(v, u) Æ t}. We call B≠

t (v) and B+
t (v) the

in- and out-ball of radius t centred at v, respectively. Analogously, we

have the following for graphs. Let G be a graph and let d(u, v) denote

the number of edges in any shortest path between u and v, then for any

vertex v œ V (G) we define Bt(v) = {u œ V (D) | d(u, v) Æ t}, called

the ball of radius r centred at v. We denote with |X| the cardinality of

the set X.
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Definition 1.1.1. Let D be a digraph. Given two integers t, ¸ Ø 1,

a vertex set C ™ V (D) is a (t, Æ ¸)-identifying code in D if for all

distinct subsets X, Y ™ V (D), with |X|, |Y | Æ ¸, we have

B≠
t (X) fl C , B≠

t (Y ) fl C. (1)

Given a digraph D, a dominating set is a subset of vertices S ™ V (D)

such that all the vertices of V (D) \ S are dominated by a vertex of S,

that is, if N+[S] = V (D).

Notice that, if C is a (t, Æ ¸)-identifying code in D, then X = ÿ

satisfies |X| Æ ¸ and N≠[X ] fl C = ÿ, therefore, C is a dominating

set. As we mentioned before, in this thesis we focus on the study of

(1, Æ ¸)-identifying codes in digraphs. Observe that for t = 1, B≠
t (v) is

simply the closed in-neighbourhood of v. Hence, in particular we have

the following definition.

Definition 1.1.2. Let D be a digraph and ¸ Ø 1 an integer. A vertex

set C ™ V (D) is a (1, Æ ¸)-identifying code in D if C for all distinct

subsets X, Y ™ V (D), with |X|, |Y | Æ ¸, we have

N≠[X ] fl C , N≠[Y ] fl C. (2)

An identifying code is known as an identifying code. The definition of

identifying code for graphs introduced by Karpovsky, Chakrabarty, and

Levitin [44], is obtained by taking ¸ = 1 and omitting the superscript

sign minus in the neighbourhoods in (2). Hence, an identifying code

of a (di)graph is a dominating set such that any two vertices of the

graph have distinct closed (in-)neighbourhoods within this set. Honkala,

Laihonen, and Ranto [39, 47] generalised the notion of identifying codes

in graphs to be able to identify not just vertices but also sets of vertices.

This generalisation is obtained by exchanging B≠
t by Bt in (1). Thus,

the definition of (t, Æ ¸)-identifying codes in digraphs is a natural

extension of the concept of (t, Æ ¸)-identifying code in graphs. Not all

graphs admit (1, Æ ¸)-identifying codes. For instance, Laihonen [45]

pointed out that a graph containing an isolated edge cannot admit a
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(1, Æ 1)-identifying code, because clearly, if uv œ E(G) is isolated, then

N [u] = {u, v} = N [v]. In fact, a graph containing an isolated complete

bipartite graph Kr,d, with r Æ d, cannot admit a (1, Æ d)-identifying

code. Regarding digraphs, we also have that not all digraphs admit

(1, Æ ¸)-identifying codes.

1.2 (t, Æ ¸)-identifying codes in digraphs

The model explained in the previous section regarding fault diagnosis

in multiprocessors systems can be considered for modelling some other

situations. For instance, it can be used to model situations where the

link relation is not necessarily symmetric, for example, a hierarchical

system in a social network. This gives rise to consider modelling the net-

work with digraphs. Identifying codes in digraphs have not been much

studied, unlike the case for graphs. Charon, Gravier, Hudry, and Lob-

stein [15] extended the concept of (t, Æ 1)-identifying codes from graphs

to digraphs and proved that the decision problem of the existence of a

(t, Æ 1)-identifying code of size at most k is NP -complete for any t Ø 1,

even when restricted to strongly connected, directed, asymmetric, bipar-

tite graphs or to directed asymmetric, bipartite graphs without directed

cycles. A few years later, Charon, Gravier, Hudry, et al., [16] gave a

linear algorithm to find a minimum identifying code in oriented trees. N.

S. V. Rao [52] proposed a model to the alarm placement problem using

directed graphs. Following this line, Xu and Xiao [60] introduced an al-

ternative definition of identifying codes for digraphs by considering what

they call the to-set of a vertex, which is, for each vertex u, the set of all

vertices reachable from u. Skaggs studied identifying codes in oriented

graphs in his PhD thesis [57] under the name di�erentiating-domination

set. About identifying codes, he focused on the minimum value of an

identifying number among all the orientations of some special graphs.

Foucaud, Naserasr, and Parreau [28] characterised extremal digraphs

for identifying codes. In Section 4.3, we show their characterisation.
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Considering an alternative definition of the identifying code in terms of

its closed out-neighbourhood, Cohen and Havent [13] gave some bounds

for the minimum size of an identifying code, in their meaning, over all

orientations of a graph. Coupechoux, Moncel, and Touati [18] stud-

ied (t, Æ 1)-identifying codes in tournaments. More recently, Boutin,

Goliber, and Pelto [10] dealt (t, Æ 1)-identifying codes on directed de

Bruijn graphs. With our work presented in this thesis, we contribute

to this line of research by focusing on the study of (1, Æ ¸)-identifying

codes in digraphs varying the parameter ¸ since, as we realised, there

was no previous work on it.

We begin by pointing out that if C is a (1, Æ ¸)-identifying code in

a digraph D, then the whole set of vertices V also is. Thus, we have

the following straightforward observation.

Lemma 1.2.1. A digraph D = (V , A) admits some (1, Æ ¸)-identifying

code if and only if for all distinct subsets X, Y ™ V with |X|, |Y | Æ ¸,

we have

N≠[X ] , N≠[Y ]. (3)

Two distinct vertices u and v of D are called twins if N≠[u] = N≠[v],

and called false twins if N≠(u) = N≠(v) but u and v are not adjacent.

Hence, we get the following.

Remark 1.2.1. A digraph D admits an identifying code if and only if

D is twin-free.

In this thesis, we consider only finite digraphs. Another important

concept regarding identifying codes in finite digraphs is the identifying

number.

Definition 1.2.1. Let D be a twin-free digraph. Then, the identifying

number of D, ≠æ“ ID(D), is the minimum size among all the identifying

codes of D.
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1.3 structure of the thesis

With the intention that this work is as self-contained as possible, in

Chapter 2, we provide the basic definitions used throughout this thesis.

As we mentioned before, the work published by other authors about

(t, Æ ¸)-identifying codes in digraphs has been focused in the study for

the case where t Ø 1 and ¸ = 1. In Chapter 3 we focus on the study when

t = 1 and ¸ Ø 1. Regarding graphs, Laihonen and Ranto [47] proved

that, if G is a connected graph with at least three vertices admitting

a (1, Æ ¸)-identifying code, then the minimum degree is ”(G) Ø ¸. We

provided a similar result or digraphs by giving an upper tight bound

for ¸. Then, we give some necessary conditions for a digraph to admit a

(1, Æ ¸)-identifying code, for ¸ reaching the previous bounds or almost,

that is, the bound minus one. Likewise, Theorem 3.3.1 gives su�cient

conditions, by prohibiting some subdigraphs, for a digraph to admit a

(1, Æ ¸)-identifying code, for ¸ reaching the previous bounds or almost.

As a corollary of this theorem, we extend a result given by Laihonen [45],

regarding k-regular graphs. We finish this chapter by characterising the

k-in-regular digraphs admitting a (1, Æ ¸)-identifying code for k œ {1, 2}

and ¸ œ {2, 3}.

In Chapter 4, we focus on the study of (1, Æ ¸)-identifying codes in

line digraphs. We prove that in this case ¸ œ {1, 2} and characterise

the line digraphs admitting a (1, Æ ¸)-identifying code for ¸ œ {1, 2}.

Regarding line graphs, Foucaud, Gravier, Naserasr, Parreau, and Vali-

cov [27] studied identifying codes and Junnila and Laihonen [43] studied

(1, Æ ¸)-identifying codes for ¸ Ø 2. In both papers, they use the edge-

identifying code concept to work with the identifying code in line graphs.

We use the analogy of this notion for digraphs to provide a lower bound

for the identifying number of a line digraph admitting an identifying

code. For this, we characterise the arc-identifying codes in digraphs

in such a way that it also allows us to provide a linear algorithm to

construct identifying codes in oriented graphs with minimum in-degree
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at least two and minimum out-degree at least one. Moreover, with this

algorithm, we compute the exact value of the identifying code of the

line digraph of oriented graphs with minimum degree at least two.

Chapter 5 contains our algebraic results regarding (1, Æ ¸)-identifying

codes in digraphs. Some of these results are also applied to graphs. In

the first part of this chapter, we combine algebraic graph theory with

our results regarding 2-in-regular digraphs given in Section 3.4.1. As a

result, we give some su�cient algebraic and combinatorial conditions for

a 2-in-regular digraph to admit a (1, Æ ¸)-identifying code for ¸ œ {2, 3}.

In Section 5.3, maintaining our goal of providing upper bounds for ¸,

we give a new method to obtain an upper bound for ¸ based on the

eigenvalues and eigenvectors of the adjacency matrix of the digraph or

graph.

We conclude this thesis by presenting in Chapter 6 the general

conclusion of this work together with some suggestions for future re-

search. It is important to mention that, in this thesis, we consider

simple digraphs without loops or multiple edges.

The majority of the results presented in this thesis are contained in

the following articles:

• C. Balbuena, C. Dalfó, and B. Mart́ınez-Barona, Su�cient condi-

tions for a digraph to admit a (1, Æ ¸)-identifying code, Discuss.

Math. Graph Theory, in press.

• C. Balbuena, C. Dalfó, and B. Mart́ınez-Barona, Characterizing

identifying codes from the spectrum of a graph or digraph, Linear

Algebra Appl., 570 (2019) 138–147.

• C. Balbuena, C. Dalfó, and B. Mart́ınez-Barona, Identifying codes

in line digraphs, Appl. Math. Comput., 383 (2020), in press.



2
B A S I C D E F I N I T I O N S

In this chapter, we introduce the basic notation, concepts and terminol-

ogy used in the thesis. In general, we follow the book by Bang-Jensen

and Gutin [9] for terminology and definitions. Besides, regarding spec-

tral graph theory, we use the notation of Godsil and Royle [32].

2.1 digraphs

A directed graph (or just digraph) D consists of a non-empty finite set

V (D) of elements called vertices and a finite set A(D) of ordered pairs

of distinct vertices called arcs. For simplicity, in general we will denote

with D = (V , A) the digraph with vertex set V (D) = V and arc set

A(D) = A. The order and size of D is the number of vertices and arcs

in D, respectively. For an arc (u, v), the vertex u is its tail and the

vertex v is its head. We say that an arc is incident to a vertex v if v is

the head or tail of a. We will often denote an arc (x, y) by xy. If (u, v)

is an arc, we also say that u dominates v (v is dominated by u) and

denote it by u æ v. A vertex u is adjacent to a vertex v if (u, v) œ A.

We say that two di�erent vertices u, v are adjacent if u is adjacent to v

or v is adjacent to u. If both arcs (u, v), (v, u) œ A, then we say that

they form a digon. A loop is an arc such that both, its head and its

tail, are the same vertex. We say that two arcs are multiple if they

have the same tail and the same head. A digraph is simple if it has

neither loops nor multiple arcs. A digraph is symmetric if (u, v) œ A
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implies (v, u) œ A. Therefore, a digon is often called symmetric arc of

D. A digraph is transitive if (u, v), (v, w) œ A implies (u, w) œ A. An

orientation of a graph G is a digraph obtained from G by replacing

each edge {x, y} œ E(G) by either (x, y) or (y, x). A digraph D is said

to be oriented graph if D is the orientation of a graph. Equivalently, a

digraph is oriented if has no digons.

A path in D is a sequence P = (x1, x2 . . . , xk) of vertices from D

such that for every 1 < i Æ k we have (xi≠1, xi) œ A(D) and xi , xj

for every 1 < i < j Æ k. If P = (x1, x2 . . . , xk) is a path, then its

length is k ≠ 1 and we say that P is a (x1, xk)-path. We say that a

vertex u is reachable from vertex v if there is a (u, v)-path in D. A

directed cycle in D is a sequence C = (x1, x2 . . . , xk, x1) of vertices from

D such that (x1, . . . , xk) is a path and (xk, x1) œ A(D). The length

of a directed cycle C = (x1, x2 . . . , xk, x1) is k. We call a directed

cycle of length k a k-cycle. The girth g of a digraph is the length of a

shortest directed cycle. Hence, an oriented graph has girth g Ø 3. A

digraph H is a subdigraph of a digraph D if V (H) ™ V (D), and for

every (u, v) œ A(H) we have (u, v) œ A(D). If V (H) = V (D), we say

that H is a spanning subdigraph of D. A pair of digraphs D and H are

isomorphic, denoted D � H, if there exists a bijection Ï : V (D) æ V (H)

such that (u, v) œ A(D) if and only if (Ï(u), Ï(v)) œ A(H).

Let D be a digraph and H a family of digraphs, we say that D is

H-free if D does not contain a subdigraph isomorphic to any digraph

in H. If the family has only one element, H = {H}, then we denote it

as H-free.

The out-neighbourhood of a vertex u is N+(u) = {v œ V : (u, v) œ

A} and the in-neighbourhood of u is N≠(u) = {v œ V : (v, u) œ A}. The

closed in-neighbourhood of u is N≠[u] = {u} fi N≠(u). Given a subset

of vertices X ™ V , let N≠[X ] =
t

uœX N≠[u]. We denote with |X| the

cardinality of the set X. Then, the out-degree of u is d+(u) = |N+(u)|

and its in-degree d≠(u) = |N≠(u)|. We denote by ”+(D) the minimum

out-degree of the vertices in D, that is ”+(D) = min{d+(u) | u œ V (D)},
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and by ”≠(D) its minimum in-degree. Analogously, D+(D) and D≠(D)

denote the maximum out-degree and maximum in-degree, respectively.

The minimum degree is ”(D) = min{”+(D), ”≠(D)}. A digraph D

is said to be r-in-regular if d≠(v) = r for all v œ V , and r-regular if

d+(v) = d≠(v) = r for all v œ V .

Given a digraph D, and an integer i Ø 1, we denote V +
Øi(D) = {v œ

V (D) : d+(v) Ø i}, V ≠
Øi(D) = {v œ V (D) : d≠(v) Ø i}, V +

i (D) =

{v œ V (D) : d+(v) = i}, V ≠
i (D) = {v œ V (D) : d≠(v) = i}, and

”̂≠(D) = min{d≠
D(u) | u œ V +

Ø1(D)}.

Given a digraph D and a set of vertices X µ V (D), we denote

with D ≠ X the subdigraph obtained from D by removing the ver-

tices of X. That is, D ≠ X = (V (D) \ X, A(D) \ {(u, v) œ A(D) |

{u, v} fl X , ÿ}). In particular, if X consists of only a vertex, X = {u},

then we denote with D ≠ v the subdigraph D ≠ X.

Given two sets S, T we denote with S—T the symmetric di�erence

that is, S—T = (S \ T )fi (T \ S). We say that two digraphs are disjoint

if they does not have common vertices. Given two disjoint digraphs

D1 and D2, that is, two digraphs such that V (D1) fl V (D2) = ÿ, the

disjoint union of D1 and D2, denoted D1 ü D2 is the digraph with

vertex set V (D1) fi V (D2) and arc set A(D1) fi A(D2).

2.2 graphs

An undirected graph (or a graph) G = (V , E) consists of a non-empty

finite set V = V (G) of elements called vertices and a finite set E =

E(G) of unordered pairs of distinct vertices called edges. An edge

{u, v} œ E(G) is denoted in short by uv. It will be clear from the

context when we are refereeing to a an arc instead of an edge and vice

versa. A graph H is a subgraph of graph G if V (H) ™ V (G), and for

every {u, v} œ E(H) we have {u, v} œ E(G). If every edge of E(G)

with both vertices in V (H) is in E(H), we say that H is an induced

subgraph of G. A path in G is a sequence P = (x1, x2 . . . , xk) of vertices
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from G such that for every 1 < i Æ k we have {xi≠1, xi} œ E(G) and

xi , xj for every 1 < i < j Æ k. If such a path exists we say that

there is a path between x1 and xk. A graph G is connected if for

any two vertices u, v œ V (G), there is a path between u and v. A

connected component of a graph G is a maximal induced subgraph of G

which is connected. A cycle in G is a sequence C = (x1, x2 . . . , xk, x1)

of vertices from G such that {xi, xi+1} œ E(G) for every 1 Æ i < k

and {xk, x1} œ E(G). The length of the cycle C = (x1, x2 . . . , xk, x1)

is k. The girth g of a graph is the length of a shortest cycle. The

neighbourhood of a vertex u is N (u) = {v œ V : uv œ E}. The closed

neighbourhood of u is N [u] = {u} fi N≠(u). Given a vertex subset

X ™ V , let N [X ] =
t

uœX N [u]. The degree of u is d(u) = |N (u)|. The

minimum degree of G is ”(D) = min{d(u) | u œ V (G)}. A graph G

is said to be r-regular if d(v) = r for all v œ V . A dominating set is

a subset of vertices S ™ V such that N [S] = V . Observe that every

graph G with vertex set V and edge set E can be seen as a symmetric

digraph denoted by
¡
G, replacing each edge uv œ E by the digon (u, v)

and (v, u). Likewise, every digraph D has an associated graph G, known

as the underlying graph of D, which consist of replacing each arc (u, v)

in D by the edge {u, v}.

A graph is bipartite if its vertex set can be partitioned into two

subsets X and Y so that every edge has one end in X and one end in

Y . If G is a bipartite graph, with partition X and Y such that every

vertex in X is adjacent to every vertex in Y , then G is called complete

bipartite graph. We denote by Kr,d the complete bipartite graph with

partitions of cardinality r and d, respectively. The complete graph on n

vertices, denoted Kn, is the graph having the set of all pairs of vertices

as its edge set. A special family of oriented graphs is the family of

tournaments. A tournament of order n is an orientation of the complete

graph Kn of order.



3
S T R U C T U R A L P R O P E RT I E S O N I D E N T I F Y I N G

C O D E S

This chapter consists mainly of the results contained in [5]. Nevertheless,

there are some essential di�erences, which will be described below. In

the first section of this chapter, we focus on the question of given a

digraph D how large can ¸ be in such a way that D admits a (1, Æ ¸)-

identifying code. In other words, we give some upper bounds for ¸.

We also provide some results to justify why we focus on digraphs with

minimum in-degree at least 1. The last two results of this section are

contained in [6], but since these are results regarding general digraphs

and not just line digraphs, we decided to place them in this chapter. In

Section 3.2, we give some necessary conditions for a digraph to admit a

(1, Æ ¸)-identifying code. These results are not contained in any of our

three published papers.

Regarding the content of Section 3.3, let us first explain what is

behind one of the di�erences between our work in [5] and the one

contained in this chapter. In [5], we prove that if D is a digraph

admitting a (1, Æ ¸)-identifying code, then ¸ Æ min{d≠(u) + 1 | u œ

V (D) and d+(u) Ø 1} (Corollary 5 in [5]). We also give some su�cient

conditions for a digraph of minimum in-degree at least 1 to admit a (1, Æ

¸)-identifying code for ¸ œ {”≠, ”≠ + 1} (Theorem 8 in [5]). Nevertheless,

after working further on this topic, we realised that Theorem 8 could

be improved. First, we notice that since ”≠(D) can be arbitrarily

smaller than ”̂≠(D) = min{d≠(u) | u œ V (D) and d+(u) Ø 1}, we
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could implement some conditions over Theorem 8 to guarantee that D

admits an (1, Æ ¸)-identifying code with ¸ œ {”̂≠(D), ”̂≠(D) + 1}, which

we do in Theorem 3.3.1. The idea of the proof of Theorem 3.3.1 is very

similar to the one of Theorem 8 [5]. Hence, in Section 3.4, we give some

su�cient conditions for a digraph with ”̂≠(D) Ø 1 to admit a (1, Æ ¸)-

identifying code for ¸ = ”̂≠(D), ”̂≠(D) + 1. Furthermore, there is

another improvement of Theorem 8 (ii), (iii), and (iv) [5]. For instance,

in Theorem 8 (iii) [5], we forbid 9 digraphs to guarantee the existence of

a (1, Æ ”≠(D))-identifying code, while in Theorem 3.3.1 (iii), we forbid

6 digraphs to guarantee the existence of a (1, Æ ”̂≠(D))-identifying

code. In Theorem 3.3.1 (iv), we forbid 9 digraphs as subdigraphs to

guarantee that the digraph admits a (1, Æ ”̂≠(D) + 1)-identifying code

instead of 11, which is the case in Theorem 8 (iv) [5]. Moreover, as a

corollary of Theorem 3.3.1, we obtain Theorem 3.3.2. The last section

of this chapter corresponds to Section 3 in [5]. In this section, we prove

that every 1-in-regular digraph has a (1, Æ 2)-identifying code if and

only if the girth of the digraph is at least 5. We also characterise all the

2-in-regular digraphs admitting a (1, Æ ¸)-identifying code for ¸ = 2, 3.

3.1 upper bounds for ¸

As already mentioned in the introduction, Laihonen and Ranto [47]

proved that if G is a connected graph with at least three vertices

admitting a (1, Æ ¸)-identifying code, then the minimum degree is

”(G) Ø ¸. We present the following similar result for digraphs.

Proposition 3.1.1. Let D be a digraph admitting a (1, Æ ¸)-identifying

code and u a vertex such that d+(u) Ø 1. Then, ¸ Æ d≠(u) + 1.

Furthermore, if u belongs to a digon, then ¸ Æ d≠(u).

Proof. Let u œ V +
Ø1(D) and v œ N+(u). Then, both sets X = N≠(u)fi

{u, v} and Y = N≠(u) fi {v} have the same closed in-neighbourhood.

Consequently, ¸ Æ d≠(u) + 1. Furthermore, if v œ N≠(u), then X Õ =
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N≠(u) fi {u} and Y Õ = N≠(u) have the same closed in-neighbourhood

implying that ¸ Æ d≠(u). ⇤

Recall that we denote ”̂≠(D) = min{d≠
D(u) | u œ V +

Ø1(D)}. Hence,

we have the following direct consequence of the above proposition.

Corollary 3.1.1. Let D be a digraph admitting a (1, Æ ¸)-identifying

code. Then,

¸ Æ ”̂≠(D) + 1.

Moreover, if ¸ = ”̂≠(D) + 1, then any vertex u with d≠(u) = ”̂≠ does

not lay on a digon.

Observe that by Corollary 3.1.1, we know that if D is a digraph

admitting a (1, Æ ¸)-identifying code, then ¸ Æ ”̂≠(D) + 1, but ¸ could

be strictly larger than ”≠(D) if ”+(D) = 0, as we show with the

following result.

Proposition 3.1.2. Let D be a digraph with minimum in-degree ”≠(D) Ø

2 admitting a (1, Æ ¸)-identifying code and let — with 1 Æ — < ”≠(D)

be an integer. Then, there is a digraph DÕ with minimum in-degree

”≠(DÕ) = — and minimum out-degree ”+(DÕ) = 0, admitting a (1, Æ ¸)-

identifying code and having D as an induced subdigraph.

Proof. Take two di�erent vertices u and w such that u œ V (D) and

w < V (D). Let {u1, u2, . . . , u—} ™ N≠
D (u) be a set of — di�erent in-

neighbours of u in D. Consider the digraph DÕ with vertex set V (D) fi

{w} and arc set A(DÕ) = A(D) fi {(ui, w)| 1 Æ i Æ —}. It is clear that

D is an induced subdigraph of DÕ and that the minimum in-degree and

out-degree of DÕ are ”≠(DÕ) = — and ”+(DÕ) = 0, respectively. Then,

for any subset of vertices U ™ V (DÕ) we have

N≠
DÕ [U ] =

Y
____]

____[

N≠
D [U ] if w < U ,

{u1, . . . , u—, w} if U = {w}

N≠
D [U \ {w}] fi {u1, . . . , u—, w} if w œ U and U \ {w} , ÿ.

(4)

Now, we prove that DÕ admits a (1, Æ ¸)-identifying code reasoning

by contradiction. Suppose D admits a (1, Æ ¸)-identifying code, but
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DÕ does not. Let X, Y ™ V (DÕ) be two di�erent subsets such that

1 Æ |Y | Æ |X| Æ ¸ and N≠
DÕ [X ] = N≠

DÕ [Y ]. By (4), since D admits

a (1, Æ ¸)-identifying code and w < V (D), it follows that w œ X fl Y .

Observe that this implies ¸ Ø 2. Let X Õ = X \ {w} and Y Õ = Y \ {w}.

Then, we get

N≠
DÕ [X ] = N≠

D [X Õ] fi {u1, . . . , u—, w}

= N≠
D [Y Õ] fi {u1, . . . , u—, w} = N≠

DÕ [Y ].

Hence, if Y Õ = ÿ (and, then, Y = {w}), we have N≠
DÕ [Y ] =

{u1, . . . , u—, w}, implying that N≠
D [X Õ] ™ {u1, . . . , u—}. Observe that

since — < ”≠(D), it follows that u < X Õ. Hence, in D we have

N≠
D [X Õ fi {u}] = N≠

D [u], a contradiction with the fact that D ad-

mits a (1, Æ ¸)-identifying code. Therefore, |Y Õ| Ø 1. Now, since

N≠
D [X Õ] , N≠

D [Y Õ], it follows that N≠
D [X Õ]—N≠

D [Y Õ] ™ {u1, . . . , u—}.

Consider the following two sets of vertices of D, ‚X = X Õ fi {u} and
‚Y = Y Õ fi {u}, then 2 Æ | ‚Y | Æ | ‚X| Æ ¸ and N≠

D [ ‚X ] = N≠
D [ ‚Y ], a

contradiction. This completes the proof.

⇤

Hence, in particular, if D is a digraph with minimum in-degree

”≠(D) > 2 admitting a (1, Æ ”≠(D) + 1)-identifying code and — an

integer such that 1 Æ — < ”≠(D) ≠ 1, then there is a digraph DÕ with

”≠(DÕ) = — and ”+(DÕ) = 0 admitting a (1, Æ ¸)-identifying code, with

¸ = ”≠(D) + 1 > — + 1.

Recall that a digraph is weakly connected if its underlying graph is

connected. Let D be a digraph, and D1, . . . , Dr its weakly connected

components. Then, for every integer i œ {1, . . . , r} and any X ™ V (Di),

we have N≠
D [X ] fl V (Di) = N≠

Di
[X ] = N≠

D [X ] and, for any U ™ V (D),

we have N≠
D [U ] = fir

i=1N≠
Di
[U fl V (Di)]. Hence, the following result

holds.

Proposition 3.1.3. A digraph D admits a (1, Æ ¸)-identifying code if

and only if any weakly connected component of D admits a (1, Æ ¸)-

identifying code.
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As a consequence of Proposition 3.1.1 and Proposition 3.1.3, we get

the following result regarding digraphs with minimum in-degree 0.

Corollary 3.1.2. Let D be a digraph with ”≠(D) = 0. Then,

• if there is v œ V (D) such that d≠(v) = 0 and d+(v) Ø 1, then if

D admits a (1, Æ ¸)-identifying code, then ¸ = 1,

• otherwise, D admits a (1, Æ ¸)-identifying code if and only if

D ≠ V ≠
0 (D) admits a (1, Æ ¸)-identifying code.

Our goal in this chapter is to establish su�cient conditions for a

digraph to admit a (1, Æ ¸)-identifying code with ¸ as large as possible.

Hence, by the above corollary, we consider only digraphs with minimum

in-degree at least one. Furthermore, suppose D is a digraph with

minimum in-degree 0, then, with the following result, we show that the

identifying number of D is upper bounded by the sum of the identifying

number of D ≠ V ≠
0 (D) and the cardinality of V ≠

0 (D).

Proposition 3.1.4. Let D be a digraph with minimum in-degree ”≠ = 0

and C Õ an identifying code of D ≠ V ≠
0 (D). Then, C Õ fi V ≠

0 (D) is an

identifying code of D.

Proof. Let C Õ be an identifying code of DÕ = D ≠ V ≠
0 (D) and C = C Õ fi

V ≠
0 (D). To prove that C is an identifying code of D, let u, v œ V (D) be

two vertices such that N≠[u] = N≠[v]. By hypothesis, C Õ fl V ≠
0 (D) = ÿ,

then

N≠[u] = (N≠[u] fl C Õ) fi (N≠[u] fl V ≠
0 )

= (N≠[v] fl C Õ) fi (N≠[v] fl V ≠
0 )

= N≠[v].

Hence, N≠[u]fl C Õ = N≠[v]fl C Õ and N≠[u]fl V ≠
0 = N≠[v]fl V ≠

0 . This

implies that if u œ V ≠
0 , then also v œ V ≠

0 , otherwise N≠[u] fl C Õ = ÿ

and N≠[v] fl C Õ , ÿ, a contradiction. Hence, there are two cases to

be considered. If u, v œ V ≠
0 , then N≠[u] fl V ≠

0 = N≠[u] = N≠[v] =

N≠[v] fl V ≠
0 , implying u = v. If u, v œ V (D) \ V ≠

0 , then N≠
DÕ [u] fl C Õ =
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N≠[u] fl C Õ = N≠[v] fl C Õ = N≠
DÕ [v] fl C Õ, implying that u = v because

C Õ is an identifying code of DÕ. This completes the proof. ⇤

Corollary 3.1.3. Let D be a digraph with minimum in-degree ”≠ = 0.

Then,
≠æ“ ID(D) Æ ≠æ“ ID(D ≠ V ≠

0 (D)) + |V ≠
0 (D)|.

We finish this section with another upper bound for ¸ that will be

used in Chapter 3.

Lemma 3.1.1. Let D be a digraph admitting a (1, Æ ¸)-identifying code.

If there are two di�erent vertices x, y œ V (D) such that d+(y) Ø 1,

then ¸ < d≠(y) ≠ |N≠(x) fl N≠(y)| + 3. Moreover, if x œ N+(y), then

¸ < d≠(y) ≠ |N≠(x) fl N≠(y)| + 2.

Proof. Let x, y be two distinct vertices satisfying the hypothesis of

the lemma, and let w œ N+(y). First, assume that w , x. Consider

the set X = (N≠(y) \ N≠(x)) fi {w, x, y}. Since y œ N≠(w) and

w œ X ≠ y, we can check that N≠[y] µ N≠[X ≠ y], which implies that

N≠[X ] = N≠[X ≠ y]. Then, ¸ < |X| Æ d≠(y) ≠ |N≠(x) fl N≠(y)| + 3.

Finally, if w = x, repeating the same reasoning, we obtain that ¸ <

|X| Æ d≠(y) ≠ |N≠(x) fl N≠(y)| + 2. This completes the proof. ⇤

Corollary 3.1.4. Let D be a digraph admitting a (1, Æ ¸)-identifying

code. If there are two di�erent vertices x, y œ V (D) such that d+(y) Ø 1

and N≠(y) ™ N≠(x), then ¸ Æ 2.

As a consequence, for any twin-free digraph with minimum degree

” Ø 1 admitting a (1, Æ ¸)-identifying code, if D contains two false twin

vertices, then ¸ Æ 2.

3.2 some necessary conditions for a digraph to ad-

mit a (1, Æ ¸)-identifying code

We recall that a transitive tournament of three vertices is denoted by

TT3, see Figure 1. Observe that if D is a digraph with two twin vertices,
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say u and v, of in-degree at least 2, then D contains a TT3. Moreover,

we have the following result.

Figure 1. A transitive tournament on 3 vertices.

Proposition 3.2.1. Let D be a digraph. If there is a vertex x with

d+(x) Ø 1 and d≠(x) = ”̂≠(D), and it has an in-neighbour u œ N≠(x)

such that x and u lay in a TT3, then D does not admit a (1, Æ ”̂≠ + 1)-

identifying code.

Proof. Let x and u be as the hypothesis of the proposition. Observe

that, by Corollary 3.1.1, we can assume x does not lay on a digon. Let

v œ V (D) such that D[{x, u, v}] � TT3, then uv œ A(D), and there are

two cases to be considered: when x œ N≠(v) and when v œ N≠(x). In

the first case, consider the sets of vertices X = {v} fi (N≠[x] \ {u}) and

Y = X \ {x}, then N≠[X ] = N≠[Y ] implying that D does not admit a

(1, Æ ”̂≠(D) + 1)-identifying code. Now suppose that v œ N≠(x). Let

y œ N+(x) and consider the sets of vertices X = (N≠[x] \ {u}) fi {y}

and Y = X \ {x}, then N≠[X ] = N≠[Y ] implying that D does not

admit a (1, Æ ”̂≠(D) + 1)-identifying code. ⇤

Let us construct from two disjoint digraphs admitting a (1, Æ ¸)-

identifying code and with minimum degree at least 1, a digraph D

admitting a (1, Æ ¸)-identifying code and containing a TT3. The idea is

to show the necessity of the conditions in Proposition 3.2.1.

Proposition 3.2.2. Let D1 and D2 be two disjoint digraphs with min-

imum degree at least 1 and admitting a (1, Æ ¸)-identifying code. Then,

there is a digraph D admitting a (1, Æ ¸)-identifying code and containing

D1, D2, and TT3 as subdigraphs.
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Proof. Let u œ V (D1) and z, zÕ œ V (D2) such that zzÕ œ A(D).

Consider the digraph D consisting of V (D) = V (D1) fi V (D2) and

A(D) = A(D1) fi A(D2) fi {uz, uzÕ}.

We denote by Vi = V (Di) for i œ {1, 2}. Observe that for all

w œ V (D) we have:

N≠[w] =

Y
____]

____[

N≠
D1 [w] if w œ V1,

N≠
D2 [w] if w œ V2 \ {z, zÕ},

N≠
D2 [w] fi {u} if w œ {z, zÕ}.

Hence, for each set W µ V (D) we get:

N≠[W ] =

Y
__]

__[

N≠
D1 [W fl V1] fi N≠

D2 [W fl V2] fi {u} if {z, zÕ} fl W , ÿ,

N≠
D1 [W fl V1] fi N≠

D2 [W fl V2] otherwise.
(5)

We prove that D admits a (1, Æ ¸)-identifying code by contradiction.

Let X, Y ™ V (D) be two di�erent sets such that 1 Æ |X|, |Y |, Æ ¸ and

N≠[X ] = N≠[Y ]. Let Xi = X fl Vi and Yi = Y fl Vi, for i œ {1, 2}.

By (5), it follows that (X fi Y ) fl {z, zÕ} , ÿ. Otherwise, N≠
Di
[Xi] =

N≠
Di
[Yi] and 1 Æ |Xi|, |Yi| Æ ¸, implying since D1 and D2 admit a

(1, Æ ¸)-identifying code, that X = Y , a contradiction. Without loss

of generality, suppose that X fl {z, zÕ} , ÿ, then X fl {z, zÕ} ™ N≠
D2 [Y2],

implying that Y2 , ÿ. Hence, 1 Æ |X2|, |Y2| Æ ¸ and N≠
D2 [X2] = N≠

D2 [Y2]

(by (5)). Then, by the hypothesis, X2 = Y2, implying X1 , Y1 and that

N≠
D1 [X1] fi {u} = N≠

D1 [Y1] fi {u}.

Moreover, 1 Æ |X1|, |Y1| < ¸, since X2 = Y2 , ÿ. Then, N≠
D1 [X1] ,

N≠
D1 [Y1], implying that N≠

D1 [X1]—N≠
D1 [Y1] = {u}. Thus, N≠

D1 [X1 fi

{u}] = N≠
D1 [Y1 fi {u}]. Hence, by the hypothesis, X1 fi {u} = Y1 fi {u}.

Without loss of generality, let us assume that Y1 = X1 fi {u}. Let

w œ N+(u) \ X1, which exists since u < N≠[X1] and ”+(D1) Ø 1. Now,

consider the sets Y Õ = Y1 fi {w} and X Õ = X1 fi {w}. Then, N≠
D1 [X

Õ] =

N≠
D1 [Y

Õ], a contradiction since X Õ , Y Õ and 1 Æ |X Õ|, |Y Õ| Æ ¸. This

completes the proof. ⇤

Let us finish this section with a result regarding directed cycles.
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Proposition 3.2.3. Let D be a digraph and C = (v1, v2, . . . , vq, v1) be

a directed q-cycle of D, with q Ø 2.

1. If q œ {2, 3} and there is at most one vertex vi œ V (C) such that

N≠[vi] \ V (C) , ÿ, then D does not admit a (1, Æ 2)-identifying

code.

2. If q Ø 4 and N≠[V (C)] = V (C), then

• D does not admit a (1, Æ k)-identifying code if q = 2k.

• D does not admit a (1, Æ k + 1)-identifying code if q =

2k + 1.

Proof. 1. Without loss of generality, suppose that N≠[vi] ™ V (C) for

any i , 1. Then, N≠[{v1}] = N [v1] fi {v1, v2} = N≠[{v1, v2}] if q = 2,

and N≠[{v1, v2}] = {v1, v2, v3} fi N≠[v1] = N≠[{v1, v3}] if q = 3. In

both cases, we get that D does not admit a (1, Æ 2)-identifying code.

2. Consider the sets EC = {vi œ C | i is an even number} and

OC = {vi œ C | i is an odd number}. Then, if q = 2k for some k Ø 2,

we have N≠[EC ] = V (C) = N≠[OC ], implying that D does not admit

a (1, Æ k)-identifying code. Analogously, if q = 2k + 1 for some k Ø 2,

then N≠[EC fi {vq}] = V (C) = N≠[OC ], hence, D does not admit a

(1, Æ k + 1)-identifying code. ⇤

3.3 some sufficient conditions for a digraph to ad-

mit a (1, Æ ¸)-identifying code

We point out the following remark, which will be useful in the proof of

the main result of this section.

Remark 3.3.1. Let D be a TT3-free digraph. Then, for every arc (x, y)

of D, we have N≠(x) fl N≠(y) = ÿ and N+(x) fl N+(y) = ÿ.
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Figure 2. All the forbidden subdigraphs of Theorem 3.3.1.

We denote with F the family of digraphs F1- F8 of Figure 2. For

the next theorem, we made reference to the di�erent cases F1-F8 of

Figure 2 without mentioning the figure.

Theorem 3.3.1. Let D be a twin-free and TT3-free digraph with

”̂≠(D) Ø 1.

(i) If ”̂≠ Ø 2 and D is F1-free, then D admits a (1, Æ ”̂≠ ≠ 1)-

identifying code.

(ii) If the vertices of in-degree ”̂≠ does not lay on a digon and D is

F1-free, then D admits a (1, Æ ”̂≠)-identifying code.

(iii) If D is {F1, F2, F5, F7, F8}-free, then D admits a (1, Æ ”̂≠)-identifying

code.

(iv) Suppose that ”̂≠ Ø 2 and the vertices of in-degree ”̂≠ do not lay on

a digon. If D is F-free, then D admits a (1, Æ ”̂≠ + 1)-identifying

code.

(v) Suppose that ”̂≠ = 1 and the vertices of in-degree 1 do not lay on

directed cycles of length less than five. If D is {F2, F3, F4, F5, F8}-

free, then D admits a (1, Æ 2)-identifying code.

Proof. By Remark 1.2.1, D admits a (1, Æ 1)-identifying code because

D is twin-free.

We start considering that D is F1-free, which is the case in the cases

from (i) to (iv). We reason by contradiction, that is, assuming that D

does not admit a (1, Æ ¸)-identifying code with ¸ œ {”̂≠ ≠ 1, ”̂≠, ”̂≠ + 1}.
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Then, there are two di�erent subsets X and Y with 1 Æ |Y | Æ |X| Æ ¸

such that N≠[X ] = N≠[Y ]. Let x œ X \ Y and N≠(x) = {v1, . . . , v· }.

Since x œ N≠[X ] = N≠[Y ], there is y œ Y such that y œ N+(x), then

d+(x) , 0 implying d≠(x) = · Ø ”̂≠. As N≠(x) ™ N≠[X ] = N≠[Y ],

for all vi, with i œ {1, . . . , ·}, there exists a vertex yi œ Y such that

yi œ N+(vi) or yi = vi œ Y (See Figure 3). Moreover, for any two

Figure 3. The three cases of the elements of Y .

di�erent indices 1 Æ i < j Æ · , we have yi , yj , otherwise D contains a

TT3 if vi œ Y and vj < Y , or a F1 if vi, vj < Y . Therefore,

”̂≠ Æ · Æ |Y | Æ |X| = ¸ Æ ”̂≠ + 1,

implying that |Y | = ”̂≠ if y < N≠(x), and |Y | = ”̂≠ + 1, otherwise.

Hence, if there are two di�erent sets of vertices with the same closed

in-neighbourhood, its cardinality is at least ”̂≠ and the proof of (i) is

completed. Moreover, in cases (ii) and (iii), since ¸ = ”̂≠, we have that

y œ N≠(x) and · = ”̂≠, which is a contradiction in case (ii). Thus, the

proof of (ii) is completed.

Figure 4. All the cases in the proof of (iii) and (iv) of Theorem 3.3.1.
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Next, to prove (iii), we have Y = {y1, y2, . . . , y”̂≠} and we show

that |X| Ø ”̂≠ + 1. To do that, let us see that, for each vi œ N≠(x),

one can associate to it a vertex zi œ X \ {x} in such a way that zi , zj

for all i , j. Notice that (iii) is true if ”̂≠ = 1, so we may assume that

”̂≠ Ø 2. Consider the following partition of N≠(x): N≠(x) fl (Y \ X),

N≠(x) fl X, and N≠(x) \ (X fi Y ). We have the following cases (see

Figure 4):

Case 1: vi œ N≠(x) fl (Y \ X). Since ”̂≠ Ø 2, there is wi œ N≠(vi) \

{x} ™ N≠[Y ] \ {x} = N≠[X ] \ {x}. Hence: If wi œ X, then zi = wi

and zi , x; and if wi < X, since wi œ N≠[Y ] = N≠[X ], there exists

zi œ X such that zi œ N+(wi). In this case, we may assume that zi , x,

because D is TT3-free.

Case 2: vi œ N≠(x) fl X. Then, zi = vi and zi , x.

Case 3: vi œ N≠(x) \ (X fi Y ) ™ N≠[X ] \ (X fi Y ) = N≠[Y ] \ (X fi Y ).

If yi œ X, then zi = yi, and yi , x because x œ X \ Y . If yi œ Y \ X,

then there exists zi œ X such that zi œ N+(yi). Observe that zi is

di�erent from x, because D is TT3-free.

Before showing that all the zi are di�erent, let us notice we have

proved d≠(x) = ”̂≠ and that, for any y œ N+(x) fl Y , we have y œ

N≠(x) by assuming x œ X \ Y and ¸ = ”̂≠. Hence, in case (iii) for every

vertex yÕ œ Y \ X, we have d≠(yÕ) = ”̂≠ and, for all xÕ œ N+(yÕ) fl X,

we get xÕ œ N≠(yÕ). Using this, we can add to the three cases showed

in Figure 4 the corresponding digons, as is shown in Figure 5.

Figure 5. All the cases in the proof of (iii) of Theorem 3.3.1.
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Now we prove that all zi are di�erent. For this, let i, j œ {1, . . . , ·}

such that i , j. If vi, vj œ N≠(x) fl (Y \ X) and zi = zj , then (see

Figure 5 Case 1) it could be wj = zj = zi = wi œ X (see Figure 6 (a)),

and D would contain the subdigraph F1, contradicting the hypothesis of

(iii). It could be zj = zi = wi œ X and wj < X (see Figure 6 (b)), then

D would contain the subdigraphs F5, a contradiction. Finally, it could

be wi, wj < X, zi = zj and zi œ N+(wi) fl N+(wj) (see Figure 6 (c)),

then D would contain the subdigraph F7, a contradiction. Therefore,

all the zi are di�erent in Case 1.

Figure 6. The three cases for zi and zj if vi, vj œ N≠(x) fl (Y \ X).

If vi, vj œ N≠(x) fl X, it is clear that zi , zj in Case 2. If vi, vj œ

N≠(x) \ (X fi Y ) and zi = zj (see Figure 5 Case 3), then since we

already know all yi are di�erent it could be zj = yi œ X, and D would

contain the subdigraph F5 (see Figure 7 (a)), a contradiction. Hence,

yi, yj œ Y \ X and D would contain the subdigraph F7 (see Figure 7

(b)), a contradiction. Therefore, all the zi are di�erent in Case 3.

Figure 7. The three cases for zi and zj if vi, vj œ N≠(x) \ (X fi Y ).

It remains to prove that, for all i, j œ {1, . . . , ·}, with i , j, zi , zj ,

when vi and vj are in di�erent partite subsets of the considered partition

of N≠(x). Thus, if zi = zj for some i , j, with vi œ N≠(x) fl (Y \ X)
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and vj œ N≠(x)fl X (see Figure 5 Cases 1 and 2), then D would contain

one of the subdigraphs TT3 or F2, a contradiction (see Figure 8).

Figure 8. The two cases for zi and zj if vi œ N≠(x) fl (Y \ X) and

vj œ N≠(x) fl X.

If vi œ N≠(x) fl (Y \ X) and vj œ N≠(x) \ (X fi Y ) (see Figure 5

Cases 1 and 3), then D would contain one of the subdigraphs F2, F5 or

F8, a contradiction (see Figure 9).

Figure 9. The four cases for zi and zj if vi œ N≠(x) fl (Y \ X) and

vj œ N≠(x) \ (X fi Y ).

Finally, if vi œ N≠(x) fl X and vj œ N≠(x) \ (X fi Y ) (see Figure 5

Cases 2 and 3), then D would contain one of the subdigraphs TT3 or

F1 (see Figure 10).

Figure 10. The two cases for zi and zj if vi œ N≠(x) fl X and vj œ

N≠(x) \ (X fi Y ).

In any case, we get a contradiction. Then, we can conclude that X

has at least ”̂≠ + 1 vertices, and the proof of (iii) is completed.
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To prove (iv), we assume ¸ = ”̂≠ + 1. In this case, ”̂≠ + 1 Ø

d≠(x) Ø ”̂≠ and we do not necessarily have the digons between x

and the vertices vi œ Y \ X. Nevertheless, reasoning as before, we

show that all the vertices zi œ X \ {x} associated with each vertex

vi œ N≠(x), as we defined before, are di�erent using the added fact

that D does not contain any subdigraph as F3, F4, nor F6. First, let

Figure 11. All the cases in the proof of (iv) of Theorem 3.3.1.

us show that, for each vi œ N≠(x) fl (Y \ X), there is zi œ (X \ {x})

such that zi œ N≠(vi), that is, Case 1 (b) is not possible. Suppose

the opposite, and let vi œ N≠(x) fl (Y \ X) in Case 1 (b). Notice that

zi < X fl Y (see Figure 11), because if zi = yj for some j , i, then D

would contain a F2 if vj = yj (see Figure 12 (a)) or D would contain

a F5 if yj œ N+(vj) (see Figure 12 (b)), and if zi = y, then D would

contain a F3 (see Figure 12 (c)). In any case, we reach a contradiction.

Figure 12. The three cases for vi œ N≠(x)fl (Y \ X) and zi œ N≠(vi)fl

(X fl Y ) in the proof of Theorem 3.3.1 (iv).

Hence, zi œ N≠(yj) for some j or zi œ N≠(y). If zi œ N≠(yj), then

D would contain F4 if vj = yj (see Figure 13 (a)), or D would contain

F8 if yj œ N+(vj) (see Figure 13 (b)). If zi œ N≠(y), then D would
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contain F4 (see Figure 13 (c)). In any case, we reach a contradiction,

therefore there is no such vi.

Figure 13. The three cases for vi œ N≠(x)fl (Y \ X) and zi œ N≠(vi)fl

(X \ Y ) in the proof of Theorem 3.3.1 (iv).

Now let us see that all zi are di�erent in case (iv). For this, let i, j œ

{1, . . . , ·} be such that i , j. If vi œ N≠(x)fl (Y \ X) (see Figure 4 Case

1 (a)) and zi = zj , there are four possibilities depending on the partite of

N≠(x) to which vj belongs to. If vj œ N≠(x)fl (Y \ X), then D would

contain the subdigraph F2 (see Figure 14 (a)); if vj œ N≠(x) fl X, then

D would contain a TT3 (see Figure 14 (b)); if vj œ N≠(x) \ (X fi Y ),

then D would contain a F3 or a F6 (see Figure 14 (c) and (d)). In any

case, we reach a contradiction. Therefore, zi , zj if at least one of vi

and vj belongs to Case 1.

Figure 14. The four cases for vi œ N≠(x) fl (Y \ X) and zi = zj with

i , j in the proof of Theorem 3.3.1 (iv).

If vi œ N≠(x) fl X (see Figure 4 Case 2), there are two cases to

be considered: vj œ N≠(x) fl X and vj œ N≠(x) \ (X fi Y ). If vj œ

N≠(x) fl X, it is clear that zi , zj in Case 2. If vj œ N≠(x) \ (X fi Y )

(see Figure 4 Case 3), then D would contain a TT3 or a F3 (see Figure 15).

In any case, we reach a contradiction. Therefore, zi , zj if at least one

of vi and vj belongs to Case 2.
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Figure 15. The two remaining cases for vi œ N≠(x) fl X and zi = zj

with i , j in the proof of Theorem 3.3.1 (iv).

Finally, if vi, vj œ N≠(x) \ (X fi Y ) and zi = zj , then D would

contain a F5 or a F7 (see Figure 16), a contradiction. Therefore, all the

zi are di�erent in Case 3.

Figure 16. The two cases for vi, vj œ N≠(x) \ (X fi Y ) and zi = zj with

i , j in the proof of Theorem 3.3.1 (iv).

Therefore, all zi are di�erent, implying that X = {z1, . . . , z· , x},

and · = ”̂≠. Hence, by the hypothesis, x does not belong to a digon,

for instance y < N≠(x), that is, y , yi for any 1 Æ i Æ ”̂≠. Hence,

Y = {y1, y2, . . . , y”̂≠ , y}.

Now, let us show that y œ Y fl X. For this, suppose the opposite,

that is, y œ Y \ X. Then, d≠(y) = ”̂≠. Since ”̂≠ Ø 2, there is

z œ N≠(y) \ {x}. Let us show that z < X. Otherwise, suppose z œ X,

then z = zj for some j = 1, . . . , ”̂≠. By Remark 3.3.1, vj < N≠(x) fl X.

If vj œ N≠(x) fl (Y \ X), then D would contain F3 (see Figure 17 (a));

and if vj œ N≠(x) \ (X fi Y ), then D would contain F2 or F4 (see

Figure 17 (b)). Therefore, z < X.
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Figure 17. The three cases for y œ Y \ X and z œ N≠(y) fl (X \ {x})

in the proof of (iv).

Hence, z œ N≠(zi) for some i œ {1, . . . , ”̂≠}. If vi œ N≠(x) fl (Y \

X), then D would contain F6 (see Figure 18 (a)); if vi œ N≠(x) fl X,

then D would contain F3 (see Figure 18 (b)); and if vi œ N≠(x) \ (X fi

Y ), then D would contain F5 or F8 (see Figure 18 (c)), a contradiction.

Figure 18. The four cases for y œ Y \ X and z œ N≠(y) fl N≠(zi) for

some i œ {1, . . . , ”̂≠} in the proof of (iv).

This implies that y œ X fl Y , as we claimed. So, y = zj for some

j œ {1, . . . , ”̂≠}. Notice that vj œ N≠(x) fl (Y \ X), otherwise x would

be contained in a digon, or D would contain a TT3, a contradiction.

Then, reasoning for vj as for x, we obtain that every t œ N+(vj) fl X

satisfies that t œ X fl Y . However, x œ N+(vj) fl X, but x < Y , which

is a contradiction, and the proof of (iv) is complete.

To prove (v) we assume that ”̂≠ = 1 and |X| = 2. Observe that, by

Remark 3.3.1 and since there are no vertices of in-degree 1 laying on a

digon, the following claim holds.

Claim 3.3.1. Let (u, v) œ A(D). Then, there is w œ N≠(u) \ N≠[v].

First, observe that if |Y | = 1, say Y = {y}, then x œ N≠(y) and

by Claim 3.3.1, there is w œ N≠(x) \ N≠[y], implying that N≠[X ] ,

N≠[Y ], a contradiction. Then, |Y | = |X| = 2.
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Let X = {x, xÕ}, x œ X \ Y , and Y = {y, yÕ} with y œ N+(x). Let

us prove that the arc (x, y) is not on a digon. Otherwise, suppose that

(x, y), (y, x) œ A(D). By Claim 3.3.1, there exist w, z œ V (D) such

that z œ N≠(x) \ N≠[y], and w œ N≠(y) \ N≠[x]. Hence, z œ N≠[yÕ]

and w œ N≠[xÕ]. If z < Y , then z , yÕ and z œ N≠(yÕ). Moreover,

since D is TT3-free, yÕ œ N≠[xÕ] µ N≠[X ]. If xÕ = yÕ, then w , xÕ

because D is free of F2, hence, w œ N≠(xÕ), implying that D would

contain F5, therefore, xÕ , yÕ (and so yÕ œ Y \ X). Moreover, we

can assume that w < {yÕ, xÕ}, otherwise D would contain F2 or F4.

Thus, w œ N≠(xÕ) implying that D would contain F8, a contradiction.

Hence, yÕ = z, therefore, Y = {y, z}, and analogously xÕ = w, that is,

X = {x, w}. By Claim 3.3.1 and because N≠[Y ] = N≠[X ], there is

u œ (N≠(yÕ) \ N≠[x]) fl N≠[xÕ], then D would contain F2 if u = xÕ or

F4 if u œ N≠(xÕ). Therefore, the arc (x, y) is not on a digon.

Suppose that X fl Y , ÿ. Taking into account that N≠[Y ] = N≠[X ],

by Claim 3.3.1, there is w œ N≠(x) \ N≠[y] and then w œ N≠[yÕ]. First,

assume that X fl Y = {yÕ}, that is xÕ = yÕ. Since N≠[Y ] = N≠[X ],

we have y œ N≠(xÕ) because (x, y) is not on a digon. If w = yÕ,

then (xyxÕx) is a 3-cycle in D and, by the hypothesis, there is u œ

N≠(x) \ {xÕ}. By Remark 3.3.1, u < N≠(y) fi N≠(xÕ), a contradiction.

Then, w , yÕ, implying that D would contain F3, a contradiction.

Second, assume that X fl Y = {y}, that is xÕ = y. If w = yÕ, there

is wÕ œ N≠(yÕ) \ N≠[x] by Claim 3.3.1. Then, wÕ œ N≠(y) implying

that D would contain a F3, a contradiction. Thus, w , yÕ and w œ

N≠(yÕ), and since yÕ œ N≠(x) fi N≠(y), D would contain a TT3 or F2,

a contradiction.

Therefore, X fl Y = ÿ. Then, y œ N≠(xÕ), and since y œ Y \ X,

reasoning for y as for x, the arc (y, xÕ) is not lying on a digon. Then,

xÕ œ N≠(yÕ) and, similarly, yÕ œ N≠(x). By the hypothesis, there are

no vertices of in-degree 1 lying on a 4-cycle, implying that there is z œ

N≠(x) \ {yÕ}, but by Remark 3.3.1, N≠(x) fl (N≠(y) fi N≠(yÕ)) = ÿ.

Hence, N≠[X ] , N≠[Y ], a contradiction. This completes the proof. ⇤
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Regarding identifying codes in graphs, Laihonen [45] proved the

following result.

Theorem 3.3.2. [45] Let k Ø 2 be an integer.

1. If a k-regular graph has girth g Ø 7, then it admits a (1, Æ k)-

identifying code.

2. If a k-regular graph has girth g Ø 5, then it admits a (1, Æ k ≠ 1)-

identifying code.

If for each graph G, we consider its corresponding symmetric digraph
¡
G. Then, we obtain the following corollary from Theorem 3.3.1.

Corollary 3.3.1. Let G be a graph of girth g and minimum degree

” Ø 2.

1. If g Ø 7, then G admits a (1, Æ ”)-identifying code.

2. If g Ø 5, then G admits a (1, Æ ” ≠ 1)-identifying code.

Observe that Theorem 3.3.2 by Laihonen is a consequence of Corol-

lary 3.3.1.

3.4 r-in-regular digraphs

In this section, we point out two general results about in-regular digraphs

regarding identifying codes. Besides, we give a characterisation of

the r-in-regular digraphs admitting a (1, Æ r)-identifying code and a

(1, Æ r + 1)-identifying code for r œ {1, 2}.

Proposition 3.4.1. Let D be an r-in-regular digraph admitting a (1, Æ

r + 1)-identifying code. Then,

(i) D is an oriented graph,

(ii) D is TT3-free, and

(iii) for every vertex u œ V +
Ø1(D) and every vertex v œ V (D) \ {u}, we

have |N≠(u) fl N≠(v)| Æ 1.
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Proof. (i) and (ii) are a direct consequence of Lemma 3.1.1 and Propo-

sition 3.2.1, respectively. We prove (iii) by contrapositive. Let D be an

r-in-regular digraph. Suppose that there is a vertex u œ V +
Ø1(D) and

a vertex v œ V (D) \ {u} such that |N≠(u) fl N≠(v)| = k Ø 2. Then,

v < N≠(u). Let x œ N+(u), N≠(u) fl N≠(v) = {w1, w2, . . . , wk}, and

N≠(u) \ N≠(v) = {u1, . . . , ur≠k}. Thus, X = {u, v, x, u1, . . . , ur≠k}

and Y = X \ {u} are two di�erent sets such that N≠[X ] = N≠[Y ],

with |X| Æ r ≠ k+ 3 Æ r+ 1. Therefore, D does not admit a (1, Æ r+ 1)-

identifying code. This completes the proof. ⇤

Lemma 3.4.1. Let D be an r-in-regular oriented TT3-free graph, not

containing F1 of Figure 2 as subdigraph. Then,

r Æ max{q | D admits a (1, Æ q)-identifying code} Æ r + 1.

Proof. Let ¸ = max{q | D admits a (1, Æ q)-identifying code}. Ob-

serve that D is twin-free, and so D admits an identifying code, since

it is oriented. By Proposition 3.1.1, we have that ¸ Æ r + 1. And, by

Theorem 3.3.1 (ii), we have that ¸ Ø r. This completes the proof. ⇤

3.4.1 1-in-regular and 2-in-regular digraphs

We start by giving a characterisation of 1-in-regular digraphs admitting

a (1, Æ 2)-identifying code. Observe that every 1-in-regular digraph D

admits an identifying code if and only if D does not contain digons.

Theorem 3.4.1. Every 1-in-regular digraph D admits a (1, Æ 2)-

identifying code if and only if the girth of D is at least 5.

Proof. By Proposition 3.2.3, we have that if D admits a (1, Æ 2)-

identifying code, then its girth is at least 5. Conversely, suppose that

the girth of D is at least 5. Since D is 1-in-regular, it follows that D

does not contain any subdigraph isomorphic to TT3, F2, F3, F4, F5 nor

F8 of Figure 2. Then, by Theorem 3.3.1, D admits a (1, Æ 2)-identifying

code. This completes the proof. ⇤
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The following result gives a complete characterisation of all 2-in-

regular digraphs admitting an identifying code or a (1, Æ 2)-identifying

code.

Figure 19. The forbidden subdigraphs in a 2-in-regular digraph admit-

ting a (1, Æ 2)-identifying code.

We denote with H the family of digraphs H1- H13 of Figure 19.

Theorem 3.4.2. Let D be a 2-in-regular digraph.

(i) D admits an identifying code if and only if it is H1-free.

(ii) D admits a (1, Æ 2)-identifying code if and only if it is H-free.

Proof. In what follows, for brevity, we made reference to the di�erent

cases H1-H13 of Figure 19 without mentioning the figure. First, note

that any digraph with twin vertices and minimum in-degree at least 2,

necessarily contains H1. Hence, the proof of (i) follows from Remark

1.2.1, because the vertices x, y of H1 are twins. To prove (ii), first

let X = {x, xÕ} (or X = {x}) and Y = {y, yÕ}. It is direct to check

that N≠[X ] = N≠[Y ] in each one of the digraphs shown in Figure 19.

For the converse, we assume that D does not contain any subdigraph

isomorphic to the digraphs depicted in Figure 19, and N≠[X ] = N≠[Y ]

for X , Y such that 1 Æ |Y | Æ |X| Æ 2. According to (i), |X| = 2,
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consequently, 3 Æ |N≠[X ]| Æ 6. Notice that if |Y | = 1, then |N≠[Y ]| =

3, and so |N≠[X ]| = 3 yielding that D contains H1. Therefore, we

assume that |Y | = |X| = 2. Let X = {x, xÕ} and Y = {y, yÕ} with

x œ X \ Y . Let N≠(x) = {v1, v2} and y œ Y such that y œ N+(x). As

we did in the proof of Theorem 3.3.1, we consider the di�erent cases

according to the partition of N≠(x): N≠(x)fl (Y \ X), N≠(x)fl X and

N≠(x) \ (X fi Y ).

Case 1: Suppose that v1, v2 œ Y \ X. Let y = v1 and yÕ = v2 and observe

that, in this case, xÕ < Y . As D is H1-free and H3-free, (N≠(y) \ {x})fl

N≠[yÕ] = ÿ and there is no arc between yÕ and N≠(y) \ {x}. Let

w œ N≠(y) \ {x} and wÕ œ N≠(yÕ) \ {x}, then w, wÕ œ N≠[xÕ].

Subcase 1.1: Suppose that {w, wÕ} fl {xÕ} = ÿ. Hence, N≠(xÕ) =

{w, wÕ}. Since xÕ œ N≠[Y ], it follows that xÕ œ N≠(yÕ) implying that

D would contain H13, a contradiction.

Subcase 1.2: Suppose that xÕ = w. Hence, wÕ œ N≠(xÕ). If there

is z œ N≠(xÕ) \ (X fi Y fi {wÕ}), then z œ N≠(yÕ), implying that D

would contain H10, a contradiction. Therefore, N≠[X ] = X fi Y fi {wÕ},

implying that N≠(xÕ) = {wÕ, x} or N≠(xÕ) = {wÕ, y}. First, suppose

that N≠(xÕ) = {wÕ, x}. If x œ N≠(yÕ), then D would contain H5; and

if y œ N≠(yÕ), then D would contain H4, a contradiction. Therefore,

N≠(xÕ) = {wÕ, y}. If x œ N≠(yÕ), then D would contain H6; and if

y œ N≠(yÕ), then D would contain H5, a contradiction.

Subcase 1.3: Supposse that xÕ = wÕ. Hence, w œ N≠(xÕ). If there is

z œ N≠(xÕ) \ (X fi Y fi {wÕ}), then z œ N≠(yÕ), implying that D would

contain H13, a contradiction. Therefore, N≠[X ] = X fiY fi{wÕ}. Hence,

N≠(xÕ) = {w, x} or N≠(xÕ) = {w, y}. First suppose that N≠(xÕ) =

{w, x}. If x œ N≠(yÕ), then D contains H4; and if y œ N≠(yÕ), then D

would contain H9, a contradiction. Therefore, N≠(xÕ) = {w, y}. Hence,

if x œ N≠(yÕ), then D would contain H4; and if y œ N≠(yÕ), then D

would contain H7, a contradiction.

Case 2: Suppose that v1, v2 œ X. Since |X| = 2, this case is not

possible.
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Case 3: Suppose that v1, v2 < (X fi Y ). Since x œ N≠(y), then |N≠(y)fl

{v1, v2}| Æ 1 implying that {v1, v2} fl N≠(yÕ) , ÿ. Without loss of

generality, suppose that v1 œ N≠(yÕ).

Subcase 3.1: If y œ Y \ X, then y œ N≠(xÕ). If yÕ œ X fl Y , that

is, yÕ = xÕ, then v2 œ N≠(y), implying that D would contain H4.

If yÕ œ Y \ X, then N≠(xÕ) = {y, yÕ} and xÕ œ N≠(y) fi N≠(yÕ). If

xÕ œ N≠(y), then v2 œ N≠(yÕ), implying that D would contain H10.

And, if xÕ œ N≠(yÕ), then v2 œ N≠(y), implying that D would contain

H13.

Subcase 3.2: If y œ X fl Y that is, xÕ = y, then yÕ œ N≠(y) and

v1, v2 œ N≠(yÕ), hence D would contain H9, a contradiction. Therefore,

the proof of Case 3 is finished.

Case 4: Suppose that v1 œ Y \ X and v2 œ X, that is, v2 = xÕ.

Observe that if v1 œ N+(x), since D is H1-free, there is w œ V (D) \ X

such that w œ N≠(v1) µ N≠[Y ]. Thus, w œ N≠(xÕ), implying that

D would contain H3, a contradiction. Then, v1 < N+(x) and so,

v1 = yÕ and y œ N≠(xÕ). If xÕ œ N+(x), then N≠[X ] = {x, xÕ, y, yÕ},

yielding that y œ N≠(yÕ), contradicting that D is H3-free. Therefore,

N+(x) fl {yÕ, xÕ} = ÿ, and recall that y œ N≠(xÕ). Moreover, reasoning

for y as for x in Case 1, we get that xÕ < N≠(y). Moreover, if yÕ œ

N≠(y), then D would contain H2, a contradiction. Therefore, there

is w œ N≠(y) \ (X fi Y ). Hence, w œ N≠(xÕ), implying that D would

contain H2, a contradiction.

Case 5: Suppose that v1 œ Y \ X and v2 < (X fi Y ).

Subcase 5.1: Suppose that v1 œ N+(x), then, we can assume that

v1 = y. Since D is H1-free, v2 œ N≠(yÕ) and there is w œ V (D) \ {x, v2}

such that N≠(y) = {x, w}. Observe that since D is H3-free, v2 <

N≠(w), then w , yÕ. Moreover, since D is H6-free, w < N≠(yÕ). Hence,

w œ N≠[xÕ], implying that xÕ , yÕ. Observe that reasoning for y as

for x in Case 1, we get that w , xÕ. Then, w œ N≠(xÕ) and, since

xÕ, yÕ œ N≠[X ] = N≠[Y ], it follows that xÕ œ N≠(yÕ) and yÕ œ N≠(xÕ),

therefore D would contain H11, a contradiction.
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Subcase 5.2: Suppose that v1 < N+(x), then v1 = yÕ and y œ

N≠[xÕ]. First, suppose that y = xÕ. If N≠(yÕ) ™ X fi {v2}, then

N≠(yÕ) = {xÕ, v2} implying that D would contain H2. Hence, there

is w œ N≠(yÕ) \ (X fi {v2}). Then, w œ N≠(xÕ) and v2 œ N≠(yÕ),

implying that D would contain H4, a contradiction. Therefore, y , xÕ,

implying that y œ N≠(xÕ). Reasoning for y as for x in Case 1 and

Case 4, it follows that N≠(y) fl {xÕ, yÕ} = ÿ. Then, xÕ œ N≠(yÕ).

Moreover, since v2 œ N≠(x), v2 œ N≠(y) fi N≠(yÕ). Also, reasoning

for xÕ as for x in Case 1 and Case 4, it follows that N≠(xÕ) fl {x, yÕ} =

ÿ. Hence, if v2 œ N≠(y) fl N≠(yÕ), then N≠[Y ] = X fi Y fi {v2},

implying that v2 œ N≠(xÕ). Then, D would contain H8, a contradiction.

If v2 œ N≠(yÕ) \ N≠(y), then there is z œ N≠(y) \ (X fi Y fi {v2}),

implying that N≠(xÕ) = {y, z} and D would contain H12. Analogously,

if v2 œ N≠(y) \ N≠(yÕ). And the proof of this case is completed.

Case 6: Suppose that v1 œ X and v2 < (X fi Y ). That is, v1 = xÕ. If

xÕ œ X \ Y , then y œ N≠(xÕ). Since y œ Y \ X, reasoning for xÕ as for

x in Cases 1, 4, and 5, we reach a contradiction. Hence, xÕ œ X fl Y .

If xÕ = y, then yÕ œ N≠(xÕ) and v2 œ N≠(yÕ), implying that D would

contain H3. Therefore, xÕ , y and, hence, y œ Y \ X. Since x œ N≠(y),

reasoning for y as for x in Cases 1, 4, and 5, we reach a contradiction. ⇤

Corollary 3.4.1. Every TT3-free 2-in-regular oriented graph admits a

(1, Æ 2)-identifying code if and only if it does not contain any subdigraph

isomorphic to H9 of Figure 19.

Observe that Corollary 3.4.1 is an improvement of Theorem 3.3.1

(ii) for 2-in-regular oriented graphs. Now, the TT3-free and 2-in-

regular oriented graph can have two distinct vertices u, v with |N≠(u)fl

N≠(v)| = 2, that is, a subdigraph F1 of Figure 2, but, in this case,

there is no vertex w œ V such that u, v œ N≠(w).

In the following theorem, we characterise the 2-in-regular digraphs

admitting a (1, Æ 3)-identifying code.

We denote with J the family of digraphs J1-J15 of Figure 20.
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Figure 20. All the forbidden subdigraphs of Theorem 3.4.3.

Theorem 3.4.3. Let D be a 2-in-regular digraph. Then, D has a

(1, Æ 3)-identifying code if and only if it is {{TT3} fi J }-free oriented

graph.

Proof. By Proposition 3.1.1 and Proposition 3.2.1, if D contains a

digon or a TT3, then D does not admit a (1, Æ 3)-identifying code. Fur-

thermore, for every digraph shown in Figure 20, let X = {x1, x2, x3}

(or X = {x1, x2}) and Y = {y1, y2, y3}. It is direct to check that

N≠[X ] = N≠[Y ] in each case. To the converse, we reason by contra-

diction. Let D be a TT3-free oriented graph without the subdigraphs

of Figure 20. Let X, Y ™ V (D), X , Y , with N≠[X ] = N≠[Y ] and

such that 1 Æ |X| Æ |Y | Æ 3. Since D does not contain a subdigraph

isomorphic to J1 of Figure 20, then it does not contain a subdigraph

H9 of Figure 19. By Corollary 3.4.1, D admits a (1, Æ 2)-identifying

code. Hence, |Y | = 3, |N≠[Y ]| Ø 6, and |X| Ø 2. In what follows, for

brevity, we always make reference to the di�erent cases J1-J15 of Figure

20 without mentioning the figure. Let us prove the following claim.
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Claim 3.4.1. Let a, b œ V (D), with a , b, be such that N≠(a) ™ N≠[b].

Then, N≠(a) = N≠(b) and N+(a) = N+(b) = ÿ.

Proof. If b œ N≠(a), then D contains a TT3, which is a contradiction.

Hence, N≠(a) = N≠(b) and N+(a) = N+(b) = ÿ because, otherwise,

D would contain J1. ⇤

Suppose X = {x1, x2}, then |N≠[X ]| = 6 (because N≠[X ] =

N≠[Y ]) and N≠[x1]flN≠[x2] = ÿ. Let N≠(x1) = {u, v} and N≠(x2) =

{z, t}, so that N≠[X ] = {x1, x2, u, v, z, t} = N≠[Y ]. Without loss of

generality, we may assume that u œ Y . Since D has neither digon nor

TT3, N≠(u) ™ N≠[x2], which implies by Claim 3.4.1 that N≠(u) =

N≠(x2) and N+(u) = ÿ, a contradiction. Therefore, |X| = |Y | = 3.

Let us denote X = {x1, x2, x3}. We prove the following claims.

Claim 3.4.2. Let a, b, c œ V (D). If N≠[a] ™ N≠[b] fi N≠[c], then

a œ {b, c}.

Proof. If a < {b, c}, then, without loss of generality, let us assume

that a œ N≠(b). Hence, by Remark 3.3.1, N≠(a) ™ N≠[c], which

contradicts Claim 3.4.1 because N+(a) , ÿ. ⇤

Claim 3.4.3. N≠(xi) , N≠(xj) for all 1 Æ i < j Æ 3.

Proof. Suppose that N≠(x1) = N≠(x2). Then, N+(x1) = N+(x2) =

ÿ, because D is J1-free, which implies x1, x2 œ Y . Since |N≠[X ]| Ø 6,

there is z œ N≠(x3) \ (N≠[x1] fi N≠[x2]). Because {x3, z} ™ N≠[Y ],

D must contain a digon if z = y3 œ Y , or a TT3 if {x3, z} = N≠(y3),

which is a contradiction. Therefore, N≠(x1) , N≠(x2). ⇤

Claim 3.4.4. If 7 Æ |N≠[X ]| Æ 8, N≠(xi) fl N≠(xj) = {v}, i , j,

and there are exactly two or no arc between the elements of X, then

|Y fl {xi, xj}| Æ 1.

Proof. We proceed by contradiction. Assume Y = {x1, x2, y}. First,

suppose that there is no arc between the elements of X. If v œ N≠(x1)fl

N≠(x2) fl N≠(x3), then according to Claim 3.4.3, |N≠[X ]| = 7 and
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N≠[x3] ™ N≠[x1] fi N≠[y], which contradicts Claim 3.4.2. Hence,

N≠(x1)fl N≠(x2)fl N≠(x3) = ÿ. If |N≠[X ]| = 7, let N≠(x1) = {u, v},

N≠(x2) = {v, z}, and N≠(x3) = {z, w}. Since N≠(v) fl N≠[X ] ™

{x3, w}, by Remark 3.3.1, v < Y , and analogously z < Y . Consequently,

N≠[x3] ™ N≠[x2]fi N≠[y], which contradicts Claim 3.4.2. If |N≠[X ]| =

8, then N≠(x3) ™ N≠[y], a contradiction to Claim 3.4.1 because y < X

and so N+(y) , ÿ. Finally assume that there are two arcs among the

elements of X. Notice that, by Remark 3.3.1, both arcs between the

elements of X are incident to x3. Furthermore, since 7 Æ |N≠[X ]| Æ 8

and N≠(x1) fl N≠(x2) = {v}, v = x3 and |N≠[X ]| = 7, we have

N≠(x3) ™ N≠[y], a contradiction to Claim 3.4.1. ⇤

Let N≠(x1) = {u, v}. We distinguish the following cases according

to the number of arcs between the vertices of X.

Case 1: First, let us assume that there are no arcs between the elements

of X.

Subcase 1.1: Suppose |N≠[X ]| = 6. Then, N≠[X ] = {x1, x2, x3, u, v, z},

so Claim 3.4.3 implies that |N≠(xi) fl N≠(xj)| = 1 for all i , j. Let

N≠(x2) = {v, z}. Observe that v < N≠(x3), otherwise, N≠(x3) =

N≠(xi) for some i œ {1, 2}, contradicting Claim 3.4.3. Therefore

N≠(x3) = {u, z}. Let y œ Y \ X, then y œ {u, v, z}. We can check

that |N≠(y)fl N≠[X ]| Æ 1 for all y œ {u, v, z}, because D is a TT3-free

oriented graph, which is a contradiction.

Subcase 1.2: Suppose |N≠[X ]| = 7. Then, N≠[X ] = {x1, x2, x3, u, v, z, w}.

By Claim 3.4.3, there are two cases to be considered, namely, |N≠(x1)fl

N≠(x2) fl N≠(x3)| = 1 and |N≠(x1) fl N≠(x2) fl N≠(x3)| = 0.

Subsubcase 1.2.1: If |N≠(x1) fl N≠(x2) fl N≠(x3)| = 1, without loss

of generality, N≠(x2) = {v, z} and N≠(x3) = {v, w}. Since D is an

oriented graph and it does not contain TT3, N≠(v) fl N≠[X ] = ÿ,

which means that v < Y and v œ N≠(Y ). Since N+(v) fl {u, z, w} = ÿ,

it follows that Y fl X , ÿ. By Claim 3.4.4, |X fl Y | = 1. Without

loss of generality, suppose that X fl Y = {x1}. If Y = {x1, z, w},

then x2 œ N≠(w) and x3 œ N≠(z), implying that D would contain
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J4. If Y = {x1, u, z}, then x2 œ N≠(u) and N≠(u) ™ {x2, x3, w}. If

N≠(u) = {x2, x3}, then w œ N≠(z) and, hence, D would contain J6.

If N≠(u) = {x2, w}, then x3 œ N≠(z), which implies that D would

contain J5.

Subsubcase 1.2.2: If |N≠(x1) fl N≠(x2) fl N≠(x3)| = 0, without loss

of generality, N≠(x2) = {v, z} and N≠(x3) = {z, w}. By Claim 3.4.4,

|Y fl {x1, x2}| Æ 1 and |Y fl {x2, x3}| Æ 1. Moreover, if {x1, x3} ™

Y , then since x2 œ N≠[Y ], we have {u, w} fl Y , ÿ; without loss of

generality, let us assume that Y = {x1, x3, u}. Then, x2 œ N≠(u)

and N≠(u) ™ {x2, x3, w}. If N≠(u) = {x2, x3}, then D would contain

J8; and if N≠(u) = {x2, w}, then D would contain J10. Therefore,

|Y fl X| Æ 1. Suppose that X fl Y = {x1} and let Y = {x1, y, yÕ},

then N≠[x3] ™ N≠[y] fi N≠[yÕ], which contradicts Claim 3.4.2. Hence,

X fl Y , {x1}, and similarly X fl Y , {x3}. Then, X fl Y = {x2}.

If v œ Y , then there is y œ Y \ {x2, v}, such that N≠(y) = {x1, u}

contradicting Remark 3.3.1. Hence, v < Y , and analogously z < Y .

Therefore, Y = {x2, u, w} and, then, x1 œ N≠(w), implying that

N≠(u) = {x3, x2}. Consequently, D would contain J8. If |Y fl X| = 0,

by symmetry, we only have to consider the following two cases. If

Y = {u, v, z}, then x2 œ N≠(u) and x1 œ N≠(z), implying that D

would contain J4. If Y = {u, z, w}, then x3 œ N≠(u) implying that

N≠(u) = {x2, x3}, and D would contain J8.

Subcase 1.3: Suppose |N≠[X ]| = 8. Without loss of generality, N≠(x2) =

{v, z}, and N≠(x3) = {t, w}. Observe that v < Y , otherwise, N≠(v) ™

N≠[x3] in contradiction to Claim 3.4.1. If Y fl X = ÿ, then we can as-

sume that t œ Y and v œ N≠(t). Consequently, {u, z} fl N≠(t) = ÿ, oth-

erwise, D would contain J1, thus, {x3, w} fl N≠(t) , ÿ, a contradiction.

Therefore, Y fl X , ÿ. If |Y fl X| = 2, then by Claim 3.4.4, {x1, x3} ™ Y

or {x2, x3} ™ Y . If Y = {y, x2, x3}, then N≠[x1] ™ N≠[x2] fi N≠[y],

contradicting Claim 3.4.2. Then, Y , {y, x2, x3}, and similarly Y ,

{y, x1, x3}. Thus, |Y fl X| = 1. If Y = {x1, y, yÕ} or Y = {x3, y, yÕ},
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then N≠[x3] ™ N≠[y] fi N≠[yÕ] or N≠[x1] ™ N≠[y] fi N≠[yÕ], respec-

tively, which contradicts Claim 3.4.2.

Subcase 1.4: Suppose |N≠[X ]| = 9. Hence, the in-neighbourhoods of

the elements of X must be disjoint, and the same is true for Y . Let

N≠(xi) = {ui, vi}, for i = 1, 2, 3. Observe that if 1 Æ |X fl Y | Æ 2, then

N≠[xi] ™ N≠[y] fi N≠[yÕ] for some i œ {1, 2, 3} and y, yÕ œ Y \ {xi}, in

contradiction to Claim 3.4.2. Therefore, X fl Y = ÿ. Without loss of

generality, there are two cases to be considered.

Subsubcase 1.4.1: If Y = {u1, v1, u2}, then x1 œ N≠(u2). If x3 œ

N≠(u1), then, without loss of generality, u3 œ N≠(v1) and v3 œ N≠(u2);

moreover, x2 œ N≠(v1) and v2 œ N≠(u1) or x2 œ N≠(u1) and v2 œ

N≠(v1), implying that D would contain J14 or J15, respectively. If

x3 œ N≠(u2), then we may assume that u3 œ N≠(u1) and v3 œ N≠(v1),

and so x2 œ N≠(u1) and v2 œ N≠(v1), implying that D would contain

J15.

Subsubcase 1.4.2: Let Y = {u1, u2, u3}. Without loss of generality,

suppose x2 œ N≠(u1), then by Remark 3.3.1, N≠(u1) \ {x2} ™ N≠[x3].

Since there is no arc between the elements of Y , there are two cases to

be considered.

1.4.2.1: If N≠(u1) = {x2, x3}, then v3 œ N≠(u2) and v2 œ N≠(u3).

Hence, x1 œ N≠(u2) and v1 œ N≠(u3), or v1 œ N≠(u2) and x1 œ

N≠(u3); in any case, D would contain J14.

1.4.2.2: If N≠(u1) = {x2, v3}, then x3 œ N≠(u2), and v2 œ N≠(u3).

If x1 œ N≠(u2), then v1 œ N≠(u3), implying that D would contain J14.

Finally, if x1 œ N≠(u3), then v1 œ N≠(u2), implying that D would

contain J13.

Case 2: Suppose there is just one arc between the elements of X, say

(x1, x2) œ A(D). Then, |N≠(X)| = 6, 7, 8, and N≠(x1) fl N≠(x2) = ÿ

by Remark 3.3.1. Let N≠(x2) = {x1, z}, and let us distinguish the

following cases.

Subcase 2.1: |N≠[X ]| = 6. Hence, N≠[X ] = {x1, x2, x3, u, v, z}, and

by Claim 3.4.3 let us assume, without loss of generality, that N≠(x3) =
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{v, z}. Moreover, since D is an oriented graph and it does not contain J1,

N≠(z)fl N≠[X ] ™ {u}, and N≠(v)fl N≠[X ] ™ {x2}, therefore z, v < Y ;

hence, u œ Y . Since D is a TT3-free oriented graph, N≠(u) ™ {x2, x3, z}.

Moreover, by Remark 3.3.1, z < N≠(u). Hence, N≠(u) = {x2, x3},

implying that D would contain J2.

Subcase 2.2: |N≠[X ]| = 7. In this case, there is w œ N≠(x3) \

(X fi {u, v, z}). By symmetry, N≠(x3) = {z, w} or N≠(x3) = {v, w}.

First, suppose that N≠(x3) = {z, w}. Since D is a TT3-free oriented

graph, if z œ Y , then N≠(z) = N≠(x1), which is a contradiction by

Claim 3.4.1. Hence z < Y . Analogously, if w œ Y and x2 œ N≠(w),

then N≠(w) ™ {x2, u, v}, implying that D would contain J7; and

if x2 < N≠(w), then N≠(w) ™ N≠[x1], contradicting Claim 3.4.1.

Thus, w < Y . If v œ Y , then N≠(v) ™ (N≠[x3] fi {x2}). Hence, by

Claim 3.4.1, x2 œ N≠(v), implying that N≠(v) ™ {x2, x3, w}, but if

N≠(v) = {x2, x3} or N≠(v) = {x2, w}, then D would contain J2 or J9,

respectively. Therefore, v < Y , and by symmetry, we can also conclude

that u < Y , a contradiction.

Assume now that N≠(x3) = {v, w}. Observe that N≠(v)flN≠[X ] ™

{x2, z}, then v < Y . If u œ Y , then N≠(u) ™ {x2, x3, z, w}, but it could

be neither {x2, z} nor {x3, w} (by Remark 3.3.1). If N≠(u) = {x2, x3},

then D would contain J3; if N≠(u) = {x2, w}, then D would contain J9;

if N≠(u) = {x3, z}, then D would contain J7; and if N≠(u) = {z, w},

then D would contain J10. Therefore, u < Y . If w œ Y , then

N≠(w) ™ {x1, x2, u, z}. Hence, by Remark 3.3.1 and Claim 3.4.1,

N≠(w) = {u, z} or N≠(w) = {u, x2}, implying that D would con-

tain J12 or J5, respectively. Therefore, w < Y . If z œ Y , then

N≠(z) ™ (N≠[x3] fi N≠(x1)). Hence, by Claim 3.4.1 and Remark

3.3.1, N≠(z) = {u, w} or N≠(z) = {u, x3}, yielding that D would

contain J11 or J6, respectively. Hence, z < Y , a contradiction.

Subcase 2.3: |N≠[X ]| = 8. In this case, N≠(x3) = {t, w} for t, w <

N≠[x1]fi N≠[x2]. First, observe that if Y fl {x1, x2} = ÿ, then, without

loss of generality, t œ Y , x1 œ N≠(t), yielding that N≠(t) = N≠(x2), a
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contradiction to Claim 3.4.1. Therefore Y fl {x1, x2} , ÿ. Hence, since

N≠[x3] fl (N≠[x1] fi N≠[x2]) = ÿ, it follows that N≠[x3] ™ N≠[y] fi

N≠[yÕ], with y, yÕ œ Y , yielding by Claim 3.4.2 that x3 œ Y . If x2 < Y ,

then Y = {x1, x3, y} and {x2, z} = N≠(y), which is a contradiction

to Remark 3.3.1. Therefore, Y = {x2, x3, y}, yielding that N≠(x1) ™

N≠[y], contradicting Claim 3.4.2.

Case 3: Suppose there are exactly two arcs between the elements of X.

Then, |N≠[X ]| = 6, 7. Let us distinguish the following cases.

Subcase 3.1: First, assume that (x1, x2, x3) is a path of D. Then,

N≠(x2) fl N≠(x3) = N≠(x2) fl N≠(x1) = ÿ by Remark 3.3.1. Hence,

N≠(x2) = {z, x1}.

Subsubcase 3.1.1: |N≠[X ]| = 6. Without loss of generality, we may

assume that N≠(x3) = {x2, u}. Observe that if u œ Y , then N≠(u) =

{x2, z}, a contradiction to Remark 3.3.1, and then u < Y . If v œ Y ,

then x2 < N≠(v) again by Remark 3.3.1. Hence, if v œ Y , then

N≠(v) = {x3, z}, yielding that D would contain J4. Therefore, z œ Y

and |Y fl X| = 2. By Remark 3.3.1 and Claim 3.4.1, N≠(z) = {x3, v},

implying that D would contain J3.

Subsubcase 3.1.2: |N≠[X ]| = 7. Then, N≠(x3) = {x2, w} for some

w < N≠[x1] fi N≠[x2]. If w œ Y , then N≠(w) ™ (N≠[x1] fi {z}) and,

by Claim 3.4.1 and Remark 3.3.1, z œ N≠(w) and N≠(w) ™ {u, v, z}.

This implies that D would contain J6. Therefore, w < Y . If z œ Y ,

then N≠(z) ™ N≠(x1) fi {x3, w}. Hence, by Claim 3.4.1 and Remark

3.3.1, without loss of generality, N≠(z) = {v, w} or N≠(z) = {v, x3},

implying that D would contain J8 or J2, respectively. Therefore, z < Y .

If u œ Y , then N≠(u) ™ N≠[x3] fi {z}. By Claim 3.4.1 and Remark

3.3.1, N≠(u) = {z, x3} or N≠(u) = {z, w}, yielding that D would

contain J4 or J5, respectively. Therefore, u < Y and, by symmetry,

v < Y , hence, Y \ X = ÿ, a contradiction.

Subcase 3.2: Let us assume that N≠(x2) = {x1, x3}. If |N≠[X ]| = 6,

then, without loss of generality, suppose that N≠(x3) = {v, z}. Observe

that v < Y , otherwise, N≠(v) = {x2}. If z œ Y , then N≠(z) ™
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{x1, x2, u} and, by Remark 3.3.1, N≠(z) = {x2, u}, yielding that

D would contain J3. Hence, z < Y , and reasoning similarly, u < Y ,

a contradiction. If |N≠[X ]| = 7, then N≠(x3) = {z, w} for some

w < {x1, x2, x3, u, v, z}. If u œ Y , then N≠(u) ™ N≠[x3]fi {x2}, and by

Claim 3.4.1 and Remark 3.3.1, x2 œ N≠(u) and N≠(u) ™ {x2, z, w},

implying that D would contain J3. Therefore, u < Y . Analogously,

v, z, w < Y , yielding that Y \ X = ÿ, a contradiction.

Subcase 3.3: Without loss of generality, let us assume that

(x1, x2), (x1, x3) œ A. If |N≠[X ]| = 6, then N≠(x2) = {x1, z} =

N≠(x3), which contradicts Claim 3.4.3. Hence, |N≠[X ]| = 7. Let

N≠(x2) = {x1, z} and N≠(x3) = {x1, w}. Observe that we also

may assume that there are exactly two arcs between the elements

of Y , and there is some y œ Y satisfying the same as x1, that is,

N+[y] fl Y = Y ≠ y. Therefore, if x1 œ Y , we can assume that

Y = {x1, u, w} and N+(u) fl Y = {x1, w}. Then, N≠(u) ™ {x3, x2, z}

and, by Remark 3.3.1, x3 œ N≠(u), implying that N≠(u) = {x3, x2}

or N≠(u) = {x3, z} yielding that D would contain J2 or J9, respec-

tively. Moreover, since N+(x1) fl N≠[X ] = {x2, x3}, it follows that

Y fl {x2, x3} , ÿ. Furthermore, by Claim 3.4.4, |Y fl {x2, x3}| = 1.

Without loss of generality, suppose Y fl X = {x2}.

If Y = {x2, z, u}, then u œ N+(z), yielding that N≠(z) ™ {v, x3, w}.

By Remark 3.3.1, N≠(z) = {v, w} or N≠(z) = {v, x3}, implying that

D would contain J5 or J4, respectively. If Y = {x2, z, w}, then z œ

N≠(w) and x3 œ N≠(z). Thus, without loss of generality, u œ N≠(z)

yielding that D would contain J3. Therefore, z < Y . If Y = {x2, u, v},

then, without loss of generality, x3 œ N≠(u) and w œ N≠(v), implying

that D contains J3. Finally, if Y = {x2, u, w}, then x3 œ N≠(u) and

v œ N≠(w), yielding that D would contain J2.

Case 4: Suppose there are three arcs between the elements of X. Hence,

|N≠[X ]| = 6 and since D is TT3-free, we may assume that (x1x2x3x1)

is a directed triangle. Then, N≠(xi) fl N≠(xj) = ÿ, for all i , j. Let

N≠(x1) = {x2, u}, N≠(x2) = {x3, v} and N≠(x3) = {x1, z}. Notice
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that if z œ N≠(u) or v œ N≠(u), then D would contain J2 or J3,

respectively. Therefore, since D is a TT3-free oriented graph, N≠(u) fl

N≠[X ] ™ {x2} and u < Y . Observe that, by symmetry, we can conclude

the same for v and z, obtaining a contradiction again. ⇤



4
I D E N T I F Y I N G C O D E S I N L I N E D I G R A P H S

In this chapter, which consists mainly of the results published in [7],

we focus on the study of (1, Æ ¸)-identifying codes in line digraphs. It

is organised as follows. In Section 4.1, we present some preliminary

definitions and results needed for the rest of this chapter. In Section 4.2

we prove that a line digraph of minimum in-degree one does not admit

a (1, Æ ¸)-identifying code for ¸ Ø 3. Then, we give a characterisation

so that a line digraph of a digraph di�erent from a directed cycle of

length 4 and minimum in-degree one admits a (1, Æ 2)-identifying code.

As a direct consequence, we obtain that a Kautz digraph K(d, k) with

d Ø 3 admits a (1, Æ 2)-identifying code. In [27], Foucaud, Gravier,

et al. introduced the notion of edge-identifying code of a graph to

study the identifying codes of line graphs. In Section 4.3, we use

the analogous of this notion for digraphs to establish, for digraphs

without digons with both vertices of in-degree one, that ≠æ“ ID(LD) Ø

|A(D)| ≠ |V +
Ø1(D)|. As a consequence, we get that a digraph having

a 1-factor with minimum in-degree two and without digons with both

vertices of in-degree two satisfies that ≠æ“ ID(LD) = |A(D)| ≠ |V (D)|.

We also provide an algorithm to construct identifying codes in oriented

graphs with minimum in-degree at least two and minimum out-degree

at least one. This algorithm allows us to prove that an oriented graph

with minimum in-degree and out-degree at least two satisfies that
≠æ“ ID(LD) = |A(D)| ≠ |V (D)|.
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4.1 preliminaries

Given a digraph D, the line digraph L(D), also denoted LD, is the

digraph with vertex set A(D) and such that for any two di�erent vertices

a, b œ V (LD), (a, b) œ A(LD) if and only if the head of a coincides with

the tail of b. A directed digraph H is a line digraph if there is a directed

digraph D such that H = L(D). For any integer k Ø 1, the k-iterated

line digraph LkD is defined recursively by LkD = LLk≠1D, where

L0D = D. From the definition, it is evident that the order of LD equals

the size of D, that is, |V (LD)| = |A(D)|. For each vertex v œ V (D),

we denote W≠(v) = {(u, v) œ A(D)} and W+(v) = {(v, u) œ A(D)}.

Hence, for each vertex v œ V (D), the set of arcs W+(v) (or W≠(v)) in

D corresponds to a set of vertices in LD. Moreover, d+(v) = |W+(v)|

and d≠(v) = |W≠(v)|, so if D has minimum degree ”, then the iterated

line digraph LkD has minimum degree ” as well. Other properties of

line digraphs can be seen in Aigner [1], Fiol, Yebra, and Alegre [26],

and Reddy, Kuhl, Hosseini, and Lee [53].

Line digraphs were characterised by Heuchenne [37] with the follow-

ing property.

Lemma 4.1.1 ([37]). A digraph D is a line digraph if and only if

it has no multiple arcs and, for any pair of vertices u and v, either

N≠(u) fl N≠(v) = ÿ or N≠(u) = N≠(v). (A similar result is obtained

replacing N≠ by N+.)

The following theorem is another useful characterisation of line

digraphs given by Beineke and Zamfirescu [11].

Theorem 4.1.1 ([11]). A (simple) digraph D is a line digraph if and

only if D is TT3-free, the paths of length two are unique, there are no

two digons incident to the same vertex, and if there are two vertices u, v

such that N+(u) fl N+(v) , ÿ, then N+(u) = N+(v).
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4.2 a characterisation of line digraphs admitting a

(1, Æ ¸)-identifying code

As mentioned, in this section, we present a characterisation of line

digraphs admitting a (1, Æ ¸)-identifying code. First, we consider the

case ¸ = 1 with the following result.

Proposition 4.2.1. Let D be a digraph. Then, its line digraph admits

an identifying code if and only if there is no digon with both vertices of

in-degree 1 in D.

Proof. We know that a digraph F admits an identifying code if and only

if for any two di�erent vertices x, y œ V (F ) we have N≠
F [x] , N≠

F [y].

We reason by contraposition. First, let LD be the line digraph of a

digraph, and suppose that LD does not admit an identifying code. This

is equivalent to have two di�erent vertices x, y œ V (LD) such that

N≠[x] = N≠[y], which implies that x and y form a digon. By Theorem

4.1.1, LD is TT3-free, and by Remark 3.3.1, N≠(x) fl N≠(y) = ÿ,

yielding that d≠(x) = d≠(y) = 1. Hence, LD contains a digon with

both vertices of in-degree 1, thus, D contains a digon with both vertices

of in-degree 1. Conversely, suppose that there is a digon uv, vu œ A(D)

with d≠(u) = d≠(v) = 1, then uv, vu œ V (LD) form a digon in LD,

and these vertices are twins since N≠
LD[uv] = {uv, vu} = N≠

LD[vu],

implying that LD does not admit an identifying code. ⇤

Corollary 4.2.1. Let D be a digraph with minimum in-degree ”≠ Ø 2.

Then, its line digraph admits an identifying code.

Next, we establish that if a line digraph admits a (1, Æ ¸)-identifying

code, then ¸ Æ 2. To this end, we need to prove the following preliminary

result.

Lemma 4.2.1. Let D be a digraph with minimum in-degree ”≠ Ø 2.

Then, there exists a vertex u œ V (D) with d+(u) Ø 2 and such that there

are at least two out-neighbours x, y œ N+(u) such that d+(x), d+(y) Ø 1.
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Proof. Let D be a digraph with minimum in-degree ”≠ Ø 2, and consider

the subdigraph DÕ = D ≠{w œ V (D) | d+(w) = 0}. Then, ”≠(DÕ) Ø 2.

If d+DÕ(u) < 2 for all u œ V (DÕ), then we would reach the contradiction:

2|V (DÕ)| Æ
ÿ

vœV (DÕ)

d≠
DÕ(v) =

ÿ

vœV (DÕ)

d+DÕ(v) Æ |V (DÕ)|.

Hence, there is u œ V (DÕ) such that d+DÕ(u) Ø 2 and therefore, d+(u) Ø 2.

Since for any v œ N+
DÕ(u) ™ N+(u) we have d+(v) Ø 1, the proof is

completed. ⇤

Proposition 4.2.2. Let LD be a line digraph of a digraph D with min-

imum in-degree ”≠ Ø 1, then LD does not admit a (1, Æ ¸)-identifying

code for ¸ Ø 3.

Proof. Note that ”≠(LD) = ”≠(D) = ”≠. If ”≠ Ø 2, by Lemma

4.2.1, there exists a vertex v in LD with d+(v) Ø 2 and two vertices

x, y œ N+(v) such that d+(x), d+(y) Ø 1. By Lemma 4.1.1, we

have N≠(x) = N≠(y). Hence, by Corollary 3.1.4, if LD admits a

(1, Æ ¸)-identifying code, then ¸ Æ 2, and the result is valid. Suppose

that ”≠ = 1. Take a vertex u with d≠(u) = 1. If d+(u) Ø 1, then by

Proposition 3.1.1, we get that ¸ Æ 2 and we obtain the result. Therefore

we assume that every vertex with in-degree one has out-degree zero.

Let F be the digraph obtained from LD by removing all the vertices

of in-degree one. Observe that ”≠(F ) Ø 2, then reasoning as in the

first part of the proof, F does not admit a (1, Æ 3)-identifying code.

This means that there are two di�erent sets X, Y ™ F µ V (LD) such

that 1 Æ |X| Æ |Y | Æ 3 and N≠
F [X ] = N≠

F [Y ]. Since for any vertex

u œ V (F ), N≠
F [u] = N≠

LD[u], it follows that N≠
LD[X ] = N≠

LD[Y ]. Hence,

LD does not admit a (1, Æ 3)-identifying code. ⇤

Remember that, according to Proposition 3.1.1, if D is a digraph

admitting a (1, Æ 2)-identifying code, then there is no vertex of in-degree

1 belonging to a digon. In the following result, we give su�cient and

necessary conditions for a line digraph to admit a (1, Æ 2)-identifying

code. To do that, we use the following result, which follows from the fact
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that, in a line digraph, the paths of length two are unique by Theorem

4.1.1.

Corollary 4.2.2. Let LD be a line digraph. If u, v œ V (LD) are two

di�erent vertices such that N+(u)fl N+(v) , ÿ, then N≠(u)fl N≠(v) =

ÿ.

Figure 21. The forbidden subdigraphs of Theorem 4.2.1 and Corollary

4.2.3, where the vertices of in-degree one are indicated in black colour

and the vertices of in-degree two in grey colour.

Theorem 4.2.1. Let LD be a line digraph with minimum in-degree

”≠ Ø 1, such that the vertices of in-degree 1 (if any) do not lie on a

digon. Then, LD admits a (1, Æ 2)-identifying code if and only if LD

satisfies the following conditions:

(i) There are no directed 3-cycles with at least 2 vertices of in-degree

1 (see Figure 21 (a)).

(ii) There do not exist four vertices x, xÕ, y and yÕ such that N≠(x) =

{y, yÕ}, N≠(yÕ) = {xÕ}, and x œ N≠(xÕ) fl N≠(y) (see Fig-

ure 21 (b)).

(iii) There do not exist four vertices x, xÕ, y, and yÕ in V (LD) such

that N≠(x) = {y, yÕ}, N≠(y) = {x, xÕ}, and N≠(xÕ)flN≠(yÕ) , ÿ

(see Figure 21 (c)).

(iv) There is no directed 4-cycle with the four vertices of in-degree 1.

Proof. First, suppose that LD admits a (1, Æ 2)-identifying code and

let us show that LD satisfies all the conditions (i)-(iv).

(i) Suppose that LD does not satisfy (i). Hence, let (z, y, x, z) be

a directed 3-cycle in LD such that d≠(x) = 1 = d≠(y) (see Figure 21
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(a)). Then, N≠[{x, z}] = {x, z} fi {y} fi N≠(z) = {y} fi N≠[z], and

N≠[{y, z}] = {y, z} fi N≠(z) = {y} fi N≠[z], implying that LD does

not admit a (1, Æ 2)-identifying code, which is a contradiction.

(ii) Suppose that LD does not satisfy (ii). Let X = {x, xÕ} and

Y = {y, yÕ}, where x, xÕ, y, yÕ are four di�erent vertices of LD such

that N≠(x) = {y, yÕ}, N≠(yÕ) = {xÕ}, and x œ N≠(xÕ) fl N≠(y) (see

Figure 21 (b)). Hence, by Lemma 4.1.1, we get N≠(xÕ) = N≠(y), and

it follows that

N≠[X ] = N≠(x) fi N≠(xÕ) fi {x, xÕ}

= {y, yÕ} fi N≠(y) fi {x, xÕ}

= {y, yÕ} fi N≠(y) fi {xÕ}

= {y, yÕ} fi N≠(y) fi N≠(yÕ)

= N≠[Y ].

Therefore, LD does not admit a (1, Æ 2)-identifying code, which is a

contradiction.

(iii) Suppose that LD does not satisfy (iii). Let X = {x, xÕ} and

Y = {y, yÕ}, where N≠(x) = {y, yÕ}, N≠(y) = {x, xÕ}, and N≠(xÕ) fl

N≠(yÕ) , ÿ (see Figure 21 (c)). Since, by Lemma 4.1.1, N≠(xÕ) =

N≠(yÕ), it follows that

N≠[X ] = N≠(x) fi N≠(xÕ) fi {x, xÕ}

= {y, yÕ} fi N≠(yÕ) fi N≠(y)

= N≠[Y ].

Therefore, LD does not admit a (1, Æ 2)-identifying code, which is a

contradiction.

(iv) Suppose that LD does not satisfy (iv). Let (u1, u2, u3, u4, u1)

be a 4-cycle of LD such that d≠(ui) = 1 for all i œ {1, 2, 3, 4}. Then,

N≠[{u1, u3}] = N≠[{u2, u4}], implying that LD does not admit a

(1, Æ 2)-identifying code which is a contradiction.

For the converse, suppose that LD satisfies all the conditions (i)-

(iv), and that it does not admit a (1, Æ 2)-identifying code. Let

X, Y ™ V (LD) be two di�erent subsets such that 1 Æ |X| Æ |Y | Æ 2
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and N≠[X ] = N≠[Y ]. Since the vertices of in-degree one do not lie

on a digon, by Proposition 4.2.1, |Y | = 2. If |X| = 1, say X = {x},

then N≠[Y ] = N≠[X ] = N≠[x]. It follows that N≠[y] ™ N≠(x) for

all y œ Y \ X, hence y œ N≠(x). By Theorem 4.1.1, LD is TT3-free,

which allows us to apply Remark 3.3.1, so N≠(y) fl N≠(x) = ÿ, then

N≠(y) = ÿ, which contradicts that ”≠ Ø 1.

Suppose |X| = 2 and consider two cases according to X fl Y , ÿ or

if X fl Y = ÿ.

(a) Suppose that X fl Y , ÿ. Let X = {x, z} and Y = {y, z}. We

will consider two cases, when there is at least one arc between x and y,

and the case when there is no arc between x and y.

(a.1) If there is an arc between x and y, say yx œ A(LD), then

by Remark 3.3.1, N≠(x) fl N≠(y) = ÿ. Then, N≠(y) ™ N≠[z] fi {x}

and N≠(x) ™ N≠[z] fi {y}. First, suppose that d≠(x) Ø 2 and let u œ

N≠(x) \ {y}. Hence, u œ N≠[z]. If u = z, then N≠(x) fl N≠(z) = ÿ

by Remark 3.3.1, and N≠(y) fl N≠(z) = ÿ. Hence, N≠(x) = {y, z}

and N≠(y) = {x} (since ”≠(LD) Ø 1). Then y is a vertex of in-

degree 1 lying on a digon, a contradiction to the hypothesis. Therefore,

u , z, that is, u œ N≠(z) fl N≠(x) implying, by Lemma 4.1.1, that

N≠(z) = N≠(x), hence y œ N≠(z), implying that N≠(y)fl N≠(z) = ÿ

by Remark 3.3.1. Then N≠(y) ™ {x, z}. Since ”≠(LD) Ø 1, it follows

that N≠(y) = {x}, N≠(y) = {z} or N≠(y) = {x, z}. The first two

cases are not possible because vertices of degree one do not lie on digons,

and the third case is not possible because, by Theorem 4.1.1, LD does

not contain two digons incident to the same vertex. Second, suppose

that d≠(x) = 1, then N≠(x) = {y}. Since x œ N≠[Y ] and x does not

lie on a digon, x œ N≠(z). Since, x < N≠(y), N≠(y) fl N≠(z) = ÿ by

Lemma 4.1.1, implying that N≠(y) = {z} because N≠(y) ™ N≠[z].

Therefore, (x, z, y, x) is a directed 3-cycle of LD with two vertices of

in-degree 1, implying that LD does not satisfy (i).

(a.2) Now, suppose that there is no arc between x and y. Since

x œ N≠[Y ] and y œ N≠[X ], it follows that x, y œ N≠(z). Since LD is
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TT3-free, y < N≠(x), by Remark 3.3.1, N≠(x) fl N≠(z) = ÿ, and by

Corollary 4.2.2, N≠(x) fl N≠(y) = ÿ implying that N≠(x) = {z} and

x, z form a digon, a contradiction since there are no vertices of in-degree

1 lying on a digon.

(b) Suppose X fl Y = ÿ, with X = {x, xÕ} and Y = {y, yÕ}. Notice

that we can assume y œ N≠(x), that is, yx œ A(LD). Then by

Remark 3.3.1, N≠(x) fl N≠(y) = ÿ implying that N≠(y) ™ N≠(xÕ) fi

{x, xÕ}. Since x œ N≠[Y ], there are two cases to be considered.

(b.1) Suppose that x œ N≠(y). Then d≠(x), d≠(y) Ø 2, since

both vertices lie on a digon. If there is u œ N≠(y) \ (X fi Y ), then

u œ N≠(xÕ), and by Lemma 4.1.1, N≠(y) = N≠(xÕ) implying that

x œ N≠(xÕ). Hence, since xÕ œ N≠[Y ] and N≠(xÕ) = N≠(y), it follows

that xÕ œ N≠(yÕ). Furthermore, yÕ œ N≠(xÕ) fi N≠(x). If yÕ œ N≠(xÕ),

then by Remark 3.3.1, N≠(xÕ) fl N≠(yÕ) = ÿ, and by Corollary 4.2.2,

N≠(x) fl N≠(yÕ) = ÿ, because xÕ œ N+(x) fl N+(yÕ). Moreover, by

Theorem 4.1.1, x < N≠(yÕ) because LD is TT3-free, and y < N≠(yÕ)

because, otherwise LD would have two digons incident to the vertex y.

This implies that N≠(yÕ) = {xÕ}, that is, d≠(yÕ) = 1, a contradiction

because yÕ lies on a digon. Then yÕ œ N≠(x) and by Remark 3.3.1,

N≠(yÕ) fl N≠(x) = ÿ. Moreover, x < N≠(yÕ) because otherwise LD

would have two digons incident to vertex x. If N≠(yÕ) fl N≠(xÕ) , ÿ by

Lemma 4.1.1, N≠(yÕ) = N≠(xÕ) implying that x œ N≠(yÕ), which is a

contradiction. Therefore, N≠(yÕ) fl N≠(xÕ) = ÿ and so N≠(yÕ) = {xÕ}

and N≠(x) = {y, yÕ}. Therefore, LD does not satisfy (ii). Thus, we

have proved that N≠(y) ™ X fi Y . Reasoning similarly for x as we did

for y, this time considering the arc xy, we get that N≠(x) ™ X fi Y .

If xÕ œ N≠(x), then xÕ œ N≠(yÕ). Since LD is TT3-free, xÕ <

N≠(y) and by Corollary 4.2.2, N+(x) fl N+(yÕ) = ÿ implying y <

N+(yÕ), therefore |N≠(y) fl {xÕ, yÕ}| = 0 implying that d≠(y) = 1, a

contradiction. Therefore, xÕ œ N≠(y) and yÕ œ N≠(x). Since x œ

N+(y)fl N+(yÕ), by Corollary 4.2.2, N≠(y)fl N≠(yÕ) = ÿ, that is, xÕ <

N≠(yÕ). Moreover, since LD is TT3-free, y < N≠(yÕ). And since there
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are no two digons incident to the same vertex x < N≠(yÕ). Therefore

there is a vertex u œ N≠(yÕ) \ (X fi Y ) and since N≠(yÕ) fl N≠(x) = ÿ,

u œ N≠(xÕ). Hence, LD does not satisfy (iii).

(b.2) Suppose that x œ N≠(yÕ) \ N≠(y). Then N≠(x) fl (N≠(y) fi

N≠(yÕ)) = ÿ by Remark 3.3.1, implying that N≠(x) ™ {y, yÕ}.

(b.2.1) If N≠(x) = {y}, then yÕ œ N≠(xÕ), implying that N≠(yÕ) fl

(N≠(xÕ) fi N≠(x)) = ÿ, and consequently N≠(yÕ) ™ {x, xÕ}. If xÕ œ

N≠(y), then N≠(xÕ)fl (N≠(y)fi N≠(yÕ)) = ÿ, implying that N≠(xÕ) ™

{y, yÕ}. Observe that if y œ N≠(xÕ), then by Lemma 4.1.1, N≠(x) =

N≠(xÕ) = {y, yÕ}, a contradiction with the assumption that N≠(x) =

{y}. Hence, N≠(xÕ) = {yÕ}. Moreover, N≠(yÕ) ™ {x, xÕ} and N≠(yÕ) =

{x} because otherwise the vertices xÕ, yÕ form a digon with vertex xÕ

of degree one contradicting the hypothesis. Also, N≠(y) ™ {xÕ, yÕ}

and since N≠(xÕ) fl N≠(y) = ÿ, yÕ < N≠(y), we have N≠(y) = {xÕ}.

Therefore, (x, yÕ, xÕ, y, x) is a directed 4-cycle in LD with four vertices

of in-degree one, and LD does not satisfy (iv).

(b.2.2) If N≠(x) = {y, yÕ}, we have a digon formed by vertices x and

yÕ, also N≠(x) fl (N≠(y) fi N≠(yÕ)) = ÿ, and consequently N≠(y) ™

{xÕ} fi N≠(xÕ) (recall that we are assuming that x œ N≠(yÕ) \ N≠(y)).

First, suppose that xÕ œ N≠(y). Then N≠(y) fl N≠(xÕ) = ÿ and so

N≠(y) = {xÕ}, and therefore y < N≠(xÕ) because LD has no digons

consisting of vertices of in-degree one. Hence, by Lemma 4.1.1, we have

N≠(x)fl N≠(xÕ) = ÿ. Also x < N≠(xÕ) because otherwise LD does not

satisfy (ii), a contradiction, and then N≠(xÕ)fl N≠(yÕ) = ÿ, concluding

that N≠(xÕ) = ÿ, which is a contradiction. Therefore, suppose that

xÕ œ N≠(yÕ) \ N≠(y). By Theorem 4.1.1, x, yÕ < N≠(xÕ), implying

by Lemma 4.1.1 that N≠(xÕ) fl N≠(x) = ÿ, N≠(xÕ) fl N≠(yÕ) = ÿ.

Hence, N≠(yÕ) = {x, xÕ} and N≠(xÕ) ™ N≠(y) and, since ”≠(LD) Ø 1,

there is u œ N≠(xÕ) \ (X fi Y ). Therefore, LD does not satisfy (iii), a

contradiction. This completes the proof. ⇤

Notice that, according to the above theorem, if a line digraph with

minimum in-degree ”≠
LD Ø 2 does not admit a (1, Æ 2)-identifying
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code, then ”≠
LD = 2. In the following corollary, we give some su�cient

conditions for a line digraph with minimum in-degree at least two, to

admit a (1, Æ 2)-identifying code.

Corollary 4.2.3. Let D be a digraph with minimum in-degree ”≠(D) Ø

2. Then the following assertions hold.

(i) The line digraph LD admits a (1, Æ 2)-identifying code if and

only if LD is F -free, where F is the digraph (c) of Figure 21.

(ii) If ”≠ Ø 3, then LD admits a (1, Æ 2)-identifying code.

(iii) If k Ø 2, then LkD admits a (1, Æ 2)-identifying code.

Proof. Let D be a digraph with minimum in-degree ”≠(D) Ø 2. Items

(i) and (ii) follow directly from Theorem 4.2.1. To prove (iii) observe

that if k Ø 2, then LkD does not contain the subdigraph of Figure 21 (c),

otherwise Lk≠1D would contain a TT3, a contradiction to Theorem 4.1.1.

More precisely, suppose that u, x, xÕ, y, yÕ œ V (LkD) are five di�erent

vertices such that LkD[{u, x, xÕ, y, yÕ}] is isomorphic to Figure 21 (c).

Let u = (u1, u2) with u1, u2 œ V (Lk≠1D). Then xÕ = (u2, xÕ
2) and yÕ =

(u2, yÕ
2) for some two di�erent vertices xÕ

2, yÕ
2 œ V (Lk≠1D), x = (yÕ

2, xÕ
2)

and y = (xÕ
2, yÕ

2). Therefore, Lk≠1D[{u2, xÕ
2, yÕ

2}] � TT3. ⇤

A large known family of digraphs obtained with the line digraph

technique is the family of Kautz digraphs. The Kautz digraph of degree

d and diameter k is defined as the (k ≠ 1)-iterated line digraph of the

symmetric complete digraph of d + 1 vertices
¡
Kd+1, that is, K(d, k) �

Lk≠1 ¡
Kd+1. For instance, the Kautz digraph K(2, 2) shown in Figure 22,

is the line digraph of the symmetric complete digraph on three vertices.

Corollary 4.2.4. For each d Ø 3, the Kautz digraph K(d, 2) � L
¡
Kd+1

admits a (1, Æ 2)-identifying code.

By Corollary 4.2.3 (iii), the Kautz digraph K(2, 2) = L
¡
K3 (see

Figure 22) does not admit a (1, Æ 2)-identifying code. Therefore, the

condition k Ø 2 in Corollary 4.2.3 (iii) is necessary.
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Figure 22. The Kautz digraph K(2, 2) as the line digraph of the

symmetric complete digraph
¡
K3.

4.3 arc-identifying codes

Foucaud, Naserasr, and Parreau [28] characterised the digraphs that

only admit as identifying code the whole set of vertices. This allows us

to have a first upper bound for the identifying number of a line digraph.

Let us introduce the terminology they used for this characterisation.

Given a digraph D and a vertex x < V (D), x≠æC (D) is the digraph

with vertex set V (D) fi {x}, and whose arcs are the arcs of D together

with each arc (x, v) for every v œ V (D).

Definition 4.3.1. (K1, ü, ≠æC ) is the closure of the one-vertex graph

K1 with respect to the operations ü and ≠æC . Namely, the class of all

digraphs that can be built from K1 by repeated applications of ü and ≠æC .

Foucaud, Naserasr, et al. [28] proved that for any digraph D,
≠æ“ ID(D) = |V (D)| if and only if D œ (K1, ü, ≠æC ). Notice that, if

D œ (K1, ü, ≠æC ) is a digraph with at least one arc, then the digraph

DÕ = x≠æC (D) is not TT3-free and hence, by Theorem 4.1.1, it is not a

line digraph. Let r be a positive integer, we denote by ≠æ
K1,r the digraph

obtained from the star K1,q by orienting the edges from the vertex with

degree q to each neighbour. Now, consider F , the family of digraphs

defined recursively with the following three rules.

1. K1 œ F ;

2. ≠æ
K1,q œ F , for every q Ø 1;

3. if D1, D2 œ F , then D1 ü D2 œ F .
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Thus, we have the following result.

Corollary 4.3.1. Let LD be a line digraph. Then, ≠æ“ ID(LD) =

|V (LD)| if and only if LD œ F .

Before continuing with the study of line digraphs, let us point

out another consequence of the characterisation mentioned above, a

consequence for digraphs in general. Since for any D œ (K1, ü, ≠æC ) with

at least one arc we get ”̂≠(D) = 0, by Corollary 3.1.1 we have the

following result.

Corollary 4.3.2. Let D be a digraph admitting a (1, Æ ¸)-identifying

code and such that ≠æ“ ID(LD) = |V (LD)|. Then, ¸ = 1.

Observe that, in particular, if LD is a line digraph with minimum

in-degree ”≠ Ø 2, then ≠æ“ ID(LD) Æ |V (LD)| ≠ 1. Next, we give a lower

bound on ≠æ“ ID(LD).

With this goal, we define the relation ≥ over the set of vertices

V (LD) as follows. For all u, v œ V (LD), u ≥ v if and only if N≠(u) =

N≠(v). Clearly, ≥ is an equivalence relation. For any u œ V (LD), let

[u]≥ = {v œ V (LD) : v ≥ u}.

Lemma 4.3.1. Let C be an identifying code of a line digraph LD.

Then, for any vertex w œ V (LD),

|[w]≥ \ C| Æ 1.

Proof. Let w œ V (LD) and u, v œ [w]≥ \ C. Then, N≠(u) = N≠(v)

and, since u, v < C, it follows that N≠[u]fl C = N≠(u)fl C = N≠(v)fl

C = N≠[v] fl C, which is a contradiction if u , v. ⇤

Definition 4.3.2. Given a digraph D, a subset ÂC of A(D) is an arc-

identifying code of D if ÂC is both:

• an arc-dominating set of D, that is, for each arc uv œ A(D),

({uv} fi W≠(u)) fl ÂC , ÿ, and

• an arc-separating set of D, that is, for each pair uv, wz œ A(D)

(with uv , wz), ({uv} fi W≠(u)) fl ÂC , ({wz} fi W≠(w)) fl ÂC.
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Hence, an arc-identifying code of D is an identifying code of its line

digraph LD. As a consequence, given a digraph D, the minimum size

of an identifying code of its line digraph, ≠æ“ ID(LD), is equivalent to

the minimum size of an arc-identifying code of D.

With the following result, we characterize the arc-identifying codes.

Theorem 4.3.1. Let D be a digraph and ÂC ™ A(D). Then, ÂC is an

arc-identifying code of D if and only if ÂC satisfies the following two

conditions:

(i) For all v œ V (D), |W+(v) \ ÂC| Æ 1, and if |W+(v) \ ÂC| = 1, then

W≠(v) fl ÂC , ÿ;

(ii) for all uv œ ÂC, if vu œ ÂC or |W+(v) \ ÂC| = 1, then ((W≠(u) fi

W≠(v)) \ {uv, vu}) fl ÂC , ÿ.

Proof. Suppose that ÂC is an arc-identifying code of D. Hence, ÂC

is an identifying code of LD, and by Lemma 4.3.1, we have for all

vw œ V (LD), |[vw]≥ \ ÂC| Æ 1. Observe that rs œ [vw]≥ if and only

if N≠
LD(rs) = N≠

LD(vw), which only can occur if and only if r =

v. Therefore, we get that for all v œ V (D), |W+(v) \ ÂC| Æ 1 holds.

Moreover, let v œ V (D) be such that |W+(v) \ ÂC| = 1 and let vx œ

W+(v) \ ÂC. Hence, ({vx} fi W≠(v))fl ÂC = W≠(v)fl ÂC. Since ÂC is an arc-

identifying code, ({vx} fi W≠(v))fl ÂC , ÿ, hence ÂC satisfies (i). To prove

(ii), let uv œ ÂC be such that ((W≠(u)fi W≠(v)) \ {vu, uv})fl ÂC = ÿ. If

vu œ ÂC, then ({uv} fi W≠(u)) fl ÂC = {uv, vu} = ({vu} fi W≠(v)) fl ÂC,

contradicting that ÂC is an arc-identifying code. Hence, vu < ÂC. If

|W+(v) \ ÂC| = 1, say W+(v) \ ÂC = {vx}, then ({uv} fi W≠(u)) fl ÂC =

{uv} = ({vx} fi W≠(v)) fl ÂC, a contradiction. Therefore, ÂC satisfies

(ii).

Now, suppose that ÂC is a set of arcs of D satisfying (i) and (ii),

and let us show that ÂC is an arc-identifying code. To see that ÂC is

an arc-dominating set of D, let ab œ A(D). By (i), W+(a) ™ ÂC or

W≠(a) fl ÂC , ÿ, implying that ({ab} fi W≠(a)) fl ÂC , ÿ. Therefore,
ÂC is an arc-dominating set of D. Next, let us prove that ÂC is an
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arc-separating set of D. On the contrary, suppose that there are two

di�erent arcs ab and cd, such that ({ab} fi W≠(a)) fl ÂC = ({cd} fi

W≠(c)) fl ÂC. First, let us assume that ab, cd < ÂC and take an arc

uv œ ({ab} fi W≠(a)) fl ÂC = ({cd} fi W≠(c)) fl ÂC. Then v = a = c,

implying that ab, cd œ W+(v) \ ÂC, contradicting (i). Second, assume

that ab œ ÂC, hence, ab œ W≠(c), implying that c = b. If bd < ÂC, then

|W+(b) \ ÂC| = 1 and by (ii), ((W≠(a) fi W≠(b)) \ {ba, ab}) fl ÂC , ÿ.

Then ({ab} fi W≠(a)) fl ÂC , ({bd} fi W≠(b)) fl ÂC, a contradiction with

our assumption. Therefore, bd œ ÂC implying that bd œ W≠(a) and d = a.

Again by (ii), ((W≠(a) fi W≠(b)) \ {ab, ba}) fl ÂC , ÿ, yielding that

({ab} fi W≠(a)) fl ÂC , ({ba} fi W≠(b)) fl ÂC, a contradiction. Therefore,
ÂC is an arc-separating set. This completes the proof. ⇤

Recall that, by Proposition 4.2.1, a digraph D admits an arc-

identifying code if and only if there is no digon with both vertices

of in-degree one.

Theorem 4.3.2. Let D be a digraph without digons with both vertices

of in-degree 1. Then,

≠æ“ ID(LD) Ø |A(D)| ≠ |V +
Ø1(D)|.

Proof. By Proposition 4.2.1, LD admits a (1, Æ 1)-identifying code. Let
ÂC be an arc-identifying code of D. Then, by Theorem 4.3.1,

| ÂC| Ø
ÿ

uœV +
Ø1(D)

(d+D(u) ≠ 1)

=
ÿ

uœV +
Ø1(D)

d+D(u) ≠ |V +
Ø1(D)|

= |A(D)| ≠ |V +
Ø1(D)|.

⇤

Notice that by the proof of Theorem 4.3.2, we have “ID(LD) =

|A(D)| ≠ |V +
Ø1(D)| if and only if |W+(v) \ ÂC| = 1 for each vertex v œ

V +
Ø1(D). In particular, if d+(v) = 1 and the lower bound is reached,

then W+(v) fl ÂC = ÿ.
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Recall that a 1-factor of a digraph is a 1-regular spanning subdigraph.

Next, we show that some digraphs with a 1-factor have an identifying

number that attains the equality in Theorem 4.3.2.

Theorem 4.3.3. Let D be a digraph having a 1-factor, with minimum

in-degree ”≠ Ø 2, and without digons with both vertices of in-degree two.

Then, “ID(LD) = |A(D)| ≠ |V (D)|.

Proof. Let F denote a 1-factor in D. Let ÂC = A(D) \ A(F ). Let us show

that ÂC satisfies the requirements of Theorem 4.3.1. By definition of ÂC,

|W+(v) \ ÂC| = 1 and |W≠(v) \ ÂC| = 1 for each vertex v œ V (D). Hence,

Theorem 4.3.1 (i) holds because |W+(v) \ ÂC| = 1 and W≠(v) fl ÂC , ÿ,

since ”≠ Ø 2. Moreover, for any arc uv œ ÂC not in a digon we have

((W≠(v) fi W≠(u)) \ {uv}) fl ÂC , ÿ because |W≠(v) \ ÂC| = 1, which

implies that |W≠(v) fl ÂC| = d≠(v) ≠ 1 Ø 1. And if uv œ ÂC belongs

to a digon, since one of the two vertices, say v, must have d≠(v) Ø 3

we have ((W≠(v) fi W≠(u)) \ {uv, vu}) fl ÂC , ÿ because |W≠(v) fl ÂC| =

d≠(v) ≠ 1 Ø 2. In either case Theorem 4.3.1 (ii) holds. Therefore,
ÂC is an arc-identifying code of D and “ID(LD) Æ |A(D)| ≠ |V (D)|.

Furthermore, by Theorem 4.3.2, “ID(LD) = |A(D)| ≠ |V (D)|. ⇤

Recall that a digraph D is Hamiltonian if D contains a directed

cycle C such that V (C) = V (D), and this cycle is called Hamiltonian

cycle. Clearly, a Hamiltonian digraph has a 1-factor consisting of a

directed cycle W such that V (W ) = V (D). The following result is an

immediate consequence of Theorem 4.3.3.

Corollary 4.3.3. Let D be a Hamiltonian digraph with minimum in-

degree ”≠ Ø 2 and without digons with both vertices of in-degree two.

Then, “ID(LD) = |A(D)| ≠ |V (D)|.

Corollary 4.3.4. The identifying number of a Kautz digraph K(d, k)

is “ID(K(d, k)) = dk ≠ dk≠2 for d Ø 3 and k Ø 2.

Proof. Note that K(d, 2) = LKd+1. Since Kd+1 is Hamiltonian and

d Ø 3, by Corollary 4.3.3, “ID(K(d, 2)) = “ID(LKd+1) = |A(Kd+1)| ≠
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|V (Kd+1)| = d(d + 1) ≠ (d + 1) = d2 ≠ 1, and the result holds for

k = 2. For any k Ø 3, the Kautz digraph K(d, k) = Lk≠1Kd+1 =

LLk≠2Kd+1 = LK(d, k ≠ 1). Since K(d, k ≠ 1) is a Hamiltonian digraph

and d Ø 3, by Corollary 4.3.3, “ID(K(d, k)) = “ID(LK(d, k ≠ 1)) =

dk + dk≠1 ≠ (dk≠1 + dk≠2) = dk ≠ dk≠2, and the result holds. ⇤

To extend Corollary 4.3.4 to K(2, k), we use the 1-factorization of

Kautz digraphs obtained by Tvrd́ık [58]. This 1-factorization uses the

following operation.

Definition 4.3.3. [58] If x = x1 . . . xk œ V (K(d, k)), then

• ‡1(x) = x2 . . . xk≠1xkx1 if x1 , xk.

• ‡1(x) = x2 . . . xk≠1xkx2 if x1 = xk.

Let Inc : V (K(d, k)) ◊ Zd æ V (K(d, k)) denote a binary operation

such that

Inc(x1 . . . xk≠1xk, i) = x1 . . . xk≠1xÕ
k,

where

xÕ
k =

Y
____]

____[

xk + i mod (d + 1) if xk≠1 > xk and xk≠1 > xk + i, or

xk≠1 < xk and xk≠1 + d + 1 > xk + i;

xk + i + 1 mod (d + 1) otherwise.

Then, the generalized K-shift operation is defined as follows:

‡+i
1 (x) = Inc(‡1(x), i),

‡+i
k (x) = ‡+i

1 (‡+i
k≠1(x)).

Theorem 4.3.4. [58] The arc set of K(d, k) can be partitioned into d

1-factors F0, . . . , Fd≠1 such that the cycles of Fi are closed under the

operation ‡+i
1 .

Theorem 4.3.5. The identifying number of a Kautz digraph K(2, k)

is “ID(K(2, k)) = 2k ≠ 2k≠2 for k Ø 2.

Proof. We can check in Figure 22 that ÂC = {uv, vw, wu} is an identi-

fying code of K(2, 2), then “ID(K(2, 2)) = 3, and the theorem holds
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Figure 23. A digraph to illustrate Algorithm 1.

for k = 2. Suppose that k Ø 3 and let us consider the Kautz di-

graph K(2, k ≠ 1). By Theorem 4.3.4, we can take a partition of

the arcs of K(2, k ≠ 1) into two 1-factors F0 and F1, such that the

cycles of Fi are closed under the operation called ‡+i
1 , given in Defi-

nition 4.3.3. In particular the relation ‡+0
1 preserves digons, implying

that all the digons of K(2, k ≠ 1) belong to the family F0. Hence,

since F1 is a 1-factor of K(2, k ≠ 1), the set of arcs in F1, say A1,

satisfies the conditions of Theorem 4.3.1. Therefore, A1 is an arc-

identifying code of K(2, k ≠ 1), that is, an identifying code of K(2, k)

and, “ID(K(2, k)) = |A1| = |V (K(2, k ≠ 1)| = 3 · 2k≠2 = 2k ≠ 2k≠2. ⇤

4.3.1 Arc-identifying codes in oriented graphs

Now, we present an algorithm for constructing an arc-identifying code ÂC

of an oriented graph D with minimum in-degree ”≠ Ø 2 and minimum

out-degree ”+ Ø 1. The idea of this algorithm is to add to ÂC all the

arcs but one from W+(v), for each vertex v œ V (D) trying to reach an

arc-identifying code of order |A(D)| ≠ |V (D)|. Notice that in particular,

for each vertex v œ V +
1 (D) we have W+(v)fl ÂC = ÿ or W+(v) µ ÂC, and

in the latter case the obtained arc-identifying code has order strictly

greater than |A(D)| ≠ |V (D)|.
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Algorithm 1 Arc-identifying code
Input: An oriented graph D with minimum out-degree ”+ Ø 1 and

minimum in-degree ”≠ Ø 2.

Output: An arc-identifying code of D.

1: let X := ÿ, Y := ÿ, and ÂC := ÿ

2: while Y , V (D) do

3: take xy œ A(D) such that y œ V (D) \ Y

4: X := X fi {x}, Y := Y fi (N+(x) \ {y}), and ÂC := ÂC fi (W+(x) \

{xy})

5: if N≠(y) \ X , ÿ then

6: if there is t œ N≠(y) \ X such that t œ V +
Ø2(D) then

7: take tz œ A(D) such that z , y

8: let x := t and y := z

9: return to 4

10: else

11: take t œ N≠(y) \ X

12: X := X fi {t}, Y := Y fi {y}, and ÂC := ÂC fi {ty}

13: return to 3

14: end if

15: else

16: return to 3

17: end if

18: end while

19: if Y = V (D) then

20: while X , V (D) do

21: take uv œ A(D) such that u < X

22: X := X fi {u} and ÂC := ÂC fi (W+(u) \ {uv})

23: end while

24: if X = V (D) then

25: return ÂC

26: end if

27: end if
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To illustrate the Algorithm 1, as an example we run the algorithm

for the oriented graph of Figure 23 with 7 vertices and 14 arcs.

Input: Oriented graph depicted in Figure 23.

Steps 1-4: Start with the arc (1, 5), then X := {1}, Y := {2}, and ÂC :=

{(1, 2)}.

Step 5: N≠(5) \ X = {6} ™ V +
1 (D), then we go to step 11.

Steps 11-13: X = {1, 6}, Y := {2, 5}, and ÂC := {(1, 2), (6, 5)}, go to step 3.

Steps 3-4: Take the arc (4, 3), then X = {1, 6, 4}, Y := {2, 5, 1, 6, 7}, and

ÂC := {(1, 2), (6, 5), (4, 1), (4, 7), (4, 6)}.

Step 5: N≠(3) \ X = {5} ™ V +
Ø2(D).

Steps 6-9: Take the arc (5, 7), that is t = 5 and z = 7.

Step 4: X = {1, 4, 6, 5}, Y := {1, 2, 5, 6, 7, 3, 4}, and

ÂC := {(1, 2), (6, 5), (4, 1), (4, 7), (4, 6), (5, 4), (5, 3)}.

Step 5: N≠(7) \ X = ÿ, then go to step 3 but since Y = V (D), go to step

19.

Step 20: Since X , V (D), start steps 21 to 22 until X = V (D).

Steps 21-22: Take the arc (7, 6), then X = {1, 4, 6, 5, 7}, and

ÂC := {(1, 2), (4, 1), (4, 7), (4, 6), (5, 3), (5, 4), (6, 5), (7, 1)}.

Steps 20-22: Take the arc (3, 2), then X = {1, 4, 6, 5, 7, 3}, and ÂC := ÂC.

Steps 20-22: Take the arc (2, 4), then X = {1, 2, 3, 4, 5, 6, 7}, and ÂC := ÂC

Step 25: Output ÂC := {(1, 2), (4, 1), (4, 7), (4, 6), (5, 3), (5, 4), (6, 5), (7, 1)}.

Theorem 4.3.6. Let D be an oriented graph with minimum out-degree

”+ Ø 1 and minimum in-degree ”≠ Ø 2. Then, the Algorithm 1 produces

an arc-identifying code of D.
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Proof. By construction, the Algorithm 1 produces two sets of vertices X

and Y such that every vertex v œ V (D) satisfies that v œ X at a certain

step of the algorithm (steps: 4, 12 or 22); and that v œ Y at a certain

step of the algorithm (steps: 4 or 12). If v was added to X at step 4,

then |W+(v) \ ÂC| = 1. If v was added to X at step 12, then W+(v) ™ ÂC.

And, if v was added to X at step 22, then |W+(v) \ ÂC| = 1. In any

case, |W+(v) \ ÂC| Æ 1. Hence, ÂC satisfies the first part of Theorem 4.3.1

(i). Now, we analyse the filling process of set Y . If v was added to Y

at step 4, then v œ N+(x) \ {y} for certain x and y in the algorithm

such that xv œ W+(x) \ {xy} µ ÂC. Otherwise, at some point, due

to step 12, there is a vertex t œ N≠(y) such that t œ X and ty œ ÂC.

In any case, W≠(v) fl ÂC , ÿ and Theorem 4.3.1 (i) holds. Finally,

since D is oriented, for all uv œ ÂC, clearly vu < A(D), and we have

|(W≠(u) fi (W≠(v) \ {uv})) fl ÂC| Ø 1 because W≠(u) fl ÂC , ÿ. Hence,

Theorem 4.3.1 (ii) also holds. Therefore, ÂC is an arc-identifying code

of D. ⇤

Now, consider an oriented graph D with minimum out-degree ”+ Ø 1

and minimum in-degree ”≠ Ø 2. As mentioned in the above proof, if

we run the Algorithm 1, for each vertex v œ V (D), we have that v œ X

at a certain step of the algorithm (steps: 4, 12 or 22). And, that

|W+(v) \ ÂC| , 1 if and only if v was added to X at step 12, where

W+(v) ™ ÂC. Moreover, due to step 12, it follows that d+(v) = 1.

Hence, we have the following result.

Corollary 4.3.5. Let D be an oriented graph with minimum degree ” =

min{”+, ”≠} Ø 2. Then, the Algorithm 1 produces an arc-identifying

code ÂC µ A(D) of size

| ÂC| = |A(D)| ≠ |V (D)|.

As a consequence of Theorem 4.3.2 and Corollary 4.3.5, we conclude

the following.
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Corollary 4.3.6. Let D be an oriented graph D with minimum degree

” Ø 2. Then,
≠æ“ ID(LD) = |A(D)| ≠ |V (D)|.



5
S P E C T R A L R E S U LT S O N I D E N T I F Y I N G

C O D E S F R O M G R A P H S A N D D I G R A P H S

This chapter consists mainly of the results published in [6]. As far as we

know, this is the first time the spectral graph theory has been applied

to identifying codes. We begin this chapter with some preliminary

definitions. In the Section 5.2, we give some su�cient algebraic and

combinatorial conditions for a 2-in-regular digraph to admit a (1, Æ ¸)-

identifying code for ¸ œ {2, 3}. In Section 5.3, we provide a new method

to obtain an upper bound for ¸ based on the eigenvalues and eigenvectors

of the adjacency matrix of the digraph. The results obtained in this last

section can also be applied to graphs, as it is mentioned at the end of

this chapter. We finish this section with a discussion motivating future

research.

5.1 preliminaries

Let D be a (di)graph. The adjacency matrix of D is the binary matrix

M = (auv) indexed by the vertex set V (D), where axy = 1 if and only

if xy œ A(D) (xy œ E(D) in the case of graphs), and axy = 0 otherwise.

Recall that a digraph with adjacency matrix M = (auv) has eigen-

value ⁄ and eigenvector x = (xu) if and only if

Mx = ⁄x …
ÿ

vœV

auvxv =
ÿ

vœN+(u)

xv = ⁄xu for all u œ V .

(6)
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The spectrum of the adjacency matrix M of a (di)graph is denoted

by sp(M ) = {⁄m0
0 , ⁄m1

1 , . . . , ⁄md
d }, where ⁄i are the di�erent eigenvalues

and the superscripts stand for their (algebraic) multiplicities mi =

m(⁄i), whereas ev(A) is the set of the di�erent eigenvalues (without

their multiplicities).

5.2 sufficient conditions

We begin with a result that gives a su�cient (spectral) condition for a

digraph to admit an identifying code.

Lemma 5.2.1. Let D be a digraph with adjacency matrix M and with

a set of eigenvalues denoted by ev(M ). If ≠1 < ev(M ), then D admits

an identifying code.

Proof. We reason by contraposition. The digraph D does not admit an

identifying code if and only if there exists a pair of twin vertices u and

v. So,

(M + I)eu = (M + I)ev,

where eu and ev are the unitary characteristic vectors corresponding

to vertices u and v, respectively, and I is the identity matrix. Then,

(M + I)x = 0 with x = eu ≠ ev, whence Mx = ≠x and ≠1 œ

ev(M ). ⇤

Observe that if D is a digraph with ≠1 œ ev(M ), then this does not

imply that some of its corresponding eigenvectors are of the form ei ≠ ej .

Hence, the converse of Lemma 5.2.1 it is not true. For example, consider

the forbidden subdigraph H5 of Theorem 3.4.2 shown in Figure 24. This

digraph has eigenvalue ≠1, but it does admit an identifying code.

Now, we give an algebraic-combinatorial su�cient condition for a 2-

in-regular digraph to admit a (1, Æ 2)-, or (1, Æ 3)-identifying code. The

goal is to use to the eigenvalues of the digraph to reduce the number of

forbidden subdigraphs considered in Theorem 3.4.2 and Theorem 3.4.3.

First, we prove the following lemma.
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Figure 24. The forbidden subdigraph H5 from Theorem 3.4.2. The

numbering represents the entries of the eigenvector corresponding to

eigenvalue ≠1.

Lemma 5.2.2. Let DÕ be a digraph with maximum in-degree D≠ having

an eigenvalue ⁄ with eigenvector xÕ = (xÕ
u), such that xÕ

v = 0 for

any vertex v œ V (DÕ) with d≠(v) < D≠. Then, any digraph D with

maximum in-degree D≠ containing DÕ as a subdigraph has also the

eigenvalue ⁄.

Proof. Let M Õ be the adjacency matrix of DÕ. We know that M ÕxÕ =

⁄xÕ. Let M be the adjacency matrix of D containing DÕ as a subdigraph.

Now let us show that ⁄ also is an eigenvalue of M . To see this, it is

enough to check that vector x, obtained from xÕ by adding zeros to

the entries of D corresponding to the vertices that are not in DÕ, is an

eigenvector of M with eigenvalue ⁄. Indeed, from (6), for all u œ V we

get
ÿ

vœN+
D(u)

xv =
ÿ

vœN+
D(u)

vœV Õ

xv +
ÿ

vœN+
D(u)

v<V (DÕ)

xv =
ÿ

vœN+
D(u)

vœV (DÕ)

xv, (7)

because by the construction of vector x, the sum when v < V (DÕ) is

zero. Then, we get the following:

• If u œ V (DÕ), equality (7) gives

ÿ

vœN+
D(u)

xv =
ÿ

vœN+
D(u)flV (DÕ)

d≠
D(v)<D≠

xv +
ÿ

vœN+
D(u)flV (DÕ)

d≠
D(v)=D≠

xv

Observe that if v œ N+
D (u) fl V (DÕ), then v œ N+

DÕ(u) or

v œ (N+
D (u) \ N+

DÕ(u)). If v œ (N+
D (u) \ N+

DÕ(u)) fl V (DÕ), then
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d≠
DÕ(v) < D≠ implying, by hypothesis, that xv = 0. Hence, we

have the following:

ÿ

vœN+
D(u)

xv =
ÿ

vœN+
D(u)flV (DÕ)

d≠
D(v)<D≠

xv +
ÿ

vœN+
D(u)flV (DÕ)

d≠
D(v)=D≠

xv

=
ÿ

vœN+
DÕ (u)

d≠
DÕ (v)<D≠

xÕ
v +

ÿ

vœN+
DÕ (u)

d≠
DÕ (v)=D≠

xÕ
v

=
ÿ

vœN+
DÕ (u)

xÕ
v = ⁄xÕ

u = ⁄xu.

• If u < V (DÕ), then (7) provides

ÿ

vœN+
D(u)

xv =
ÿ

vœN+
D(u)flV (DÕ)

xÕ
v

=
ÿ

vœN+
D(u)

d≠
DÕ (v)<D≠

xÕ
v = 0 = ⁄xu.

⇤

Recall that we denote by H the family of digraphs H1-H13 of Fig-

ure 19, and with J the family of digraphs J1-J15 of Figure 20. That is,

H and J are the the families of all forbidden digraphs of Theorems 3.4.2,

and 3.4.3, respectively. Notice that from all the digraphs in H fi J ,

H1, H5, H7 to H13, J1, and J13 to J15, have maximum in-degree 2 and

an eigenvalue ⁄ with eigenvector xÕ = (xÕ
u), such that xÕ

v = 0 for any

vertex v such that d≠(v) < 2 (see Figures 25 and 26). Hence, we have

the following result.

Hence, we have the following result.

Theorem 5.2.1. Let D be a 2-in-regular digraph with adjacency matrix

M .

(i) If ≠1, 0 < ev(M ) and D is {H2, H3, H4, H6}-free, then D admits

a (1, Æ 2)-identifying code.
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Figure 25. The forbidden subdigraphs of Theorem 3.4.2. In the sub-

digraphs with eigenvalue ≠1, it is show the entries of an eigenvector

corresponding to this eigenvalue in the exterior, except for H9 where it

is show the entries of an eigenvector corresponding to 0.

(ii) If ≠1, 0 < ev(M ) and D is {Ji œ J | 2 Æ i Æ 12}-free, then D

admits a (1, Æ 3)-identifying code.

Proof. To prove (i), by Theorem 3.4.2 (ii), we know that if a 2-in-

regular digraph D does not contain any of the subdigraphs of Figure 25,

then D admits a (1, Æ 2)-identifying code. The subdigraphs H1, H5, H7,

H8, and H10 ≠ H13 satisfy Lemma 5.2.2 for ⁄ = ≠1, and H9 satisfies

Lemma 5.2.2 for ⁄ = 0. Then, we only need to forbid the subdigraphs

H2, H3, H4, and H6 to obtain the result.

To prove (ii), reasoning similarly, we get that the subdigraph J1

of Figure 26 satisfies Lemma 5.2.2 for ⁄ = 0, and subdigraphs J13-J15

satisfy Lemma 5.2.2 for ⁄ = ≠1, so we only need to forbid the rest of

the subdigraphs in this figure. ⇤
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Figure 26. The forbidden subdigraphs of Theorem 3.4.3. The subdi-

graphs with eigenvalue ≠1 show the entries of an eigenvector corre-

sponding to eigenvalue ≠1 in the exterior, except for J1 that shows the

entries of an eigenvector corresponding to eigenvalue 0.

5.3 algebraic upper bound for ¸

We provide some necessary notation introduced by Powers [51] and

referenced in the book by Cvetković, Rowlinson, and Simić [19]. Let

x = (xi) be an eigenvector associated with an eigenvalue ⁄. We denote

by P(x), N (x), and O(x) the set of its positive, negative, and zero

entries, respectively. That is, P(x) = {i : xi > 0}, N (x) = {i : xi < 0},

and O(x) = {i : xi = 0}.

Now, we show how, in some cases, we can use these sets to construct

two di�erent sets of vertices having the same closed in-neighbourhood,

providing a bound for ¸.

Proposition 5.3.1. Let D = (V , E) be a digraph with adjacency matrix

M having some real eigenvalue, say ⁄ œ ev(M ), with an associated
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eigenvector x = (xu)uœV such that X = P(x) , ÿ and Y = N (x) , ÿ.

Then, depending on the sign of ⁄, the following holds:

(a) If ⁄ < 0, then X fiN≠(X) = Y fiN≠(Y ) (… N≠[X ] = N≠[Y ]).

(b) If ⁄ > 0, then X fi N≠(Y ) = Y fi N≠(X).

(c) If ⁄ = 0, then N≠(X) = N≠(Y ).

Proof. Let eu be the unitary characteristic vector of the vertex u. Then,

Meu is the characteristic vector of the open in-neighbourhood of vertex

u. Let x+ be the vector obtained from a vector x by changing all

its negative components to zero. Similarly, x≠ is obtained from x by

changing all its positive components to zero. Then, x = x+ +x≠. Since

x is a ⁄-eigenvector of M , we get Mx = ⁄x or Mx ≠ ⁄x = 0. Now we

distinguish the possible cases according to the sign of ⁄:

(a) and (b): If ⁄ < 0 or ⁄ > 0, we have

ÿ

uœX

xuMeu ≠ ⁄x+ +
ÿ

vœY

xvMev ≠ ⁄x≠ = 0. (8)

For the case ⁄ < 0 we have that
q

uœX xuMeu and ≠⁄x+ are

positive, whereas
q

vœY xvMev and ≠⁄x≠ are negative. Let x̂+ =
q

uœX xuMeu ≠ ⁄x+ = (x̂+
i ), and x̂≠ =

q
vœX xvMev ≠ ⁄x≠ = (x̂≠

i ).

Hence, for every w œ V (D) we have x̂+
w = x̂≠

w . Let w œ N≠[X ], then

x̂+
w , 0, implying that x̂≠

w , 0. Hence, w œ Y or there is v œ Y such that

w œ N≠(v). By the same argument, we conclude that N≠[X ] = N≠[Y ].

For the case ⁄ > 0,
q

uœX xuMeu and ≠⁄x≠ are positive, whereas

≠⁄x+ and
q

vœY xvMev are negative. Then, the global sum is 0 if and

only if X fi N≠(Y ) = Y fi N≠(X).

(c) Finally, if ⁄ = 0, the vector equality

ÿ

uœX

xuMeu +
ÿ

vœY

xvMev = 0

gives the result. ⇤

Regarding identifying codes, by the above proposition, we can use

this result to obtain an upper bound for ¸ when the adjacency matrix
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of the digraph we are working with has a negative eigenvalue with an

associated eigenvector having positive and negative entries. Let us see

that this is always the case when there is a negative eigenvalue. For

this, we use the same notation as in the proof of Proposition 5.3.1. Let

D = (V , E) be a digraph with adjacency matrix M having some negative

eigenvalue ⁄ œ ev(M ), with an associated eigenvector x = (xu)uœV .

Hence, from equation (8), if P(x) = ÿ, then

ÿ

vœN (x)

xvMev ≠ ⁄x≠ = 0.

This is clearly a contradiction because all the non-zero entries in the left

side of this equality are non-positive. We have the analogous result for

the case N (x) = ÿ. Therefore, if ⁄ < 0 and x an eigenvector associated

with it, then P(x) , ÿ and N (x) , ÿ. As a consequence we obtain

the following result, which gives an upper bound for ¸ in a digraph

D having a (1, Æ ¸)-identifying code. Moreover, by changing N≠(X)

and N≠(Y ) by N (X) and N (Y ), respectively, we obtain an analogous

result for graphs. Let E⁄(M ) denote the set of eigenvectors of a matrix

A associated with ⁄.

Corollary 5.3.1. Let D be a graph or a digraph admitting a (1, Æ ¸)-

identifying code. Let M be its adjacency matrix having at least one

negative eigenvalue ⁄. Then, ¸ < min
xœE⁄(M)

max{|P(x)|, |N (x)|}.

Hence, to find a good upper bound for ¸ using the eigenvectors

associated with the negative eigenvalues of the adjacency matrix, the

desirable option is to use eigenvectors such that they have as many zeros

as possible and that the di�erence between the cardinalities of P(x)

and N (x) is minimal. Recall that if – is an eigenvalue with geometric

multiplicity m, a corresponding eigenvector with at least m ≠ 1 zeros

can be constructed. Hence, a good eigenvector to be considered for

our purpose of finding a good upper bound for ¸ would be a negative

eigenvector with large multiplicity.

Now, we show some examples of how to use Proposition 5.3.1.
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Figure 27. The labels of the vertices are shown in the interior, and the

entries of the eigenvector corresponding to eigenvalue -1 in the exterior.

Figure 28. The Heawood graph.

Consider, the digraph H13 (see Figure 27). Its spectrum is

{04, 11, ≠11} (we write multiplicities as exponents). An eigenvector

corresponding to the eigenvalue ≠1 is the vector (0, ≠1, 1, ≠1, 0, 1)t.

The positions of the positive entries of this eigenvector give us ver-

tex subset X = {2, 5}, and the positions of the negatives entries give

Y = {1, 3}. We can check that N≠[X ] = N≠[Y ] = {0, 1, 2, 3, 4, 5}.

Then, this digraph does not admit a (1, Æ 2)-identifying code. Since

the digraph is clearly twin-free, it does admit an identifying code, then

in this case the upper bound is tight.

Let us see an example on a graph. Consider the Heawood graph

(see Figure 28). Its spectrum is {31,
Ô

26, ≠
Ô

26, ≠31}. The eigenvector
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corresponding to ≠3 has no zero entries while the 6 eigenvectors forming

a basis of E≠
Ô

2(M ) have all 8 zero entries, these are:

(≠1, 0, 1, 0, ≠1,
Ô

2, 0, ≠
Ô

2, 1, 0, 0, 0, 0, 0)t,

(≠1, 0, 1, ≠
Ô

2, 0,
Ô

2, ≠1, 0, 0, 0, 0, 0, 1, 0)t,

(0, ≠1,
Ô

2, ≠1, 0, 1, ≠
Ô

2, 0, 0, 0, 0, 1, 0, 0)t,

(0, ≠1,
Ô

2, 0, ≠
Ô

2, 1, 0, ≠1, 0, 1, 0, 0, 0, 0)t,

(0, ≠
Ô

2, 1, 0, ≠1,
Ô

2, ≠1, 0, 0, 0, 1, 0, 0, 0)t,

(≠
Ô

2, 0,
Ô

2, ≠1, 0, 1, 0, ≠1, 0, 0, 0, 0, 0, 1)t.

Notice that, for each of these six eigenvectors, we have that the

number of positive and negative entries is 3. If we consider, for instance,

the last one of these six eigenvectors, the positions of its positive

entries give us the set of vertices X = {2, 5, 13}. The positions of

its negatives entries provide us the set Y = {0, 3, 7}. We can check

that N [X ] = N [Y ] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 13}. Then, the Heawood

graph does not admit a (1, Æ 3)-identifying code. By Theorem 3.3.2

we know that the Heawood graph, which is 3-regular and it has girth

6, admits a (1, Æ 2)-identifying code. In this case, the upper bound is

again tight.

Figure 29. Dodecahedron graph

Now, consider the Dodecahedron graph (see Figure 29). Its spec-

trum is {31,
Ô

53, 11, 04, ≠24, ≠
Ô

53}. The eigenvectors corresponding

to ≠
Ô

5 have four zero entries while the eigenvectors corresponding to
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≠2 have 8 zero entries and the same number of positive and negative

entries, these are:

(0, 0, 0, ≠1, 1, ≠1, 0, 1, 1, ≠1, 1, ≠1, ≠1, 0, 1, ≠1, 1, 0, 0, 0)t,

(1, 0, 0, ≠1, 0, ≠2, ≠1, 1, 2, 0, 2, 0, ≠2, ≠1, 1, ≠1, 0, 1, 0, 0)t,

(0, 1, 0, ≠1, 0, ≠1, ≠2, 0, 2, 1, 2, 1, ≠1, ≠2, 0, ≠1, 0, 0, 1, 0)t,

(0, 0, 1, ≠1, 0, 0, ≠1, ≠1, 1, 1, 1, 1, 0, ≠1, ≠1, ≠1, 0, 0, 0, 1)t.

Hence, by Corollary 5.3.1 we get that the Dodecahedron admits at most

a (1, Æ 6)-identifying code. Nevertheless, by Theorem 3.3.2, we know

that the Dodecahedron graph admits a (1, Æ 2)-identifying code and,

by Laihonen and Ranto [47], we know that it does not admit a (1, Æ ¸)-

identifying code for ¸ Ø 4. Is easy to see that the Dodecahedron does

not admit a (1, Æ 3)-identifying code. For instance, consider the vertices

w, x, z, zÕ shown in Figure 29. Then, N [{x, w, z}] = N [{x, w, zÕ}]. This

example shows that the bound provided by Corollary 5.3.1 is not always

so good.

In the light of Corollary 3.1.1, it is natural point of future research

to find su�cient or necessary conditions for a digraph or graph, to have

an eigenvector, let say x, associated with a negative eigenvalue and

such that min{|P(x)|, |N (x)|} Æ ”̂≠. Another point of future research

is to have the possibility that the two sets with the same closed in-

neighbourhood constructed based on the eigenvectors associated with

the negative eigenvalues, can have common vertices, unlike the two sets

constructed in Proposition 5.3.1.

Now, following the line of future research, let us see what we can

say when zero is an eigenvalue of the digraph. For this, let us show

the following result for digraphs with minimum degree. This is a first

result, which may be the starting point for future research in the case

where the digraph has zero as an eigenvalue.



5.3 algebraic upper bound for ¸ 78

Corollary 5.3.2. Let D = (V , E) be a digraph admitting a (1, Æ ¸)-

identifying code, with ”(D) Ø 1. Let M be its adjacency matrix. If

0 œ ev(M ), then

¸ < min
xœE0(M)

{max{|P(x)|, |N (x)|} + |O(x)|}.

Proof. Let x œ E0(M ). Suppose that P(x) = ÿ. Then,

ÿ

vœV (D)

xvMev =
ÿ

vœN (x)

xvMev = 0.

This implies that, for every v œ N (x), N≠(v) = ÿ, a contradiction since

”≠ Ø 1. We have the analogous result for the case N (x) = ÿ. Therefore,

P(x) and N (x) are both nonempty. Hence, from Proposition 5.3.1,

we have N≠(X) = N≠(Y ), where X = P(x) and Y = N (x). Let

Z = O(x). Notice that, since ”+ Ø 1, for each vertex x œ X \

N≠(Y ), there is zx œ Z such that x œ N≠(zx). Analogously, for

every y œ Y \ N≠(X), there is zy œ Z such that y œ N≠(zy). Let

Z Õ = {zx œ Z | x œ X \ N≠(Y )} fi {zy | y œ Y \ N≠(X)}. Hence, since

N≠(X) = N≠(Y ), we have N≠[X fi Z Õ] = N≠[Y fi Z Õ]. Therefore,

¸ < max{|X|, |Y |} + |Z Õ|. This completes the proof.

⇤

Figure 30.

Consider the digraph F shown in Figure 30. This is a digraph

with ”(F ) = 1 and spectrum {1
2 (

Ô
5 + 1), 02, 1

2 (≠
Ô

5 + 1), 1
2 (≠1 +

i
Ô

7), 1
2 (≠1 ≠ i

Ô
7)}. The vectors (1, 1

2 (≠
Ô

5 ≠ 1), 1, 1
2 (≠

Ô
5 ≠ 1), 1, 1)t

and (≠1, 0, 0, 1, 0, 0)t are the only eigenvectors associated with 1
2 (≠

Ô
5+

1) and 0 (up to scalar product), respectively. By Proposition 5.3.1, with
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the negative eigenvector 1
2 (≠

Ô
5+ 1), we obtain that N≠[{0, 2, 4, 5}] =

N≠[{1, 3}], implying that F does not admit a (1, Æ 4)-identifying code.

Nevertheless, by Corollary 3.1.1 we know that F does not admit a

(1, Æ ¸)-identifying code for any ¸ Ø 3.

Let us denote the eigenvector x = (≠1, 0, 0, 1, 0, 0)t. By Corol-

lary 5.3.2, we have that the sets X = P(x) fi O(x) = {1, 2, 3, 4, 5}

and Y = N (x) fi O(x) = {0, 1, 2, 4, 5} satisfies that N≠[X ] = N≠[Y ].

Nevertheless, according to the proof of Corollary 5.3.2, it is not nec-

essary to add to P(x) and N (x) all the elements of O(x). Let

us use the same notation as in the proof of Corollary 5.3.2. Then,

for the vertex 0 œ N (x), we have that z0 could be 1 or 4, since

z0 is such that z0 œ O(x) and 0 œ N≠(z0). For the vertex 3, we

have that z3 could be just 4. Hence, the set Z Õ = {4} satisfies that

N≠[P(x) fi Z Õ] = N≠[{3, 4}] = N≠[{0, 4}] = N≠[N (x) fi Z Õ]. There-

fore, F does not admit a (1, Æ 2)-identifying code. Hence, in this case,

with eigenvalue 0, we could find a better upper bound for ¸.

Figure 31.

Now, consider the tournament shown in Figure 31. Its spectrum

is {2, ≠1+i
Ô

5+2
Ô

5
2 , ≠1≠i

Ô
5+2

Ô
5

2 , ≠1+i
Ô

5≠2
Ô

5
2 , ≠1≠i

Ô
5≠2

Ô
5

2 }. We can

not apply neither Corollary 5.3.1 nor Corollary 5.3.2 to obtain an upper

bound for ¸ because all its eigenvalues are positive or complex. Neverthe-

less, in this case, it is easy to find two di�erent subsets of vertices with

the same closed in-neigbourhood, for instance, N≠[{0, 1}] = N≠[{1, 2}].

Hence, since there are no twin vertices, this tournament admits an

identifying code but does not admit a (1, Æ ¸)-identifying code for any
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¸ Ø 2. An interesting possible direction for future research would be to

use the complex eigenvalues in order to find a bound for ¸.



6
C O N C L U S I O N S

In conclusion, we summarise the main results contained in this thesis,

and also we give some suggestions for future research.

In Chapter 3, we show that if D is a digraph admitting a (1, Æ ¸)-

identifying code, then ¸ Æ ”̂(D) + 1, where ”̂(D) = min{d≠(u) | u œ

V (D) and d+(u) Ø 1}. We have focused our study on boundary cases

when ¸ achieves its upper bound. More precisely, we have stablished

some conditions to guarantee that a digraph admits a (1, Æ ¸)-identifying

code, when ¸ œ {”̂(D), ”̂(D) + 1}. These su�cient conditions are

presented in Theorem 3.3.1. As a corollary, a result by Laihonen [45],

that states that a k-regular graph with girth at least 7 admits a (1, Æ k)-

identifying code, is extended to any graph of minimum degree ” = k Ø 2

and girth at least 7. Moreover, we show that every 1-in-regular digraph

has a (1, Æ 2)-identifying code if and only if the girth of the digraph is

at least 5. We also characterise all the 2-in-regular digraphs admitting

a (1, Æ ¸)-identifying code for ¸ = 2, 3.

In Chapter 4, we are concerned about the study of (1, Æ ¸)-identifying

codes in line digraphs. We prove that a line digraph of minimum in-

degree one does not admit a (1, Æ ¸)-identifying code for ¸ Ø 3. Then,

we give a characterisation for a line digraph of a digraph di�erent from

a directed cycle of length 4 and minimum in-degree one, to admit a

(1, Æ 2)-identifying code. As a direct consequence, we obtain that a

Kautz digraph K(d, k) with d Ø 3 admits a (1, Æ 2)-identifying code.

For a digraph without digons with both vertices of in-degree one, we
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also prove that the identifying number of its line digraph is at least the

size of the original digraph minus the number of vertices with out-degree

at least one. As a consequence, the equality is attained by a digraph

having a 1-factor with minimum in-degree two and without digons with

both vertices of in-degree two. We also prove this equality in oriented

graphs with minimum in-degree and out-degree at least two by means

of a linear algorithm that provides identifying codes in this kind of

oriented graphs.

In Chapter 5, we give some su�cient algebraic and combinatorial

conditions for a 2-in-regular digraph to admit a (1, Æ ¸)-identifying code

for ¸ œ {2, 3}. We prove that if ≠1 is not an eigenvalue of the adjacency

matrix of the digraph, then D admits an identifying code. Moreover,

we provide a new method to obtain two di�erent sets with the same

closed in-neighbourhood based on the eigenvalues and eigenvectors of

the adjacency matrix of the digraph. As a consequence, we obtain an

upper bound for ¸. These results are also applied to graphs.

As we mentioned in the Introduction, the study of (1, Æ ¸)-identifying

codes in digraphs has not been so much studied for ¸ Ø 2. The work

presented in this thesis is our contribution to the study on this subject.

While doing this thesis, potential lines of future research have raised.

Let us present below some of them.

• It would be very interesting to improve the results included in

Chapter 3, applying a similar algebraic and combinatorial method

used in Chapter 5.

• As we mentioned in the introduction, Coupechoux, Moncel, and

Touati [18] studied (t, Æ 1)-identifying codes in tournaments.

Among other things, they proved that a tournament admitting

a (t, Æ 1)-identifying code with t Ø 2 is a transitive tournament.

One of our goals for the future is to study (1, Æ ¸)-identifying

codes in tournaments, for ¸ Ø 2.
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• Regarding the applications, another interesting family of digraphs

is the de Bruijn digraphs. Boutin, Goliber, and Pelto [10] studied

(t, Æ 1)-identifying codes in de Bruijn digraphs, therefore another

of our goals for the future is to study (1, Æ ¸)-identifying codes in

de Bruijn graphs, for ¸ Ø 2.

• Another contribution for the future would be to work on (t, Æ ¸)-

identifying codes in digraphs for some related values of t and

¸, for instance, when t and ¸ are lineal related (t = m¸ + b or

¸ = mt + b).

• Regarding identifying codes in line digraphs, in Chapter 4, we

give tight upper bounds for the minimum cardinality of every

identifying code of a line digraph. Then, our objective is to

provide bounds for the minimum cardinality of every (1, Æ 2)-

identifying code of a line digraph. Moreover, we also want to find

better bounds for the identifying number of a line digraph when

it is not an oriented graph.

• To study the existence of (1, Æ ¸)-identifying codes of Cartesian

product of digraphs. One starting point could be the work re-

garding identifying codes in the product of graphs by Laihonen

and Moncel [46], Gravier, Moncel, and Semri [34], Wash [59], Rall

and Wash [55], Hedetniemi [36], and Lu, Xu, and Zhang [50].

Furthermore, other products could also be very interesting for

studying the existence of (1, Æ ¸)-identifying codes.

• Regarding the spectral line of research, a point for future study

is to improve the constructions of sets having the same closed

in-neighbourhood, allowing that these new sets share one or more

vertices. Moreover, we consider that the ideas presented after

Corollary 5.3.2 are a starting point for finding bounds for ¸ using

eigenvalue 0 of the adjacency matrix of the digraph. Similarly,

we want to address the problem of finding the way of using the

complex eigenvalues to calculate a bound for ¸.
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• While doing this thesis I made an academic stay in Primorska

University in Slovenia. As a result we have joint paper [17] with

Chiarelli, Milanič, Monnot, and Muršič. In this joint work we

studied strong cliques in diamond-free graphs. A natural line of

research for the future is to look for relationships between strong

cliques and identifying codes in diamond-free graphs.
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