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Summary

This Thesis is dedicated to the study of ellipitic and parabolic Partial Differential Equa-
tions, both local and nonlocal. More specifically, this work concerns the regularity prop-
erties of some obstacle problems.

The obstacle problem in its simplest form is the following nonlinear elliptic problem:
u ≥ 0 in Ω

∆u ≤ 1 in Ω
∆u = 1 in {u > 0} ∩ Ω

It is a canonical example of a free boundary problem, that is, a PDE problem where the
unknowns are not only a function u, but also a subdivision of the domain into different
regions, in this case, {u > 0} and {u = 0}, and the PDE satisfied in each region is different.

Free boundary problems are a very active field of research. On the one hand, free
boundaries are a good model for interfaces in real-world settings, with applications in
Physics, Biology, Finance and Engineering. On the other hand, they have been a source
of interesting mathematical challenges, motivating the fine analysis of solutions to ellipitic
and parabolic equations.

This Thesis is divided into two Parts. Part I is devoted to the study of several different
obstacle problems.

In Chapter 1, we study the obstacle problem for parabolic operators of the type ∂t +L,
where L is an elliptic integro-differential operator of order 2s, such as (−∆)s, in the
supercritical regime s ∈ (0, 1

2). We establish the optimal C1,1 regularity of solutions,
which is surprisingly better than in the elliptic problem, and we also show that the free
boundary is globally C1,α.

Our main difficulties are the lack of monotonicity formulas, and the supercritical scaling
of the equation, that is, the fact that the highest order of differentiation corresponds to
the time derivative, which renders the usual techniques impossible to use. To overcome
them, we use barriers, scaling arguments, and the key observation that ut = (Lu)−, that
allows us to derive time regularity from space regularity.

Chapter 2 is devoted to the generic regularity properties of the free boundary in the
thin obstacle problem. Since there are many pathological examples of solutions to free
boundary problems, often the goal is instead of proving regularity for all solutions, proving
regularity for most solutions in an appropriate sense.

In our work, we show that, for one-parameter monotonous families of solutions, for
almost every solution, the free boundary is smooth outside of a set of codimension 2 + α0
(in the free boundary). In particular, this means that in R3 and R4, the free boundary is
generically smooth.

We conclude Part I with Chapter 3, where we use a nonlocal analogue of the Bernstein
technique to establish semiconvexity estimates for a wide class of nonlinear nonlocal el-
lipitic and parabolic equations, including obstacle problems. As a consequence, we extend



the known regularity theory for nonlocal obstacle problems in the full space to problems
in bounded domains.

In Part II, we extend the boundary Harnack inequality to (local) elliptic and parabolic
equations with a right-hand side.

The boundary Harnack is a classical result in potential theory that states that if u and
v are positive harmonic functions that vanish on part of the boundary of a regular enough
domain, then u/v is bounded and Hölder continuous up to the boundary. Boundary
Harnack inequalities are used in the proof of the smoothness of free boundaries in several
obstacle problems, in the key step of seeing that if a free boundary is flat Lipschitz, then
it is C1,α.

The goal of our work was to extend the regularity theory of obstacle problems to the fully
nonlinear setting. To do so, we developed boundary Harnack inequalities for equations in
non-divergence form with a right-hand side.

Chapter 4 concerns elliptic equations and Chapter 5 is about parabolic equations. The
techniques used are different. In the elliptic setting, it is enough to use barriers, scaling
arguments and a standard iteration to deduce the Hölder regularity of the quotient. How-
ever, in the parabolic world, the proofs are much more involved and they are based on a
delicate contradiction-compactness argument.

This Thesis is divided into two Parts. Each Part is divided into Chapters. Each Chapter
corresponds to a paper or a preprint, as follows:

Part I:

• X. Ros-Oton, C. Torres-Latorre, Optimal regularity for supercritical parabolic obsta-
cle problems, Comm. Pure Appl. Math. 77 (2024), 1724-1765.

• X. Fernández-Real, C. Torres-Latorre, Generic regularity of free boundaries for the
thin obstacle problem, Adv. Math. 433 (2023), 109233.

• X. Ros-Oton, C. Torres-Latorre, M. Weidner, Semiconvexity estimates for nonlinear
integro-differential equations, preprint arXiv (2023).

Part II:

• X. Ros-Oton, C. Torres-Latorre, New boundary Harnack inequalities with right hand
side, J. Differential Equations 288 (2021), 204-249.

• C. Torres-Latorre, Parabolic boundary Harnack inequalities with right-hand side,
Arch. Rational Mech. Anal. (2024), in press.
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Introduction

This Thesis is devoted to the study of regularity theory for elliptic and parabolic free boundary
problems, both local and nonlocal... but let us start from the beginning.

A very old and central question in mathematics is that of solving equations, that is, given
an equality with one or several unknowns, determine the value of these unknowns.

When we think of an equation, we usually think of an expression with an equal sign and an
unknown x, and we think of the process of solving the equation as finding the values of x that
make the equality true. But even with simple examples like x(x + 1) = 1, we must consider
this equation in the context of the real problem it comes from.

For example, if we want to find a rectangle of unit area, whose sides differ by a unit length,
then x must be a positive number and our equation from before has only one solution. But
if we consider the task of finding a real number x such that x(x + 1) = 1, then we find two
solutions.

It should be clear by now that when one deals with an equation, it is also necessary to
understand where are we allowed to look for a solution, and what is the right notion of solution.
This is a recurring topic in the theory of partial differential equations.

Partial differential equations
Partial differential equations (in short, PDE) are equations where the unknown u is a function
of several variables, and there are expressions involving partial derivatives in the equality. The
study of PDE comes originally from the study of evolution equations in physics, such as the
Euler Equation, that describes the motion of incompressible fluids, and the Heat Equation,
that describes the evolution of temperature when conduction is the dominant behaviour.

For example, if u(x, t) is the temperature of a solid Ω ⊂ R3, then

∂u

∂t
= c∆u := c

3∑
i=1

∂2u

∂x2
i

.

In order to compute u, we need to know the temperature at an initial state u(x, 0), an initial
condition, and also the temperature or the heat flux on the surface of the body, u(x, t) for
x ∈ ∂Ω, a boundary condition.

Some examples of PDE
Many PDE appear in physics problems, such as:

1



• The heat (or diffusion) equation.
ut = ∆u.

• The Poisson equation in electrostatics.

∆u = f.

• The wave equation in ondulatory mechanics.

utt = ∆u.

• The Schrödinger equation in quantum mechanics.

ut = −i∆u.

• The Maxwell equations of electromagnetism.

• The Euler and Navier-Stokes equations in fluid dynamics.

But PDE also come from other areas of science where functions of several variables are involved,
for example:

• The reaction-diffusion equation in epidemiology and population dynamics.

ut = ∆u+ f(u).

• The Burgers equation in traffic dynamics.

ut = −uux.

• The Black-Scholes equation in finance.

Finally, PDE appear in problems from other areas of mathematics:

• The Cauchy-Riemann equations in complex analysis.

ux = vy

uy = −vx.

• The minimal surface equation in differential geometry.

Div
 ∇u√

1 + |∇u|2

 = 0.

• The nonlocal diffusion equation in stochastic calculus.

2



Theory of PDE
Much unless ordinary differential equations, PDE do not have a general unified theory. On
the contrary, given the vast amount of examples and how differently they behave, it seems
unreasonable to hope for a useful unified approach. Despite needing specialized treatment,
there are several overarching principles and historical trends that are transversal in the theory
of PDE.

Explicit formulas

The first approach to solving an equation is trying to find a formula for the solution. Even if
this is impossible to do in full generality, there are examples of domains with high symmetry
where the study of PDE can be reduced to the study of one-dimensional problems, and then
we can take advantage of the techniques to solve ordinary differential equations.

For example, we can solve the Laplace equation in the unit ball with the Poisson kernel
representation. If ∆u = 0 in the unit ball B1 and u = g on ∂B1, then

u(r, θ) =
ˆ

∂B1

1 − r2

1 − 2r cos(θ − ξ) + r2 g(ξ)dξ

in polar coordinates. When g is smooth, it follows from the formula that u is smooth as well,
making the expression ∆u = 0 meaningful.

Other examples of PDE that admit explicit solutions are the linear transport, wave, and
heat equations, in some domains. Such examples are useful in applications, and they also give
insight on what behaviours we can expect for solutions in more general domains.

Separation of variables

A method that is very used in physics and engineering is separation of variables. We will
illustrate how this method operates for the problem of heat conduction in a one dimensional
rod. Let u(x, t) be the temperature as a function of space and time, for x ∈ (0, π), and assume
u(0) = u(π) = 0 and that the initial temperature is u(x, 0) = u0(x). The evolution of the
temperature is given by the heat equation ut = ∆u.

Now, consider solutions of the form X(x)T (t). Then,

X(x)T ′(t) = X ′′(x)T (t),

and so
T ′(t)
T (t) = X ′′(x)

X(x) .

The key point here is that the function in the left only depends on t, while the right-hand side
only depends on x. Therefore, they are constant. This is the key observation that gives name
to the method.

The next step is considering solutions to X ′′(x) = λX(x) such that X(0) = X(π) = 0 to take
into account the boundary conditions. Here we can use ordinary differential equation methods
to find that the only solutions are X(x) = sin(nx) with λ = −n2 and n a positive integer.
Then, we use this knowledge in T ′(t) = −n2T (t) to obtain T (t) = cn(x)e−n2t. Combining the
information,

X(x)T (t) = cn sin(nx)e−n2t.

3



Finally, since the equation is linear, we can write solutions as linear combinations of these
product solutions:

u(x, t) =
∞∑

n=1
cn sin(nx)e−n2t.

There are important missing pieces here:

• Giving an adequate meaning to the infinite sum.

• Proving that all solutions have this form.

• Computing the coefficients cn, using the fact that at t = 0,

u0(x) =
∞∑

n=1
cn sin(nx).

Historically, these problems motivated the development of the Fourier series, and giving it a
rigorous meaning was a driving force behind many of the advances in mathematical analysis in
the 19th century.

Power series

While not very used in practice, power series give a local existence and uniqueness result for
analytic PDE that is completely general.

Theorem (Cauchy-Kovalevskaya theorem). Let A1, . . . , An−1, b : Rn+1 → R be analytic. Then,
there exists a neighbourhood V of the origin in Rn such that the problem{

un = A1(x, u)u1 + . . .+ An−1(x, u)un−1 + b(x, u) in V
u = 0 on {xn = 0} ∩ V

has a unique analytic solution u : V → R.

There are also higher order, vectorial, and complex variable versions of this theorem. The
proof is based on expanding the functions appearing in the PDE as formal power series and
deriving expressions for the coefficients. Hence, it is only available for analytic functions.

Classical solutions

Short of a formula, the most intuitive notion of a solution to a given PDE is a function u of
class Ck, where k is the highest order of differentiation that appears in the PDE, such that the
equality holds in a pointwise sense. Moreover, to have a meaningful notion of solution, we will
ask it to have three properties:

• Existence.

• Uniqueness.

• Stability, i.e. the solution should change continuously with respect to perturbations in
the initial or the boundary data.

4



When a class of PDE has solutions satisfying these conditions, we say the problem is well-posed.
It turns out that this notion of solution is, in general, too restrictive. In many cases the

physical solutions to a problem will be only continuous or Lipschitz, but the PDE will have
higher order derivatives, making the existence of classical solutions impossible. Even in the
cases where classical solutions do exist, finding them directly is a very hard task, because of
the bad compactness properties of Ck.

Generalized solutions

In many applications, finding a classical solution is not only mathematically hard, but is just
not possible, or it fails to capture behaviours that we want to model. For example, if we
consider the transport equation

ut = ux

with discontinuous initial data, the physically meaningful solution would be u(x, t) = u(x+t, 0)
as in the smooth case, even if it no longer makes sense to evaluate the equation pointwise.

There are several approaches to this problem, namely, semigroup methods for evolution
equations, weak solutions, and viscosity solutions. Each one has advantages and disadvantages,
and they are available or not depending on the particular PDE. While these solutions do not
solve the PDE pointwise, we still ask them to have the three properties that make the problem
well-posed.

Descriptive results

Once there is a suitable notion of solution that makes a problem well-posed, the next step is
studying the properties of solutions. We list here some broad classes of descriptive results:

• Regularity: given a (generalized) solution to a PDE, it belongs to a better function
space. This usually comes with an estimate on the norm in such space.

• Asymptotics: given a solution to a PDE, it has some rate of decay at infinity, or it
converges to a special profile.

• Rigidity: given a solution to a PDE in a particular domain, it belongs to a much more
restrictive set of functions. For example, all positive harmonic functions in Rn are con-
stant.

In this Thesis, we will focus on the regularity question.

Elliptic and parabolic PDE
Diffusion is the movement of anything (heat, bacteria, money...) from where there is more
quantity to where there is less. In a very broad sense, diffusion is usually a consequence of the
second law of thermodynamics (entropy increases over time), and hence we can expect it to be
a very common phenomenon in the real world.

Let us build a mathematical model of diffusion. We will consider u(x, t) a function of space
and time, representing the concentration of what is diffusing. Then, we have the diffusion
equation

ut = Lu,
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where L is the diffusion operator. Now, we have an important choice: L can be local or nonlocal,
meaning that we can consider that diffusion happens at small scales, and what happens far away
does not affect immediately, which is more appropriate for modelling heat transfer for example,
or we can allow jumping and long-range interactions, which would be more appropriate for a
model of the stock market3.

For simplicity, let L be local. Now, the rate of growth of u at a certain point will be an
average of the inflow minus the outflow in all directions. Let us call q = (q1, . . . , qn) the flux of
u, which of course is also a function of space and time. Then, we can write the fact that the
variation of u corresponds to the quantity that enters minus the quantity that leaves as

ut =
ˆ

|e|=1
−e · ∂eq = − Div(q).

This is sometimes called the continuity equation.
On the other hand, we want to take into account the fact that the flow goes from the places

where u is higher to where u is lower, and that it is larger when the difference is bigger. This
can be formulated as Fick’s first law of diffusion

q = −∇u.

Combining the continuity equation with Fick’s law of diffusion, we obtain the diffusion (or
heat) equation

ut = ∆u,
so the operator L that we were looking for is the Laplace operator. We will call parabolic
equations to evolution PDE that are driven by a diffusive operator such as the Laplacian.

Now, imagine that we are interested in what will happen after a long time of diffusion, once
the system has reached some equilibrium. This does not mean that the flux q is zero, but
rather that at every point the entering and exiting fluxes compensate each other. We can also
think of equilibrium as ut = 0, that is, u is not changing anymore over time. In any case, we
obtain an equation of the form

Lu = 0,
where L is a diffusion operator. Such stationary-state equations are called elliptic equations.

Notice that in our deduction we are assuming, among other simplifications, that the process
is isotropic (does not depend on the direction), translation-invariant (does not depend on the
point in space), and linear (diffusion speed only depends on the difference of values of u, and
not on the total value of u). While these assumptions are reasonable, dropping them gives rise
to a richer class of PDE that still have the fundamental properties of diffusion.

Harmonic functions
Harmonic functions are solutions of the Laplace equation,

∆u = 0.

As steady states of isotropic diffusion, harmonic functions play a central role in mathematical
physics and engineering. They also appear in many areas of mathematics, for example, as the

3Internet memes are also thought to be subject to nonlocal diffusion, but more research is needed.

6



real and imaginary parts of holomorphic functions, or as minimizers of the Dirichlet energy
functional.

Harmonic functions are characterized by the fact that the value at each point equals the
average of its neighbouring values.

Proposition (Mean Value Property). Let U be an open subset of Rn, and let u : U → R be
a continuous function. Then, ∆u = 0 in U if and only if for every x ∈ U , and for every
r ∈ (0, dist(x, ∂U)),

u(x) =
 

Br(x)
u.

Poisson kernel representation

Given a harmonic function in a bounded reasonable4 domain, we can recover the values in the
interior from the values on the boundary through the Poisson kernel representation. If u is
harmonic in Ω, and continuous in Ω, then

u(x) =
ˆ

∂Ω
u(y)Px(y)dy.

The Poisson kernel Px(y) is defined on ∂Ω. It can be computed explicitly in some particular
cases like the ball.

Local elliptic operators
Divergence form operators

If we want to include anisotropic effects in our equation, we may put coefficients that depend
on the point and the direction. For example, if we want to use Fick’s law but now the flux is
not just the gradient of u, but rather q = A(x)∇u, where A(x) represents how the material is
different in different directions, we obtain divergence form elliptic operators,

Lu := Div(A(x)∇u). (1)

Now, we cannot allow for any A(x). For example, if we take minus the identity, the flux
would point towards where there is more u, which is not a diffusive behaviour anymore. A
reasonable assumption on A(x) is one that would make the flux point not backwards, that is,

⟨A(x)∇u,∇u⟩ = ⟨q,∇u⟩ ≥ 0,

and since we want this to happen for any possible value of ∇u, this is the same as asking A(x)
to be semidefinite positive. With this assumption on A(x), we call L degenerate elliptic. Note
that this still allows the flux to be perpendicular to the gradient of u.

In most physical applications, we actually want the flux to point towards where u is smaller,
and then the condition is replaced by

⟨A(x)ξ, ξ⟩ ≥ λ|ξ|2,
4See for example [163] for details.
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together with A(x) being bounded. With these two conditions on A(x), we call L a uniformly
elliptic divergence form operator.

Divergence form equations have a variational structure, that is, they are related to the min-
imization of energies. Indeed, if we want to find a function u that minimizes the energy

E(u) =
ˆ

Ω
∇u⊤A(x)∇u,

subject to u = g on the boundary of Ω, and A is a symmetric matrix, then u is a solution5 to

Div(A(x)∇u) = 0 in Ω.

Non-divergence form operators

Let us recall the following identity:

∆u = Div(∇u) = Tr(D2u).

We already used the first reformulation of ∆u to include coefficients. We can also consider
equations driven by operators of the form

Lu := Tr(A(x)D2u), (2)

which are called non-divergence form operators. Analogously to divergence form operators, we
can consider degenerate elliptic and uniformly elliptic non-divergence form operators.

The motivation for studying non-divergence form elliptic operators comes from the nonlinear
world. Let us consider an elliptic equation of the form

Lu = F (D2u) = 0,

where F is a nonlinear function. There is also a right notion of ellipticity for this kind of
equations, that essentially boils down to asking the linearized problem to be elliptic. In other
words, we can do a first order approximation of the equation around a solution u0, and write
u = u0 + εv. Then, by the chain rule we have (note that F is a function from n × n matrices
to R),

Lu = F (D2u0 + εD2v) = ε
n∑

i,j=1
(∂ijF )(D2u0(x)) ∂2v

∂xixj

+ o(ε) = εTr(A(x)D2v) + o(ε) = 0,

where A(x) is the matrix with (∂ijF )(D2u0(x)) as ji-th entry. Now, understanding the solutions
to Tr(A(x)D2v) = 0 gives insight into the solutions of the original nonlinear problem F (D2u).

Nonlocal elliptic operators
Nonlocal elliptic operators describe diffusive processes where long-range interactions are impor-
tant. In this work, we will only consider symmetric translation-invariant nonlocal operators, so
in a sense they can be viewed both as divergence form and non-divergence form.

5The notion of solution and other technicalities are intentionally not made precise.
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Let us motivate how a nonlocal diffusive operator looks like. As in the local case, assume that
L is isotropic and linear. Now, our starting point is the following identity for the Laplacian:
for any u ∈ C2,

−∆u(x) = cn lim
r→0+

1
r2|Br|

ˆ
Br

(2u(x) − u(x+ y) − u(x− y))dy,

that we can rewrite

−∆u(x) = lim
r→0+

ˆ
Rn

(2u(x) − u(x+ y) − u(x− y))Kr(y)dy,

where
Kr = 1

r2|Br|
χBr .

We can understand this kernel as taking the average of the difference of the values of u
around x and u(x). In this form, the translation and rotation invariance of the Laplacian are
apparent, and the locality comes from the fact that we are taking the limit as r → 0+.

Now, to construct a nonlocal operator, we will choose a kernel that has support in the full
space and not take limits. We have6

Lu(x) :=
ˆ
Rn

(2u(x) − u(x+ y) − u(x− y))K(y)dy.

Then, by the invariance properties that we want, we need K(y) = K(|y|) to be radial. Let us
take K(y) = |y|−p, where the sign of the exponent is chosen to take into account that interaction
is stronger between points that are close than between points that are far.

The next step is figuring out what values of p give rise to an operator that is well defined,
at least, for smooth functions of compact support. For that, we may split the integral into two
pieces:

Lu(x) =
ˆ

B1

(2u(x) −u(x+ y) −u(x− y))K(y)dy+
ˆ
Rn\B1

(2u(x) −u(x+ y) −u(x− y))K(y)dy.

For the singularity, if u is at least C2, we can use the mean value theorem to write∣∣∣∣∣
ˆ

B1

(2u(x) − u(x+ y) − u(x− y))K(y)dy
∣∣∣∣∣ ≤

ˆ
B1

∥D2u∥L∞(B1)|y|2K(y)dy

so what we need is that |y|2K(y) is integrable in B1. For the tail term, given u bounded,∣∣∣∣∣
ˆ
Rn\B1

(2u(x) − u(x+ y) − u(x− y))K(y)dy
∣∣∣∣∣ ≤

ˆ
Rn\B1

4∥u∥L∞(Rn)K(y)dy,

and hence we need K(y) to be integrable in Rn \ B1. Combining these properties, we obtain
the Lévy condition ˆ

Rn

min{1, |y|2}K(y)dy < +∞,

6We are using the opposite sign convention compared to local operators to be coherent with the definitions
in the articles comprising this thesis.
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and restricting to our example of radially decreasing powers, K(y) = |y|−n−2s, with s ∈ (0, 1).
The model example of nonlocal operator that we deal with is the fractional Laplacian

(−∆)su(x) := cn,s

ˆ
Rn

2u(x) − u(x+ y) − u(x− y)
|y|n+2s

dy.

As the name suggests, this operator is very closely related to the Laplacian, it satisfies the
semigroup property

(−∆)s(−∆)tu = (−∆)s+tu

for s+ t < 1, and also
(−∆)s(−∆)1−su = −∆u.

If we look at the Fourier side, the Fourier transform of the Laplace operator is

F(−∆u) = |ξ|2û(ξ),

and that of the fractional Laplacian is

F((−∆)su)) = |ξ|2sû(ξ).

In this latter setting it is much clearer that (−∆)s is a pseudodifferential operator of order
2s, and its close relation to the Laplacian.

As in the local case, there are more general classes of nonlocal elliptic operators and different
notions of uniform ellipticity that are appropriate for them. In some cases, it is convenient to
write

Lu =
ˆ
Rn

(
u(x) − u(x+ y)

)
K(y)dy.

This formulation is equivalent for kernels K that are even, but if we allow K to be asymmetric,
it can encode nonlocal drift effects.

Caffarelli-Silvestre extension

The fractional Laplacian can be related to the Dirichlet-to-Neumann map for a local operator,
using a trick that is known to the PDE community as the Caffarelli-Silvestre extension, because
it was introduced by them in [49]. Much before that, it had been discovered in the context of
probability [192, 153].

The idea of the extension is adding an extra variable so that the nonlocal behaviour can
happen driven by a local operator across the extra space. Our local operator of interest acts
on functions defined on Rn+1

+ := Rn × (0,+∞) as

Lsw := ∆xw + 1 − 2s
y

∂yw + ∂yyw = y2s−1 Div(y1−2s∇w).

This operator is degenerate elliptic, and shares many properties of the Laplacian. For s = 1
2 ,

L1/2 is exactly the Laplacian. For other values of s, the structure of Ls reminds of the spherical
Laplacian, with 1 − 2s replacing the usual dimensional n− 1.
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Theorem. Let s ∈ (0, 1), ε > 0, and u ∈ C2s+ε(B1) ∩L1(Rn). Let ũ : Rn+1
+ → R be the unique

solution to {
Lsũ = 0 in {y > 0}

ũ(x, 0) = u(x) for x ∈ Rn

with sublinear growth at infinity. Then,

(−∆)su(x) = −ds lim
y→0+

y1−2s∂yũ(x, y) in B1,

where ds > 0.

The practical significance of this result is that it allows to extrapolate the well established
theory for local elliptic equations to the less known world of integro-differential elliptic equa-
tions. Applications range from basic regularity estimates to Poisson kernel representations and
monotonicity formulas.

As a final remark, the Caffarelli-Silvestre extension is not only available for the fractional
Laplacian, but to the broader class of translation-invariant integro-differential operators with
kernels of the form K(y) = |Ay|−n−2s, where A is a positive definite symmetric matrix.

Common properties of solutions
Maximum and comparison principles

Consider a solution to
Lu = 0 in Ω,

where L is an elliptic operator. Then, u does not attain interior local maxima nor minima.
The intuition behind this fact is that if there were a local maximum, the diffusion effects would
make the value of the maximum decrease, contradicting the fact that u is a solution to the
stationary-state equation. In particular, this implies that if u ≥ 0 on ∂Ω, then u ≥ 0 in Ω.

Since the equation is linear, we can consider two solutions

Lu = Lv = 0 in Ω,

such that u ≤ v in ∂Ω. Applying the maximum principle to v − u, we obtain that u ≤ v in Ω.
This is called the comparison principle.

Maximum and comparison principles hold for a broad class of elliptic and parabolic equations,
in divergence and non-divergence form, local and nonlocal... They are a key distinguishing
factor of this area of PDE, and one of the basic ingredients in obtaining regularity of solutions.

Variational structure

Harmonic functions are local minimizers of the Dirichlet energy. That is, if ∆u = 0 in Ω and
K is compactly contained in Ω, thenˆ

Ω
|∇u|2 ≤

ˆ
Ω

|∇v|2,

for any C1 function v such that v = u in Ω \ K. This fact can be interpreted as harmonic
functions having the least necessary oscillations for any given boundary data, and therefore it
yields regularity properties.
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Elliptic and parabolic equations in divergence form, and in particular those for translation-
invariant operators, can also be viewed as energy minimization problems, both in the local and
in the nonlocal framework.

Random walks and random jumps
The Wiener process (also called Brownian motion) is a stochastic process Xt with t ≥ 0 that
models a random walk. It has the following properties:

• X0 = 0 with probability 1.

• Xt has independent increments, that is, for all τ > 0, Xt+τ −Xt is independent of Xs for
all s ∈ [0, t).

• Xt+τ −Xt has a normal distribution with mean 0 and variance τ .

• Xt is almost surely continuous in t.

The Wiener process is very related to the Laplace operator, in the following sense. Given a
stochastic process, we can define its infinitesimal generator acting on functions u : Rn → R as

Lu(x) := lim
h→0

E (u(x+Xh)) − u(x)
h

.

In the case of the Wiener process, the infinitesimal generator is the Laplacian (recall that the
Laplacian of u at x can be interpreted as the average of u near x minus u(x)).

The infinitesimal generator of a stochastic process encodes a lot of information about it. It
can be used, for example, to compute statistics as the expected payoff or exit times. More
concretely, let Ω be a bounded domain with continuous boundary, and let φ : ∂Ω → R. Now,
imagine that we start a random walk at a point x ∈ Ω and we collect the payoff φ the first
time the process touches ∂Ω. We want to know what is the expected payoff.

In other words, we want to compute

u(x) := E(φ(x+Xt∗)),

where t∗ is the first exit time. Then, for any point x and a small time t > 0,

u(x) = E(u(x+Xt)) + o(t),

where the error o(t) is due to the small probability that the process exits Ω. Therefore,

lim
t→0

E((u(x+Xt))) + o(t) − u(x)
t

= 0,

which implies Lu = 0. In the case of the Wiener process, in particular, the expected payoff is
a harmonic function.

Now, consider a more general stochastic process where we drop the continuity and normality
assumptions, and we allow jumps instead. Under some technical conditions7, we can carry out
a similar reasoning, and we find that the infinitesimal generators of random jump processes are
nonlocal elliptic operators.

7The right class of processes to consider here are Lévy processes, see [27].
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Regularity theory for elliptic and parabolic PDE
A central question in the study of PDE is the following:

Given a solution to a certain PDE, will it be smooth or will it have singularities?

This question is motivated by several points of view. If we think about a PDE that comes
from a physical problem, the existence of singular solutions may be related to the model not
accurately representing the material reality, and then it is something to avoid. But sometimes
singular solutions have obvious physical meanings, such as a fracture in a material subject to
external forces. Even more, sometimes finding a singular solution to a PDE has motivated the
discovery of a physical phenomenon related to it, such as the Big Bang.

The question of regularity is intimately related to the question of what is the right space to
look for solutions to a PDE. As we have already pointed out, proving existence, uniqueness and
stability of classical solutions can be an extremely difficult task, even when they exist, as the
spaces Ck do not have good compactness properties.

As a consequence, usually the task is split into two more manageable subtasks:

• Finding a generalized solution in a bigger space.

• Proving a posteriori that the generalized solution is more regular, and therefore it is
actually a classical solution. This is the job of regularity theory.

Finally, regularity plays a crucial role in numerical analysis. Since numerical methods can
only perform a finite number of computations, they usually approximate a PDE by a discrete
process, replacing derivatives with difference quotients. Then, we want to know how far the
approximated solution is from the true solution. To compute these error bounds, we can use
estimates on higher order derivatives of solutions.

Qualitative and quantitative estimates
Regularity results can be broadly classified into two types:

Qualitative results

Qualitative results assert that a solution to a PDE class belongs to a certain function space.
For example, the smoothing effect of the heat equation can be written as:

Proposition. Let u(x, t) be a solution to ut = ∆u in Rn × (0,∞), with initial condition
u(x, 0) = u0(x) in L∞(R).

Then, for any t > 0, u(·, t) ∈ C∞(R).

With this result, we know that the solution becomes smooth after any amount of time, but
we do not know how fast or how smooth. This would be an interesting result from the point of
view of physics (there is no singularity), but impractical for numerics.
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Quantitative results

Quantitative results are inequalities that relate norms of solutions to a PDE. For example, the
L∞ gradient estimates for harmonic functions look as follows:

Proposition. Let u(x) be a bounded solution to ∆u = 0 in the unit ball B1. Then,

∥∇u∥L∞(B1/2) ≤ C∥u∥L∞(B1),

where the constant C depends only on the dimension.

With this kind of estimates we can compute error bounds and convergence rates of algorithms.
An important subclass of quantitative estimates are a priori estimates, which provide quan-

titative regularity information even when the solution is not known to exist. They take the
form of

Proposition. Let u ∈ Ck be a solution to ∆u = 0 in the unit ball B1. Then,

∥Dku∥L2(B1/2) ≤ Ck∥u∥L2(B1),

where the constant Ck depends only on k and the dimension.

These estimates are usually used to prove existence of solutions using the continuity method
or a fixed point theorem.

Function spaces
Quantitative regularity results are written in terms of function norms. When studying regularity
theory, it soon becomes obvious that Ck spaces are not enough.

In the following, we will recall the most paradigmatic function spaces used in regularity
theory. They all are complete vector spaces with respect to their norm, i.e. Banach spaces.

Lebesgue spaces

Lebesgue spaces, Lp, are spaces of measurable (possibly singular) functions. For a nice domain
Ω ⊂ Rn (open, with Lipschitz boundary), and p ∈ [1,∞], we define the Lp norms on measurable
functions f : Ω → R, as

∥f∥Lp(Ω) :=
(ˆ

Ω
|f |p

) 1
p

, for 1 ≤ p < +∞,

∥f∥L∞(Ω) := sup
Ω

|f |

Then,
Lp(Ω) := {f : Ω → R,measurable, ∥f∥Lp(Ω) < +∞}.

Intuitively, the bigger the p is, the less singular an integrable function is allowed to be. This
can be seen by the inclusion Lq(Ω) ⊂ Lp(Ω) for any q > p, when Ω is a bounded domain, which
is the relevant case in regularity theory.

In Lebesgue spaces, functions are often identified up to a zero measure set. We will follow
this convention.
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Hölder spaces

Hölder spaces, C0,α, are spaces of continuous functions. For a nice domain Ω, and α ∈ (0, 1],
we define the C0,α seminorms (and norms) on continuous functions f : Ω → R, as

[f ]C0,α(Ω) := sup
x,y∈Ω

|f(x) − f(y)|
|x− y|α

and
∥f∥C0,α(Ω) := ∥f∥L∞(Ω) + [f ]C0,α(Ω).

Then,
C0,α(Ω) := {f : Ω → R, continuous, ∥f∥C0,α(Ω) < +∞}.

We can also define the higher order Hölder spaces Ck,α as follows. Given k ∈ N and α ∈ (0, 1],
we define the higher order Hölder norm as

∥f∥Ck,α(Ω) := ∥f∥Ck(Ω) + [Dkf ]C0,α(Ω),

where

∥f∥Ck(Ω) := ∥f∥L∞(Ω) +
k∑

j=1
∥Djf∥L∞(Ω).

Ck,α spaces interpolate Ck spaces, in the sense that if 0 < α < β < 1,

C0 ⊃ C0,α ⊃ C0,β ⊃ C0,1 ⊃ C1 ⊃ C1,α ⊃ C1,β ⊃ C1,1 ⊃ . . .

Weak derivatives

To make sense of solutions to a PDE that are less regular than what is needed to be evaluated
pointwise, we need to give a new meaning to differentiation. This is done through integration
by parts.

For example, if u ∈ C1(R), we have that for any η ∈ C1(R) with compact support,
ˆ
R
u′(x)η(x)dx = −

ˆ
R
u(x)η′(x)dx.

Then, we may identify u′ with the mapping

η → −
ˆ
R
u(x)η′(x)dx.

Now let us consider v ∈ L1(R), and assume that

η → −
ˆ
R
v(x)η′(x)dx

is well defined. If there exists a locally integrable function w such that
ˆ
R
w(x)η(x)dx = −

ˆ
R
v(x)η′(x)dx,
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we say that w is the weak derivative of v and we write w = v′. For example, the weak derivative
of v(x) = |x| is

v′(x) =
{

−1 if x < 0
1 if x > 0.

Note that defining v′(0) is superfluous, as we are considering locally integrable functions, and,
as usual, we identify functions that are equal except for a set of zero measure.

Weak differentiation can be extended to higher dimensions and higher orders by integrating
by parts more times in the exact same way, and all the usual properties of derivatives also hold.
Moreover, when derivatives exist in a classical sense, they coincide with weak derivatives.

Sobolev spaces

Sobolev spaces, W k,p, are spaces of measurable functions with weak derivatives. For a nice
domain Ω, k ∈ N, and p ∈ [1,∞], we define the W k,p norms on measurable functions f : Ω → R,
as

∥f∥W k,p(Ω) = ∥f∥Lp(Ω) +
k∑

j=1
∥Djf∥Lp(Ω),

where Djf has to be understood in the weak sense. Then,

W k,p(Ω) := {f ∈ Lp(Ω) : ∥f∥W k,p(Ω) < +∞}.

Now, we have two indices to control how singular the functions in W k,p can be: differentia-
bility (k) and integrability (p). As both numbers increase, the functions become less singular.

When p = 2, the spacesW k,2 become Hilbert spaces, and they are also denotedHk. Moreover,
one can define W k,p

0 as the closure of C∞
c with respect to the W k,p norm. This space can be

understood as W k,p functions with zero boundary conditions, where the boundary conditions
are also seen in the Sobolev sense.

Lipschitz functions

There are two natural ways of thinking about Lipschitz functions. On the one hand, we can
think of functions that belong to the space C0,1 as a Hölder space.

On the other hand, we can think of functions that admit one bounded weak derivative, that
is, the Sobolev space W 1,∞.

The spaces C0,1 and W 1,∞ coincide when the domain is the full space or has a smooth enough
boundary. The key fact in this equivalence is Rademacher’s theorem, that states that Lipschitz
functions are differentiable almost everywhere.

Embeddings

Sobolev, Hölder and Lebesgue spaces are related, and there are inclusions between them. When
p < n, we have the Gagliardo-Nirenberg-Sobolev inequality.
Theorem. Let p < n and u ∈ C1

c (Rn). Then,

∥u∥Lp∗ ≤ C(n, p)∥∇u∥Lp(Rn),

where
1
p∗ = 1

p
− 1
n
.
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This can be understood as W 1,p ⊂ Lp∗ when p < n. On the other hand, when p > n, we
have the Morrey inequality.

Theorem. Let p > n and u ∈ C1
c (Rn). Then,

∥u∥C0,α ≤ C(n, p)∥∇u∥Lp(Rn),

where
α = 1 − n

p
.

Similarly, this implies that W 1,p ⊂ C0,α when p > n. We purposely do not consider the case
p = n for simplicity. Keep in mind that, for compactly supported functions and all p < q,

∥u∥Lp(BR) ≤ C(n, p, q)∥u∥Lq(BR),

and we may use this fact to obtain that W 1,n ⊂ Lp for all p < ∞, for example.
These inequalities can be combined and iterated to give the following.

Theorem. Let u ∈ C∞
c (Rn). Then, let k ∈ N and p ≥ 1. Then,

a) If kp < n, then

∥u∥Lpk (Rn) ≤ C1(n, p, k)∥Du∥Lpk−1 (Rn) ≤ . . . ≤ Ck(n, p, k)∥Dku∥Lp0 (Rn),

where
1
pj

= 1
p

− j

n
.

b) If kp > n, and n/p is not an integer, let m = ⌊n/p⌋. Then,

∥u∥Ck−m−1,α(Rn) ≤ Cm(n, p, k)∥Dk−mu∥Lpm (Rn) ≤ . . . ≤ Ck(n, p, k)∥Dku∥Lp0 (Rn),

where
α = 1 − n

pm

= m+ 1 − n

p
.

There are also similar versions of the embeddings for bounded domains.

Linear theory
For harmonic functions, one can deduce interior regularity directly from the Poisson kernel
representation. When we move to the broader class of linear elliptic PDE, such an explicit
formula fails to exist and we need other tools.

In this section, we will consider equations in divergence form,

Lu := Div(A(x)∇u) = f,

and in non-divergence form,
Lu := Tr(A(x)D2u) = f,
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where the matrix A(x) is symmetric, and uniformly elliptic, i.e.

λI ≤ A(x) ≤ ΛI.

To fix ideas, let us consider first the Poisson equation ∆u = f . Then, it is clear that if
u ∈ Ck+2, f ∈ Ck. The converse, however, is false. There are examples with continuous f such
that u /∈ C2, not even in C1,1, and such a simple result also fails when one considers f ∈ L∞:
it is not true that then D2u is also bounded.

One expects sharp results to say that D2u and f belong to the same regularity class, since
it is trivial that f is at least as regular as D2u. But we cannot hope to prove such results in
Ck or Ck,1 spaces. This is why we have to move to the finer Hölder and Sobolev spaces.

For more general equations, we also expect to gain two derivatives with respect to the right-
hand side, for regular enough coefficients.

Schauder estimates

Schauder estimates are a priori regularity estimates in Hölder spaces. There is the following
version for equations in non-divergence form.

Theorem. Let k ∈ N, α ∈ (0, 1), and let u ∈ Ck+2,α be a solution to

Tr(A(x)D2u) = f in B1,

with A, f ∈ Ck,α, and A(x) uniformly elliptic. Then,

∥u∥Ck+2,α(B1/2) ≤ C
(
∥u∥L∞(B1) + ∥f∥Ck,α(B1)

)
,

where C depends only on k, α, ∥A(x)∥Ck,α(B1), the dimension and ellipticity constants.

And also the version for equations in divergence form.

Theorem. Let k ∈ N, k ≥ 1, α ∈ (0, 1), and let u ∈ Ck+1,α be a solution to

Div(A(x)∇u) = f in B1,

with A, f ∈ Ck,α, and A(x) uniformly elliptic. Then,

∥u∥Ck+1,α(B1/2) ≤ C
(
∥u∥L∞(B1) + ∥f∥Ck−1,α(B1)

)
,

where C depends only on k, α, ∥A(x)∥Ck,α(B1), the dimension and ellipticity constants.

The case k = 0 can be adapted substituting the Ck−1,α norm by a Lq norm with q = n/(1−α),
that is, the Lebesgue space with the scaling that C−1,α would have8.

8One can also consider the space C−1,α as the (distributional) derivatives of Cα functions. In this case a
version of Schauder estimates also hold, see [112, Theorem 8.33]
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Calderón-Zygmund estimates

Calderón-Zygmund estimates are a priori estimates in Sobolev spaces. We will only state them
for the Laplacian.

Theorem. Let k ∈ N, p ∈ (1,∞), and let u ∈ W k+2,p be a solution to

∆u = f in B1,

with f ∈ W k,p. Then,

∥u∥W k+2,p(B1/2) ≤ C
(
∥u∥Lp(B1) + ∥f∥W k,p(B1)

)
,

where C depends only on k, p, and the dimension.

Nonlinear theory
A central idea in the regularity theory for nonlinear PDE is obtaining estimates for the asso-
ciated linearized problem that do not depend on the regularity of the coefficients. Then, one
can proceed as follows. Take a nonlinear PDE of the form

F (D2u) = f

and differentiate it in the direction e. Then, at least formally,
n∑

i,j=1
∂ijF (D2u)∂ijue = fe,

that is, ue solves a linear PDE with coefficients that depend on u itself, and hence we cannot
assume any regularity of the coefficients a priori.

The Cacciopoli energy inequality

Energy methods are a very powerful tool to obtain initial regularity for divergence structure
equations, and are inspired by the elementary fact that if ∆u = 0, then |∇u|2 is subharmonic,
and then it is bounded pointwise by its average, which is a H1-to-Lipschitz kind of estimate
for u.

For more general equations, the picture is not so simple, but we have the following.

Theorem. Let u ∈ H1(B1) be a nonnegative weak solution to Lu ≥ 0 in B1, where L is a
divergence form uniformly elliptic operator. Then, for any η ∈ C1

c (B1),ˆ
B1

|∇(ηu)|2 ≤ C∥∇η∥2
L∞(B1)

ˆ
supp η

u2.

If we now choose η ∈ C∞
c (B1) to be a cutoff function with η ≡ 1 in B1/2, we deduce the

reverse Sobolev inequality ˆ
B1/2

|∇u|2 ≤ C

ˆ
B1

u2,

that encodes regularity of u.
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Harnack’s inequality and Hölder regularity

Harnack’s inequality is one of the most fundamental estimates for elliptic equations, and it can
be understood as a quantitative form of the maximum principle.

Theorem. Let u ≥ 0 be a solution to Lu = 0 in B1, with L uniformly elliptic, either in
divergence or non-divergence form. Then,

sup
B1/2

u ≤ C inf
B1/2

u,

where C depends only on the dimension and ellipticity constants.

Now, by applying Harnack’s inequality to u − inf u and supu − u, the following oscillation
decay follows.

Corollary. Let u ∈ L∞ be a solution to Lu = 0 in B1, with L uniformly elliptic, either in
divergence or non-divergence form. Then,

sup
B1/2

u− inf
B1/2

u ≤ (1 − c)
(

sup
B1

u− inf
B1
u

)
,

where c > 0 depends only on the dimension and ellipticity constants.

Iterating the oscillation decay, it follows that

sup
B2−k

u− inf
B2−k

u ≤ C(1 − c)k,

which implies u ∈ Cα for some α > 0.
The key point here is that bounded solutions to uniformly elliptic equations are Cα without

assuming any regularity on the coefficients. This makes this result useful for nonlinear equa-
tions. It is worth mentioning that all these results are also known for elliptic equations with
right-hand side.

Hilbert’s XIX problem

Dating from 1900, Hilbert’s XIX problem asked whether solutions to regular variational prob-
lems are always analytic, motivated by the fact that the Laplace equation, the minimal surface
equation and some others were known to admit only analytic solutions. The problem was solved
independently in the 50s by De Giorgi and Nash.

In modern language, we consider solutions to the minimization problem

minE(u) :=
ˆ

Ω
L(∇u),

where the Lagrangian L : Rn → R is analytic and uniformly convex. Then, we ask if all local
minimizers of E(u) are analytic.

The natural space to study this question is H1, where one can prove existence and uniqueness
of minimizers under suitable boundary conditions. Then, by the minimality, for any φ ∈ H1

0 (Ω),

0 = ∂

∂ε
E(u+ εφ) =

ˆ
Ω
DL(∇u)∇φ = −

ˆ
Ω

Div(DL(∇u))φ,
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and therefore the minimizers are weak solutions of

Div (DL(∇u)) = 0.

Hence, differentiating the equation (formally) we get

Div
(
D2L(∇u)∇ue

)
= 0,

a divergence form equation, that is uniformly elliptic because L is uniformly convex.
The key point to prove regularity of minimizers of E(u) is to obtain some initial regularity,

that is, prove that given a solution u ∈ H1, actually u ∈ C1,α. Then, one can use Schauder
estimates to further this regularity to C∞. To do that, we can split the argument into two
parts:

• Using the Cacciopoli and Sobolev inequalities, prove that ue is bounded.

• Then, by an oscillation decay argument, ue ∈ Cα.

Boundary regularity
For the sake of simplicity we will consider the Dirichlet problem for the Laplacian with homo-
geneous boundary conditions. The simplest case, a flat boundary, can be assimilated to the
interior regularity theory by an odd reflection. Indeed, if ∆u = f in B1 ∩ {xn > 0} and u = 0
on {xn = 0}, we can consider, writing x = (x′, xn) in Rn−1 × R,

ũ(x′, xn) = sgn(xn)u(x′, |xn|),

and then ∆ũ = f̃ in B1, so we can apply interior Schauder or Calderón-Zygmund estimates
to ũ to deduce the boundary regularity of u. In short, we gain two derivatives as in interior
estimates.

Now let us consider a solution to ∆u = f in a general domain Ω, and consider a diffeomor-
phism ϕ : Ω → Ω̃ that sends the boundary of Ω to {xn = 0}. Then, since u is a weak solution,
it solves ˆ

Ω
∇u · ∇ηdx =

ˆ
Ω
fηdx,

which after the change of variables becomesˆ
Ω̃

∇u⊤(Dϕ)⊤Dϕ∇ηdy =
ˆ

Ω̃
Dϕ∇u ·Dϕ∇ηdy =

ˆ
Ω̃
fηdy,

choosing |Dϕ| = 1 without loss of generality, which is the weak form of a divergence form
equation with coefficients A(x) = (Dϕ)⊤(Dϕ). The important point here is that the regularity
of the coefficients depends on the regularity of the boundary, in the sense that if the boundary
is Ck,α for k ≥ 1, A(x) ∈ Ck−1,α, and then by Schauder estimates u ∈ Ck,α.

In general, we conclude that if a domain is of class Ck,α, then harmonic functions that vanish
on the boundary are Ck,α up to the boundary. However, the situation changes drastically when
we lower the regularity to Lipschitz. Then, harmonic functions are only Cα, with an exponent
that depends on the Lipschitz constant. This is due to the fact that, when we zoom in, C1

domains improve: they become flatter and converge to a half-space, but Lipschitz domains look
the same at all scales.
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Free boundary problems
Free boundary problems are a particular class of overdetermined problems where the boundary
of the domain is an unknown that provides the missing degrees of freedom. They can be seen
as the counterpart to the study of boundary regularity. For example, we know that if a domain
is Ck,α, then harmonic functions with smooth Dirichlet conditions are Ck,α up to the boundary.
We might ask:

If Ω is a Lipschitz domain such that the Poisson kernel is Ck,α, is it true that the boundary
is locally Ck,α?

The answer is affirmative, see [47, 196].
Another angle to free boundary problems is from the physical point of view. If we want to

model a system with more than one phase, and in each phase a different PDE describes the
behaviour of a physical quantity u, we may study the problem where we do not know a priori
what space is occupied by each phase, but instead we know some boundary conditions about
how they interact. For example, if two phases are represented by positive and negative values
of u, we could have something that looks like

F1(u) = 0 in Ω ∩ {u > 0}
F2(u) = 0 in Ω ∩ {u < 0}

G(u+, u−) = 0 on Ω ∩ {u = 0}
u = h on ∂Ω,

where F1 and F2 represent the PDE that each phase solves, G is an interaction law and h is
a boundary condition. Most of this Thesis is devoted to the study of the regularity theory for
elliptic and parabolic free boundary problems.
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Part I

Regularity theory
for obstacle problems
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Beware of truths, for they hide nothing but conventions.9

9Paraphrasing the graduation speech of Cassius Manuel Pérez de los Cobos Hermosa, Universitat Politècnica
de Catalunya (2015).





Introduction to Part I

Obstacle problems are an archetypal example of free boundary problem consisting of a nonlinear
elliptic or parabolic PDE of the form

min{Lu, u− φ} = 0 or min{ut − Lu, u− φ} = 0.

In these problems, the domain is divided into two unknown sets, the contact set {u = φ}, where
the solution u touches the obstacle φ, and the set {u > φ}, where u satisfies the PDE. As we
already mentioned, the most important questions in regularity theory concern the regularity of
u across the free boundary ∂{u > φ}, and the structure and regularity of ∂{u > φ}.

The obstacle problem
Let us consider an elastic membrane attached to a wire, described as the graph of a function
u : Ω → R with prescribed values u|∂Ω = g on the wire.

Now, if this membrane is in equilibrium, it minimizes its energy. In our model, we will
consider two contributions to the energy: elastic and gravitational. Thence we have

E(u) = Ee(u) + Eg(u) =
ˆ

Ω

√
1 + |∇u|2 + u,

normalizing to 1 all the relevant physical constants. To understand the equilibrium state of the
membrane we would like to find u that minimizes E(u). But this is a nonlinear problem, and
nonlinear problems are hard.

The first reasonable step towards solving the nonlinear problem is to attack its linearized
version. If |∇u| is small10, then we can do the first order approximation

E(u) ≈
ˆ

Ω
1 + |∇u|2

2 + u,

and then look for minimizers of
E(u) =

ˆ
Ω

|∇u|2

2 + u.

Now, if u is a minimizer of E(u), we will have that for all η smooth and compactly supported
in Ω, E(u+ η) ≥ E(u). In particular, this implies (at least formally) that

0 = ∂

∂ε
E(u+ εη) =

ˆ
Ω

∇u · ∇η + η =
ˆ

Ω
(−∆u+ 1)η,

10In this case, this is not a reasonable physical assumption.
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and since this holds for every η, ∆u = 1, which is the Euler-Lagrange equation associated to
the functional E(u).

Let us extrapolate the reasoning to the case where we have the same membrane attached to
a wire, but there is also an obstacle below, described as the graph oh φ : Ω → R. Then, we
consider the minimization problem

minE(u) : u ≥ φ.

By a similar reasoning, we deduce that at points x where u(x) > φ(x), ∆u(x) = 1. But
when u(x) = φ(x), then we are only allowed to perturb u away from the obstacle, and then we
obtain something like ˆ

Ω
(−∆u+ 1)η ≥ 0,

where η ≥ 0 is supported near x, and then ∆u ≤ 1. Note that a priori we do not know at
which points x we have u(x) = φ(x) or u(x) > φ(x). The obstacle problem can be summarized
in the set of equations 

u ≥ φ in Ω
∆u ≤ 1 in Ω
∆u = 1 in {u > φ}.

We can also look for the PDE satisfied by v = u− φ. In this case,
v ≥ 0 in Ω

∆v ≤ f in Ω
∆v = f in {v > 0},

with f = 1 − ∆φ.
Then, we can combine the equations in the form

∆v = fχ{v>0},

which has the advantage of not having a constraint anymore, but is nonlinear. It is usual to
impose the condition f ≥ c0 > 0.11 Since the right-hand side is bounded, we obtain from
Calderón-Zygmund estimates that u ∈ C1,α, and in particular ∇u is well defined and vanishes
on the free boundary.

Using this fact, the problem can be rewritten to highlight the importance of the free boundary.
If we write Γ = ∂{u > 0} ∩ Ω, then u solves


∆u = f in {u > 0}
u = 0 on Γ

∇u = 0 on Γ

Having both Dirichlet and Neumann conditions would be an overdetermined problem. But in
this case, the domain is also an unknown, and the problem has a unique solution.

11If the obstacle does not oscillate too much, this is a reasonable physical assumption. Moreover, without
this assumption the contact set can be any closed set, cf. [96, Proposition 5.2].
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Motivations and applications
Since many phenomena can be described by diffusion, it is not surprising that the same kinds
of equations appear again and again in different settings. Here we describe some examples, and
we point out the interested reader to the book [160] and the survey papers [36, 100, 165] for
more.

Physics: Stefan problem

Probably the oldest studied free boundary problem, the Stefan problem dates back to the 19th
century. It describes the evolution of a phase transition from solid to liquid, in which the solid
is kept at the melting point, and the evolution of temperature in the liquid is described by the
heat equation.

In its formulation in physical variables, θ(x, t) represents the temperature of a mixture of ice
and water. Let Ω be a bounded domain, θ0(x) ≥ 0 the initial temperature, and g : ∂Ω → [0,∞)
the boundary condition. Then, we want to find the evolution of θ(x, t) in time. We set
θ(·, 0) = θ0 and θ(x, t) = g(x) for all (x, t) ∈ ∂Ω × (0,∞).

The set {θ = 0} represents the ice, while the set {θ > 0} represents the water. In the water,
the temperature follows the heat equation

θt = ∆θ in {θ > 0}.

To see how the free boundary ∂{θ > 0} evolves, we do the following physical reasoning. The
speed of melting must be proportional to the speed of heat transfer at the boundary. Moreover,
the speed at which the boundary moves is proportional to the speed of melting, and the speed
of heat transfer is proportional to the temperature gradient. Therefore, we expect something
like

θt

|∇θ|
= v = |∇θ|,

where v is the speed at which the free boundary moves, and the first equality comes from
the fact that θ = 0 is constant on the moving free boundary. The condition θt = |∇θ|2 on
∂{θ > 0} is called the Stefan condition, and together with the heat equation in the liquid
phase, completely describes the evolution of θ.

The Stefan problem is related to the obstacle problem thanks to the change of variables

u(x, t) =
ˆ t

0
θ(x, s)ds,

called Duvaut transformation. Then, this new function solves the parabolic obstacle problem
ut − ∆u = χ{u>0}

u ≥ 0
ut ≥ 0.

Moreover, since θ ≥ 0, we have {u = 0} = {θ = 0}, and the free boundaries also coincide.
This allows us to study the free boundary in the Stefan problem by studying the parabolic
obstacle problem with ut ≥ 0.
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Finance: Optimal stopping

In mathematical finance, the optimal stopping problem is the problem of deciding when to stop
a stochastic process to obtain the maximum payoff.

Imagine that there is a contract that allows us to sell a commodity for a price φ : Rn → R
that depends on the state of the market at any given time. What is the rational price for this
contract?

If we represent the state of the market by the stochastic process x+Xt, where x is the initial
state and Xt is the Wiener process, and we call u(x) to this price, we have

u(x) = max
t∗

E(φ(x+Xt∗)),

where we take the maximum among all possible stopping times. Note that t∗ is also a random
variable, see [83] for details.

Now, we can do the following reasoning. If we are at x, we can either sell or wait. Since we
can always sell right away, the contract must be worth more than the payoff at this moment.
Hence we write u ≥ φ.

On the other hand, the contract must be also worth at least the same as a contract that
would allow us to sell at any point in time after waiting a fixed amount δ > 0. We can write
this as

u(x) ≥ max
s∗

E(φ(x+Xδ+s∗)) = max
s∗

E(φ(x+Xδ +Xs∗)) = E(u(x+Xδ)).

Now, taking the limit when δ → 0, we obtain that Lu ≤ 0, where L is the infinitesimal generator
of the process, that in the case of Brownian motion is the Laplacian. Hence ∆u ≤ 0.

Moreover, since we are doing an optimal strategy, in the region where u > φ we are forced
to wait for a positive amount of time, and then, by the same reasoning as above, ∆u = 0 in
{u > φ}.

Putting everything together, we have that u is a solution to
u ≥ φ in Rn

∆u ≤ 0 in Rn

∆u = 0 in {u > φ},

which corresponds to the obstacle problem.

Physics and biology: Interacting particle systems

Large systems of interacting particles appear in physics (electrons), biology (individuals of a
species) and material sciences, among others.

In those models, the particles repel each other when they are close, and they either attract
each other when they are far, or there is a confining potential that forces them to be in a bounded
region. For example, in the case of electrons in a potential well, the equilibrium configuration
corresponds to the electrons being uniformly distributed in a region of space. Here, the electric
potential generated by the electrons solves an obstacle problem with an obstacle that depends
on the external potential, and the region where they accumulate corresponds to the contact
set.
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Engineering: Dam problem

The dam problem describes the filtration of water across a thick dam separating two water
reservoirs with different heights. Inside the dam, there is a dry part, and a wet part where
water flows across. In this problem, the free boundary is the interface between the dry and the
wet parts, and the quantity that solves the obstacle problem is the integral of the pressure in
the vertical direction.

Finance: American options

An American option is a contract that lets the holder buy a stock for a fixed price before a
deadline T > 0. Thus, computing the rational price for this contract is an optimal stopping
problem with a deadline. By a similar reasoning to our optimal stopping example, we find that
this price u(x, t) solves an obstacle problem for a backwards-in-time diffusion equation. Note
that in this example, the presence of a deadline makes the problem non-equilibrium, and thus
parabolic, in contrast to the optimal stopping problem with no deadline, that is elliptic.

Regularity theory and generalizations
In free boundary problems, the main regularity questions are:

• What is the optimal regularity of solutions?

• What is the regularity of the free boundary?

In general, understanding the regularity of the free boundary, which is just the zero set of a
function, is a much harder problem than determining the regularity of solutions. However, in
some cases the answers to both questions are intertwined. For example, to obtain the optimal
regularity for the solutions of the thin obstacle problem, a careful study of the free boundary
is needed.

The classical obstacle problem
In the obstacle problem, the regularity of solutions was studied in the 60s and early 70s in
[145, 156, 109, 31], where it was shown that solutions are C1,1. Then, the first general result
for free boundaries was proved by Kinderlehrer and Nirenberg [130], who showed that if the
free boundary is C1, it is C∞ by a perturbative argument. The gap was closed by Caffarelli in
his breakthrough work of 1977, [34], where he proved that the free boundary splits into regular
points, where it is C1,α, and singular points, where the contact set has zero density.

Existence and uniqueness

Existence and uniqueness of solutions follows by the direct method of the calculus of variations,
using the fact that the solution to the obstacle problem

u ≥ φ in Ω
∆u ≤ 1 in Ω
∆u = 1 in {u > φ}.
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is the minimizer of the convex functional
ˆ

|∇u|2

2 + u

over the closed set
{v ∈ H1(Ω) : v ≥ φ, v|∂Ω = g}.

A similar reasoning also works for the different reformulations of the problem, and it is
standard to show that they are all equivalent. An alternative approach, that we will not
discuss here, can be accomplished using viscosity solutions.

Optimal regularity

From now on, since regularity is a local property, we will focus on solutions defined in the unit
ball B1, with the formulation 

∆u = fχ{u>0} in B1
u ≥ 0 in B1
u = g on ∂B1,

(3)

with f ≥ c0 > 0. We will assume that f is smooth for simplicity.
First, it is clear that u /∈ C2 because ∆u is discontinuous across the free boundary. Then,

by Calderón-Zygmund estimates, since the right-hand side is bounded, it belongs to Lp, and
then u ∈ W 2,p for all p ≥ 1, which embeds into C1,α for all α ∈ (0, 1). In fact, one can say a
bit more: the optimal regularity of the solutions is C1,1, see for example [97].

Theorem. Let u be a solution to the obstacle problem (3). Then,

∥u∥C1,1(B1/2) ≤ C(∥u∥L∞(B1) + ∥f∥C0,1(B1)),

where C depends only on the dimension.

The first step to prove the optimal regularity is obtaining the following upper bound on the
growth of solutions near the free boundary, which is done by a comparison argument with a
barrier.

Lemma. Let u be a solution to the obstacle problem (3). Then, for any free boundary point
x0 ∈ ∂{u > 0} ∩B1/2, and all r ∈ (0, 1

4),

sup
Br(x0)

u ≤ Cr2,

where C depends only on the dimension and ∥f∥C0,1(B1).

Then, the proof goes roughly as follows. For any point x ∈ {u > 0}, let x0 be the closest free
boundary point, and let r = |x− x0|. Then,

∥D2u∥L∞(Br/4(x)) ≤ Cr−2∥u∥L∞(Br/2(x)) ≤ Cr−2∥u∥L∞(Br(x0)) ≤ C,

and then D2u ∈ L∞ as we wanted.
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Nondegeneracy

The counterpart to the growth upper bound that gives the optimal regularity is the following
lower bound, that is also obtained with a barrier argument.

Proposition. Let u be a solution to the obstacle problem (3). Then, for any free boundary
point x0 ∈ ∂{u > 0} ∩B1/2, and all r ∈ (0, 1

4),

sup
Br(x0)

u ≥ cc0r
2 > 0,

where c depends only on the dimension.

Here is where the assumption f ≥ c0 becomes important. Combining the nondegeneracy
with the optimal regularity, we obtain that ∥u∥L∞(Br(x0)) is comparable to r2. That will allow
us to perform blow-ups.

Blow-ups

Blow-ups are an idea that comes from minimal surfaces, that consists in zooming in at a point
of a set and taking the limit. If the set is a smooth surface, the limit will be flat. The idea is to
see that, when the limit is flat, the set had originally some kind of smoothness. In the setting
of the obstacle problem, let x0 ∈ B1/2 be a free boundary point, and define

ur(x) := u(x0 + rx)
r2 .

By the optimal regularity, {ur} is bounded in C1,1, and then by Arzelà-Ascoli we can extract
a subsequence such that urk

→ u0 in C1,α. Moreover, by the nondegeneracy, we have that
∥ur∥L∞(B1) ≥ cc0, and therefore ∥u0∥ ≥ cc0. The function u0 is called a blow-up of u at the
point x0. Note that the blow-up does not need to be unique.

Classification of blow-ups

By construction, a blow-up u0 is a global solution to the obstacle problem

∆u0 = f(x0)χ{u0>0}.

Let us assume f(x0) = 1. Furthermore, besides freezing the right-hand side by zooming in, blow-
ups satisfy two extra conditions that are crucial in classifying them: convexity and homogeneity.

The convexity is based in the following idea: D2u0 is harmonic in {u0 > 0} and 0-homogeneous.
Moreover, D2u0 ≥ 0 in {u0 = 0} because u0 ≥ 0. Then, by the maximum principle, D2u0 must
be nonnegative everywhere. Proving that u0 is homogeneous of degree 2 is more involved, and
the usual proofs rely on the Weiss monotonicity formula.

Thanks to convexity and homogeneity, one can arrive at the following classification result.

Theorem. Let u be a solution to the obstacle problem (3), and let u0 be a blow-up of u at
x0 ∈ ∂{u > 0} ∩B1/2. Then,

• Either
u0 = 1

2(x · e)2
+,

for some unit vector e.
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• Or
u0 = 1

2x
⊤Ax,

for some positive semidefinite matrix A with TrA = 1.

Regular and singular points

We say that a point x0 in the free boundary is regular if there is a blow-up sequence that yields
a blow-up of the first type. Otherwise we say the point is singular. Furthermore, we have the
following characterization of regular and singular points.

Proposition. Let u be a solution to the obstacle problem (3). Then, a free boundary point
x0 ∈ ∂{u > 0} ∩B1/2 is regular if and only if

lim sup
r→0

|{u = 0} ∩Br(x0)|
|Br|

> 0,

and singular if and only if the contact set has density zero.

This result, combined with the classification of blow-ups, is often referred to as the Caffarelli
dichotomy.

Regular points

At regular points, the blow-up has a half-space as contact set, and a hyperplane as free bound-
ary. Using this information, one can arrive at the following.

Theorem. Let u be a solution to the obstacle problem (3). Then, the set of regular free boundary
points is an open subset of ∂{u > 0}, and it is locally a C∞ manifold.

The proof of this fact can be organized in three steps:

• Proving that the free boundary is a flat Lipschitz graph.

• Flat Lipschitz implies C1,α.

• Bootstrapping from C1,α to C∞.

Here we will explain in more detail the first step. The rest can be done using the boundary
Harnack and higher order boundary Harnack, see Introduction to Part II.

The key observation here is that, since ur converges to u0 = 1
2(x · e)2

+ in C1,α norm, at small
scales

∥∂τur(x) − (τ · e)(x · e)+∥L∞(B1) < ε,

and then, for any τ such that τ · e > δ,

∂τur(x) > δ(x · e)+ − ε,

which combined with the fact that ∂τur ≡ 0 on {ur = 0}, and

∆(∂τur) = r(∂τf)(x0 + r·),
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allow us to use an almost positivity property12 to deduce that ∂τur ≥ 0 in B1/2 for δ ≫ ε and
sufficiently small r.

This monotonicity of u in the τ directions for the cone {τ · e > δ} implies that the free
boundary is a Lipschitz graph in the e direction, with a Lipschitz constant that we can choose
as small as we want making δ → 0.

Thin obstacle problem
The thin obstacle problem arises when we consider the minimization of the Dirichlet energy
with a lower dimensional obstacle. It is also called Signorini problem for its connection with the
problem of determining the shape of an elastic body resting on a surface. For a nice introduction
to the topic, see [91].

The solutions to the minimization problem

min
ˆ

Ω

|∇u|2

2
over the set {

v ∈ H1(Ω) : v ≥ 0 on {xn+1 = 0}, v|∂Ω = g
}

satisfy the following equation{
∆u = 0 in B+

1
min{u,−∂xn+1u} = 0 on B1 ∩ {xn+1 = 0}. (4)

Alternatively, we study the problem posed in the whole unit ball B1 ⊂ Rn+1 (extending by
even symmetry) as

∆u = 0 in B1 \ {xn+1 = 0}
min{u,−∆u} = 0 on B1 ∩ {xn+1 = 0}

u(x′, xn+1) = u(x′,−xn+1) in B1,

where now ∆u needs to be understood in the sense of distributions. Since the obstacle is lower
dimensional, we define the free boundary to be the boundary of the contact set in the relative
topology of the hyperplane, ∂{u|{xn+1=0} > φ} × {0}.

For the Signorini problem, the optimal regularity of solutions is Lipschitz across {xn+1 = 0},
and C1,1/2 on each side [7]. As in the thick obstacle problem, blow-ups are a key tool to
understand the free boundary. However, here the distinction of regular and singular points is
not based on the size of the contact set, but rather on the homogeneity of the blow-ups.

Theorem ([91, Theorem 4.4]). Let u be a solution to the thin obstacle problem (4), and assume
the origin is a free boundary point. Then,

ur(x) := ur(x0 + rx)
∥u∥L2(∂Br)

→ u0

up to subsequences, where u0 is a global homogeneous solution to the thin obstacle problem with
homogeneity degree λ. Moreover, either λ = 3

2 or λ ≥ 2.
12An almost positivity property is related to the mean value property. It roughly says that if a harmonic

function is positive and big in a big enough subset of B1, and bounded below by a small negative constant in
the whole B1, then it has to be nonnegative in B1/2.
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In this setting, when λ = 3
2 we call the point regular, and when λ ≥ 2 we call it degenerate.

We also have that the free boundary is locally C∞ near regular points.
When the thin obstacle problem is posed in the full space, if we restrict to the hyperplane

{xn+1 = 0}, u solves an obstacle problem for the nonlocal operator (−∆)1/2. This connection
is particularly useful to use tools from the thin obstacle problem, which is driven by a local
differential operator, to study the fractional obstacle problem.

Fully nonlinear obstacle problem
When replacing the Laplacian by a fully nonlinear elliptic operator, the different formulations
of the obstacle problem stop being completely equivalent. The following one was studied by
Lee in [143]. 

F (D2v) ≤ 0
v ≥ φ

F (D2v) = 0 in {v > φ},

where F and φ are smooth, F (D2φ) ≤ −c0 < 0, and F is uniformly elliptic, which in this
setting means

λ∥N∥ ≤ F (M +N) − F (M) ≤ Λ∥N∥,

for some 0 < λ ≤ Λ, and any symmetric matrices M and N ≥ 0. Then, under these hypotheses,
v ∈ C1,1 and the free boundary is C1,α at regular points.

More generally, one can study problems of the formF (D2u, x) = fχ{u>0}

u ≥ 0.

This fully nonlinear obstacle problem (and more general ones without the sign condition on u)
has been studied by Lee, Shahgholian, Figalli, and more recently by Indrei and Minne in
[144, 105, 120]. They proved that if F is convex, f is Lipschitz and f ≥ τ0 > 0, the free
boundary is C1 at regular points.

Moreover, there is also a fully nonlinear version of the Signorini problem [152, 90, 168].

Obstacle problems for nonlocal operators
The obstacle problem can be generalized to integro-differential operators as

min{Lu, u− φ} = 0 in Rn,

where L is of the form
Lu(x) =

ˆ
Rn

(
u(x) − u(x+ y)

)
K(y)dy, (5)

where K is even, homogeneous, and satisfies the uniform ellipticity condition

λ|y|−n−2s ≤ K(y) ≤ Λ|y|−n−2s. (6)

In this setting, we have the following dichotomy [46].

36



Theorem. Let u be a global solution to min{Lu, u − φ} = 0, with φ ∈ C∞. Let x0 be a point
in the free boundary ∂{u > φ}. Then,

• Either
0 < cr1+s ≤ ∥u− φ∥L∞(Br(x0)) ≤ Cr1+s,

• Or
∥u− φ∥L∞(Br(x0)) ≤ Cr1+s+α,

for some α > 0.
The points that satisfy the first condition are called regular, they form an open subset of the
free boundary, and the free boundary is locally a C1,α manifold around them.

Obstacle problems for elliptic integro-differential equations were studied first for the fractional
Laplacian, and they were one of the main motivations for the development of the Caffarelli-
Silvestre extension [49, 48, 185]. The obstacle problem for L = (−∆)s can be seen as a
generalization of the thin obstacle problem, that corresponds to the case s = 1

2 , and moreover
one can recover some results in the classical case taking the limit s → 1.

The fractional Laplacian is special in the sense that one can use the extension to convert the
nonlocal problem into another local problem, and use techniques from the world of local elliptic
equations. To extend the regularity results to a wider class of integro-differential operators,
completely new ideas were needed. The foundational result in this area is due to Caffareli, Ros-
Oton and Serra, where they extend the known regularity results for the fractional Laplacian to
a wide class of integro-differential obstacle problems [46].

Finally, the higher regularity of free boundaries has also been studied, concluding that they
are C∞ near regular points when the obstacle and the kernel of the operator are also smooth [1].

Parabolic obstacle problems
We consider now the version of the parabolic obstacle problem where solutions are nondecreas-
ing in time, that is, the one that arises from the Stefan problem:

ut − ∆u = χ{u>0} in Ω × (0,∞)
u ≥ 0
ut ≥ 0.

The known regularity results mirror the ones for the classical obstacle problem. The optimal
regularity of solutions, C1,1 in space and C1 in time, was investigated by Brezis and Kinderlehrer
[31], and Caffarelli and Friedman [43]. The regularity of free boundaries was studied in parallel
to the one of the elliptic problem by Kinderlehrer, Nirenberg, and Caffarelli [130, 34].

If we drop the assumptions of u ≥ 0 and ut ≥ 0, we have the no-sign parabolic obstacle
problem,

∂tu− ∆u = fχ{u̸=0},

that has been researched in [44] and [4].
The parabolic Signorini problem was extensively studied by Danielli, Garofalo, Petrosyan

and To in [69], where they established the optimal regularity of solutions and studied the free
boundary. Further results include higher regularity of free boundaries [14], and obstacles with
lower regularity [162].

Parabolic obstacle problems have also been studied for fully nonlinear operators [106, 120, 12].
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Nonlocal parabolic obstacle problems

As in the local case, the model parabolic obstacle problem for integro-differential equations
has some extra properties coming, in this case, from its motivation by the pricing of American
options. We study the problem{

min{∂tu+ Lu, u− φ} = 0 in Rn × (0, T )
u(·, 0) = φ in Rn,

for nonlocal operators of the form (5)-(6).
The character of nonlocal parabolic equations depends crucially on the order of differentiation

of the diffusion operator, 2s. In the subcritical case, 2s > 1, the highest order operator is the
nonlocal one, while in the critical case 2s = 1 there is a competition between L and ∂t, and in
the supercritical case 2s < 1 the time derivative has the highest order of differentiation.

These differences of orders of differentiation have a profound impact when performing blow-
ups. In the subcritical case, blow-ups produce global solutions of the elliptic problem, the same
that happens with local parabolic equations. In the critical case, blow-ups are hyperbolic, which
makes them much more delicate, and in the supercritical case there is no known meaningful
notion of blow-up.

The regularity of solutions for L = (−∆)s was studied by Caffarelli and Figalli in [42].
Then, the regularity of free boundaries was adressed by Barrios, Figalli and Ros-Oton in the
subcritical regime [19]. Finally, Figalli, Ros-Oton and Serra extended the results of [19] to the
critical setting in the very recent paper [104].

We deal with the supercritical case in Chapter 1 of this Thesis.

Singular and degenerate points
Obstacle problem

In the obstacle problem, singular points are those where the contact set has zero density. A
first (nontrivial) question is whether they exist. The answer is yes, and the first examples were
constructed by Schaeffer in [177], where he constructed solutions to the obstacle problem where
the free boundary has cusps. The questions were then, how big the singular set could be, and
if there were other kinds of singularities.

The first advances were in R2, where Caffarelli and Rivière proved that the singular set is
contained in a C1 curve [45]. Then, Sakai proved that the only singularities that may appear
are isolated cusps that look like the ones constructed by Schaeffer, taking advantage of complex
analysis [171, 172].

In higher dimensions, Caffarelli first proved that the blow-up is unique at singular points,
and moreover, if x0 is a singular point,

u(x0 + x) = px0(x) + o(|x|2),

where px0 is a homogeneous quadratic polynomial satisfying ∆px0 = 1 and px0 ≥ 0 [36]. As a
consequence, he showed that the singular set is locally contained in a (n − 1)-dimensional C1

manifold. This dimensional bound is sharp, since there are examples where the singular set has
the same dimension as the full free boundary [177].
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Since the blow-up is unique, one can stratify the singular points in terms of the dimension of
the linear space {px0(x) = 0}. Then, we can write Σ = ⋃Σk, where Σ is the set of singular free
boundary points, and Σk are those whose blow-up has a k-dimensional zero set. Then, each of
the strata Σk are locally contained in a k-dimensional C1 manifold.

Generic regularity

Since the free boundary has dimension n − 1 and there are examples where the singular set
matches that dimension, the next question is how often can this happen. Schaeffer conjectured
that, generically, the free boundary in the obstacle problem is smooth [176].

To prove a generic regularity result, we need to give it a precise mathematical meaning. A
convenient approach is to consider one-parameter families of solutions {uλ}, and to say that a
property is generically true if it holds for almost every λ, for all such families.

In the context of free boundary problems, this has been done considering families of solutions
that are monotone, with the simplest example being taking gλ = g + λ as boundary datum.
With this construction, Monneau proved the Schaeffer conjecture in R2 [154]. This result was
extended to R3 and R4 by Figalli, Ros-Oton and Serra [102].

Thin obstacle problem

In the thin obstacle problem13, recall that free boundary points have an associated frequency
(homogeneity degree) λ, and are classified into regular points when λ = 3

2 , and degenerate
points when λ ≥ 2.

The first step towards understanding singular points is classifying global homogeneous solu-
tions in dimension n + 1 = 2, which can be done explicitly. We find that the solutions have
homogeneities belonging to the set

S =
{

2m− 1
2 , 2m, 2m+ 1

}
, (7)

where m are positive integers. When λ = 2m, solutions are harmonic polynomials, nonnegative
on {x2 = 0}, and otherwise they are of the form

Re
(
(x1 + i|x2|)2m− 1

2
)
, and Im

(
(x1 + i|x2|)2m+1

)
.

Points with even frequency are called singular because the contact set has zero density at
them, as it happens in the obstacle problem. They were extensively studied by Garofalo and
Petrosyan in [110], where they proved that the blow-up is unique, and hence the singular set
can be covered by a countable union of (n− 1)-dimensional C1 manifolds.

When the homogeneity of a point belongs to the set {7
2 ,

11
2 , . . .}, it is expected that the free

boundary behaves similarly to around regular points, but much less is actually known.
The set of points with odd frequency can be characterized as points where the contact set

has density one. They have been studied in [107, 102], among other works, but they are not
known to exist as free boundary points: the only known examples are global solutions where
the contact set is the full thin space. If they exist, the blow-up is unique and the set can also
be covered by a countable union of (n− 1)-dimensional C1 manifolds.

13In this section we assume the obstacle to be analytic.
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Finally, the set of points whose homogeneity does not belong to S is expected to be empty.
The only result in this direction is [65], due to Colombo, Velichkov and Spolaor, where they
prove that even frequencies are isolated, that is, for every m ∈ Z+, there exists cm > 0 such
that there are no points whose frequency is in (2m− cm, 2m) ∪ (2m, 2m+ cm).

Results of the thesis (Part I)
The first part of this Thesis is a collection of results on regularity theory for obstacle problems.
Chapter 1 deals with nonlocal parabolic obstacle problems, whereas Chapter 2 is about the thin
obstacle problem. Finally, in Chapter 3 we prove estimates for elliptic and parabolic nonlocal
equations, with applications in obstacle-type problems.

Optimal regularity for supercritical parabolic obstacle problems
Chapter 1 is devoted to the study of the regularity of solutions and free boundaries in the
supercritical parabolic obstacle problem. We consider integro-differential operators of the form
(5)-(6), with s ∈ (0, 1

2). Recall that 2s < 1 is what makes the problem supercritical.
Our first main result is the optimal C1,1 regularity of solutions:

Theorem. Let u be a solution to{
min{∂tu+ Lu, u− φ} = 0 in Rn × (0, T )

u(·, 0) = φ in Rn,

where the operator L is of the form (5)-(6), and φ ∈ C2,1
c (Rn).

Then, u is Lipschitz in Rn × [0, T ] and

u ∈ C1,1(Rn × (0, T ]),

i.e., the solution u is globally14 C1,1 in x and t.
Our result is surprising because the optimal regularity for the parabolic obstacle problem is

higher than the optimal C1,s regularity of solutions in the elliptic setting [46]. This happens
because, since the initial condition is equal to the obstacle, the solution is always increasing,
and u can never be stationary and behave like in the elliptic problem. Nevertheless, as t → ∞,
u converges to a solution to the elliptic problem, and hence we cannot expect the C1,1 estimates
to be uniform in T .

The strategy of the proof is very different not only to the studies on the subcritical and
critical cases, [19, 104], but to the majority of existing literature on free boundary problems.
Due to the supercritical scaling, blow-ups are ineffective. Instead, our proof is based on the fact
that ∂t is higher order with respect to L, barriers and scaling arguments. Moreover, we do not
use any monotonicity formulas, making the techniques applicable to a broad class of operators.

The second main result is the global C1,α regularity of the free boundary as a space-time
graph.
Theorem. In the setting of the previous Theorem,

• The free boundary ∂{u > φ} is a C1,α graph in the t direction, i.e.

∂{u > φ} = {t = Γ(x)},

with Γ ∈ C1,α and α > 0.
14Here we mean that for all t0 > 0, u ∈ C1,1(Rn × [t0, T ]).
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• If (x0, t0) is a free boundary point, the solution admits an expansion

(u− φ)(x0 + x, t0 + t) = c0(t− a · x)2
+ +O(t2+α + |x|2+α),

where c0 > 0, α > 0 and a ∈ Rn.

In the supercritical setting, the regularity of the free boundary is quite a direct consequence
of the optimal regularity of the solution. Moreover, an expansion of the same form for all free
boundary points is a very uncommon result in the context of obstacle problems, where regular
and singular points are usually classified based on their different behaviours at leading order.

In contrast, we can define singular points as the points (x0, t0) such that a = 0 in the
expansion, meaning that the normal vector to the free boundary points in the time direction,
and regular points as the rest. As a consequence, we obtain the following generic regularity
result.

Theorem. In the setting of the previous Theorem,

• The set of regular free boundary points is an open subset of ∂{u > φ}.

• If (x0, t0) is a regular free boundary point, the free boundary ∂{u > φ} is locally a C1,α

graph in the xi direction for some i ∈ {1, . . . , n}, i.e.

∂{u > φ} ∩Br(x0, t0) = {xi = F (x1, . . . , xi−1, xi+1, . . . , xn, t)},

with F ∈ C1,α, α > 0 and r > 0.

• Let Σt be the set of singular free boundary points (x0, t0) with t0 = t. Then,

Hn−1(Σt) = 0 for almost every t ∈ (0, T ).

The key points in the proofs are the following. Note that the fact that 2s < 1 is used several
times.

• By comparison principle arguments, D2u ≥ −C and |∇u| ≤ C.

• Since u ∈ C0,1, ut = (Lu)−. Hence ut ∈ C0,α with α = 1 − 2s > 0.

• By the elliptic techniques in [46], and heat kernel estimates, knowing that ut is continuous
is enough to prove u ∈ C1.

• From u ∈ C1, it follows that ut is a solution to the Dirichlet problem for the parabolic
equation (∂t + L)ut = 0 in the set {u > φ}.

• By a continuity argument and an almost positivity property, |∇u| ≤ Cut in Rn × [t1, t2]
for all time intervals. It follows that the free boundary is a Lipschitz graph {t = Γ(x)}.

• By barriers in cones, we obtain that ut grows linearly at the free boundary:

0 < c0(t− t0) ≤ ut(x0, t) ≤ M(t− t0),

where (x0, t0) is a free boundary point. The fact that 2s < 1 is crucial here.
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• Then, using the fact that |∇u| ≤ Cut, if ν is an unit vector close to the time direction,

uν((x0, t0) + rν) ≤ 2Mr.

• It follows that
uνν ≤ C in Rn × [t1, t2],

by an L1-L∞ interior estimate.

• By the semiconvexity of u and linear algebra, |D2u| ≤ C.

• Since ut = (Lu)−, ut ∈ C1,α. Here we use supercriticality again.

• Hence, utt, uti ∈ C0,α. On the other hand, utt ≥ c0 > 0, and therefore

n̂ = (ut1, . . . , utn, utt)√
u2

tt +
n∑

j=1
u2

tj

= (ut1/utt, . . . , utn/utt, 1)√
1 +

n∑
j=1

u2
tj/u

2
tt

∈ C0,α,

where n̂ is the normal vector to the level sets of ut.

• Since the free boundary coincides with the zero level set of ut, the free boundary is C1,α.

Generic regularity of free boundaries for the thin obstacle problem
In Chapter 2 we study generic regularity properties for the Signorini problem. Our main result
establishes that the degenerate set has zero Hn−3−α0 measure for a generic solution. As a
consequence, we obtain that, for n+ 1 ≤ 4, the free boundary is generically smooth.

The notion of genericity studied here is based on monotone families of solutions. We consider
u : B1 × [−1, 1] → R to be such that u(·, t) is a solution to the thin obstacle problem (4) for
each t ∈ [−1, 1] and

u(·, t′) − u(·, t) ≥ 0 in B1
u(·, t′) − u(·, t) ≥ t′ − t on ∂B1 ∩ {|xn+1| ≥ 1

2}
∥u(·, t)∥C0,1(B1) ≤ 1,

(8)

for all −1 ≤ t < t′ ≤ 1.

Theorem. Let u : B1 × [−1, 1] → R be a solution to (4)-(8). Then, for almost every t ∈ [−1, 1],

(a) If n ≤ 3, Deg(u(·, t)) = ∅.

(b) If n ≥ 4, dimH(Deg(u(·, t))) ≤ n − 3 − α◦, for some α◦ > 0 depending only on n, where
dimH denotes the Hausdorff dimension.

Here, Deg(u(·, t)) denotes the degenerate set for the solution u(·, t). Recall that the free
boundary is C∞ outside of it. As a corollary, we deduce an analogue to a conjecture of Schaeffer
for the obstacle problem in R3 and R4. This was already known in R2 [96].

Theorem. Let n+1 ≤ 4. Then, generically, the free boundary in the thin obstacle problem (4)
is smooth.
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The proof follows the strategy of the generic regularity in the thick obstacle problem by
Figalli, Ros-Oton and Serra [102], together with a fine analysis of solutions near degenerate
points combining some very recent works, [65, 96, 93, 175], and new ideas.

First, we stratify the degenerate set into subsets of different frequencies

Deg(u) = Γo
2(u) ∪ Γa

2(u) ∪ Γ3(u) ∪ Γ≥7/2(u) ∪ Γ∗(u),

where Γκ denotes the set of free boundary points with frequency κ, and Γ∗ denotes the points
whose frequency does not belong to the set S defined in (7).

In the case of Γ2, we further divide the set into ordinary and anomalous quadratic points,
depending on the homogeneity of the second leading order in the expansion, as follows.

If x0 is a free boundary point with frequency 2 and p2 is the blow-up at that point, then
u(x0 + ·) − p2 can be approximated at the leading order by a homogeneous harmonic polynomial
of degree λ ≥ 2. In this work we call ordinary quadratic points to those with λ ≥ 3, and
anomalous quadratic points to those with λ = 2.

Now, for each of these sets we perform a dimension reduction argument to estimate
their maximum possible size. The argument is based on an original idea of Federer [88] (in the
context of minimal surfaces), and, at a high level, works as follows. Suppose that in dimension
k all solutions to a problem with good compactness properties are smooth. Then, in dimension
n we can see that the set of singular points has dimension at most n − k − 1. Indeed, if
the dimension of the singular set was higher, there would exist a point where the singular set
accumulates in n− k linearly independent directions. Then, by zooming in, we could construct
another solution that is independent of those directions and has a singular point, and therefore,
could be identified with a solution in dimension k with a singular point, a contradiction. This
idea can be adapted to prove that the points do not belong to a particular subset Γκ, and, more
importantly, this approach is applicable to a monotone family of solutions rather than just a
single solution.

The final ingredient is the following geometric measure theory result that we call the cleaning
lemma.

Lemma ([102, Corollary 7.8]). Consider the family {Et}t∈[−1,1] with Et ⊂ Rn, and let us denote
E := ⋃

t∈[−1,1]
Et.

Let 1 ≤ β ≤ n, and assume that the following holds:

• dimH E ≤ β,

• for all ε > 0, t0 ∈ [−1, 1], and x0 ∈ Et0, there exists ρ > 0 such that

Br(x0) ∩ Et = ∅,

for all r ∈ (0, ρ) and t > t0 + rγ−ε.

Then,

(a) If γ > β, dimH({t : Et ̸= ∅}) ≤ β/γ.

(b) If γ ≤ β, dimH(Et) ≤ β − γ, for H1-a.e. t ∈ [−1, 1].
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To apply this lemma, we compute expansions of solutions at free boundary points, and use
the monotonicity of the family and the comparison principle to deduce that if x0 is a free
boundary point of u(·, t0), there exists some r0 > 0 such that u is positive (or identically zero,
depending on the case) in one of the following sets:

{x ∈ Br0 : |x− x0|γ < t− t0} or {x ∈ Br0 : |x− x0|γ < t0 − t},

and hence there are no other free boundary points there. The cleaning exponent γ depends on
the subset of the free boundary considered.

Finally, applying the cleaning lemma we obtain dimensional bounds on each of the degen-
erate strata. For n ≥ 4, the situation can be summarized as follows, where α, γ ∈ (0, 1) are
dimensional constants, and ε > 0 is an arbitrarily small number.

Set dimH ∪tΓ Cleaning exponent Generic dimH Γ
Γo

2 n− 1 3 − ε n− 4
Γa

2 n− 2 2 − ε n− 4
Γ3 n− 1 2 + γ n− 3 − γ

Γ≥7/2 n− 1 5/2 − ε n− 7/2
Γ∗ n− 2 1 + α n− 3 − α

Table 1: Intermediate results obtained for each subset of the free boundary.

For n = 2 and n = 3, the conclusion is that, generically, the free boundary contains no
degenerate points.

Semiconvexity estimates for nonlinear integro-differential equations
Chapter 3 develops a nonlocal analogue to the Bernstein technique to establish semiconvexity
estimates for local solutions to general integro-differential equations. Our main applications
are elaborating a regularity theory for nonlocal obstacle problems in domains with operators
that do not admit an extension, and proving for the first time local semiconvexity estimates
for fully nonlinear nonlocal equations. This work answers a question posed by Cabré, Dipierro
and Valdinoci in [33]. Finally, we also extend the Bernstein technique to parabolic equations
and nonsymmetric operators.

We consider integro-differential operators of the form (5)-(6) with the smoothness conditions

|∇K(y)| ≤ Λ|y|−1K(y), |D2K(y)| ≤ Λ|y|−2K(y),

and we denote this class of operators by Ls(λ,Λ; 2).
The application that originally motivated this project are nonlocal obstacle problems in

domains, for which we establish local semiconvexity estimates.

Theorem. Let s ∈ (0, 1), L ∈ Ls(λ,Λ; 2), and u be any solution to the nonlocal obstacle
problem

min{Lu, u− φ} = 0 in B1,

44



where φ ∈ C4(Rn). Then, u satisfies

∂2
eeu ≥ −C(∥u∥L∞(Rn) + ∥Lφ∥C1,1(B1)) in B1/2

for all e ∈ Sn−1, where C depends only on s, the dimension, and ellipticity constants.

Semiconvexity is an essential tool in the study of nonlocal obstacle problems, because it
allows to deduce convexity of blow-ups and to classify them, which is a crucial step in proving
optimal regularity of solutions and free boundaries. Up to now, semiconvexity was only known
for operators with an extension, or for global solutions. Our result enables then extending the
regularity theory for nonlocal obstacle problems to problems in domains for operators that do
not admit an extension, and also to study problems where the obstacle has very low regularity,
which is new even when the domain is the full space.

Our second main application is the following estimate.

Theorem. Let s ∈ (0, 1), and let u be any viscosity solution to a fully nonlinear equation

inf
γ∈Γ

{Lγu} = 0 in B1,

where {Lγ}γ∈Γ ⊂ Ls(λ,Λ; 2). Then, u satisfies

∂2
eeu ≥ −C∥u∥L∞(Rn) in B1/2

for all e ∈ Sn−1, where C depends only on s, the dimension, and ellipticity constants.

The regularity of this kind of nonlocal Bellman equations has been an intriguing open problem
since the pioneer works of Caffarelli and Silvestre, where they proved analogues of the Evans-
Krylov and Krylov-Safonov theorems, and stated that solutions are C1,ε ∩ C2s+ε [50, 51, 52].
The higher regularity of solutions is still unknown, even when the operators Lγ have smooth
kernels. This semiconvexity result is a one-sided C1,1 estimate. It brings attention to the
question

Are solutions to nonlocal Bellman equations C1,1?
For fully nonlinear second order elliptic equations, semiconvexity implies C1,1 regularity. This

motivates asking the same question in the nonlocal case.
The Bernstein technique comes from the observation that, if u is a harmonic function, then

|∇u|2 is subharmonic. This enables the use of the maximum principle to deduce that the value
of |∇u| in a ball is bounded by its values on the boundary. With a bit more work, one can see
that the auxiliary function w = η2(∂eu)2 + σu2 is also subharmonic, for a big enough constant
σ that depends on η. If we now choose a cutoff function η ∈ C∞

c (B1) with η ≡ 1 in B1/2, by
the maximum principle we get that

∥∂eu∥2
L∞(B1/2) ≤ ∥w∥2

L∞(B1) ≤ ∥w∥2
L∞(∂B1) ≤ σ∥u∥2

L∞(∂B1),

allowing us to estimate the gradient by the L∞ norm.
In our setting, the key estimates that replace the fact that w is subharmonic in the Bernstein

technique are the following.
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Theorem. Let s ∈ (s0, 1), with s0 > 0, and L ∈ Ls(λ,Λ; 2). Let η ∈ C1,1(Rn) be such that
η ≥ 0. Then, there exists σ0 = σ0(n, s0,Λ/λ, ∥η∥C1,1(Rn)) > 0 such that for every σ ≥ σ0 and
every u ∈ C1+2s+ε

loc (Rn) ∩ L∞(Rn)

L
(
η2(∂eu)2 + σu2

)
≤ 2η2L(∂eu)∂eu+ 2σL(u)u,

L
(
η2(∂eu)2

+ + σu2
)

≤ 2η2L(∂eu)(∂eu)+ + 2σL(u)u.

To obtain second derivative estimates, we use the estimates replacing u by ∂eu and adapt the
proofs. The importance of the second inequality lies in the application to nonlinear equations,
where L(∂2

eeu) is not necessarily zero but has a sign. This is enough to get semiconvexity
estimates.

In the case of second order operators, such inequalities are more or less direct consequences
of the product rule. However, in our setting, the result is far from trivial. Our proof starts by
splitting the kernel of the operator into a singular part with compact support and a bounded
part. Taking a cutoff function ψ ∈ C∞([0,∞)) satisfying 0 ≤ ψ ≤ 1, ψ ≡ 0 in B1/2 and ψ ≡ 1
in Rn \B1, we define

K1(y) =
[
1 − ψ

(
|y|
ε

)]
K(y), K2(y) = ψ

(
|y|
ε

)
K(y).

Then, we define L1 and L2 as

L1u(x) =
ˆ
Rn

(
u(x) − u(x+ y)

)
K1(y)dy, L2u(x) =

ˆ
Rn

(
u(x) − u(x+ y)

)
K2(y)dy.

It is clear that L = L1 + L2. Then, we prove the key estimates for L1 and L2 separately, and
we combine them afterwards. In this step, a crucial observation is that, since the estimates are
pointwise, we may choose the splitting threshold ε to depend on the point x.

The inequality for L2 is proved choosing ε to be comparable to η(x), and then by elementary
methods. The inequality for L1 is the part that deals with the differential character of the
operator. To prove it, we first rewrite the key estimate

L1
(
η2(∂eu)2 + σu2

)
≤ 2η2L1(∂eu)∂eu+ 2σL1(u)u

as
L1(η2)(∂eu)2 −B1(η2, (∂eu)2) ≤ η2B1(∂eu, ∂eu) + σB1(u, u),

where B1 is the bilinear form associated to the operator L1,

B1(u, v)(x) =
ˆ
Rn

(
u(x) − u(x+ y)

)(
v(x) − v(x+ y)

)
K1(y) dy.

Now, since B1 is an integro-differential operator, the highest order of differentiation is on the
right-hand side, with the right sign. The difficulty, however, is that in the left-hand side we
have a purely pointwise term, L1(η2)(∂eu)2, whereas all the other terms are integrals. To bridge
this gap, we use the following pointwise-to-averaged interpolation inequality, that can
be applied with δ comparable to η(x) again.
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Lemma. Let s ∈ (0, 1) and δ > 0. Assume that K : Rn → [0,∞] satisfies for some 0 < λ ≤ Λ:

λ|y|−n−2s ≤ K(y) ≤ Λ|y|−n−2s ∀y ∈ Bδ,

|∇K(y)| ≤ Λ|y|−1K(y) ∀y ∈ Bδ.

Then, for every x ∈ Rn and u ∈ C0,1(Bδ(x)) it holds(
∂eu(x)

)2
≤ δ2sBK(∂eu, ∂eu)(x) + cδ2s−2BK(u, u)(x),

where BK is the bilinear form as above with kernel K, and c > 0 depends only on s, the
dimension, and ellipticity constants, but not on δ.
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Chapter 1
Optimal regularity for supercritical

parabolic obstacle problems

We study the obstacle problem for parabolic operators of the type ∂t +L, where L is an elliptic
integro-differential operator of order 2s, such as (−∆)s, in the supercritical regime s ∈ (0, 1

2).
The best result in this context was due to Caffarelli and Figalli, who established the C1,s

x

regularity of solutions for the case L = (−∆)s, the same regularity as in the elliptic setting.
Here we prove for the first time that solutions are actually more regular than in the elliptic

case. More precisely, we show that they are C1,1 in space and time, and that this is optimal.
We also deduce the C1,α regularity of the free boundary. Moreover, at all free boundary points
(x0, t0), we establish the following expansion:

(u− φ)(x0 + x, t0 + t) = c0(t− a · x)2
+ +O(t2+α + |x|2+α),

with c0 > 0, α > 0 and a ∈ Rn.

1.1 Introduction
The aim of this paper is to study the parabolic obstacle problem{

min{∂tu+ Lu, u− φ} = 0 in Rn × (0, T )
u(·, 0) = φ in Rn,

(1.1)

for nonlocal operators of the form

Lu(x) =
ˆ
Rn

(
u(x) − u(x+ y)

)
K(y)dy. (1.2)

The kernel K is even and satisfies the uniform ellipticity condition

λ|y|−n−2s ≤ K(y) ≤ Λ|y|−n−2s, K(y) = K(−y), (1.3)

for some 0 < λ ≤ Λ and s ∈ (0, 1). We define the contact set {u = φ} and the free boundary
∂{u > φ}.
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We are mostly interested on studying the supercritical case, s ∈ (0, 1
2), in which the higher

order term is the time derivative instead of the diffussion term. This will give rise to a somewhat
unusual approach to the problem, as well as some surprising results.

Nonlocal operators arise naturally when one considers jump-diffussion processes. One of the
most classical motivations is the modelling of stock prices, because the nonlocality takes into
account the possible large fluctuations of the market. In the trading of options on financial
markets, the valuation of American options is an optimal stopping problem. Thus, when the
underlying asset price follows a jump-diffussion process, we are led naturally to the parabolic
obstacle problem (1.1); see [66, 42] for details. These models were first introduced in the 1970s
by Nobel prize winner R. Merton [151], and have been used for many years [178, 66, 157].

1.1.1 The elliptic case
From the mathematical point of view, elliptic and parabolic equations involving jump-diffussion
operators have been an active and successful field of research in the past two decades, coming
from PDE and from Probability.

The first nonlocal operator of this type to be studied was the fractional Laplacian,

(−∆)su(x) = cn,s

ˆ
Rn

u(x) − u(x+ y)
|y|n+2s

dy,

and problems involving it can be treated as lower-dimensional problems for local operators via
the Caffarelli-Silvestre extension1 [49].

The elliptic obstacle problem,

min{Lu, u− φ} = 0 in Ω,

was studied for the case of L = (−∆)s by Caffarelli, Salsa and Silvestre using the extension and
local arguments in [48]. Using a new Almgren-type monotonicity formula, they established the
optimal C1,s regularity of solutions. Furthermore, they proved the following dichotomy at the
free boundary points:

• Either x0 is a regular free boundary point, and

cr1+s ≤ sup
Br(x0)

(u− φ) ≤ Cr1+s ∀r ∈ (0, r0),

where c > 0.

• Or, if x0 is not regular, it is called singular and then

0 ≤ sup
Br(x0)

(u− φ) ≤ Cr2 ∀r ∈ (0, r0).

Moreover, they also proved that the regular points are an open subset of the free boundary and
that they are locally a C1,α manifold.

1Actually, the paper [49] was motivated by the study of the fractional obstacle problem in [48, 185].
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It is important to notice that, in contrast with the classical case s = 1, there is no nonde-
generacy property of the solutions, i.e. at singular points we may have sup

Br(x0)
(u− φ) ≍ rk with

k ≫ 1.
The regularity of the free boundary and related questions have been widely investigated in

the recent years by several authors. See [110, 20, 107, 65, 93, 175] for more information on the
singular points, [133, 72, 123, 134] for higher regularity of the free boundaries, [46, 1] for more
general elliptic operators and [159, 111, 95, 139] for operators with drift.

1.1.2 The parabolic case
Much less is known about the parabolic case (1.1). Notice that the problem now depends
strongly on the value of s: in the subcritical case s ∈ (1

2 , 1), the higher order term is the
nonlocal operator, in the critical case s = 1

2 , both ∂t and L are of order one, and in the
supercritical case s ∈ (0, 1

2), the higher order term is the time derivative.
The first result in this direction was the regularity of the solutions in the case L = (−∆)s due

to Caffarelli and Figalli [42], where they established the C1,s regularity in x for all s ∈ (0, 1), and
conjectured it to be optimal. They also established the C1,β regularity in t, with β = 1−s

2s
− 0+

when s ≥ 1/3, and that ut is log-Lipschitz in t when s < 1/3. Their proof uses crucially the
extension problem for the fractional Laplacian and the C1,s

x regularity is established by using a
new monotonicity formula for such problem.

Then, the regularity of the free boundary near regular points was established in the sub-
critical case, s ∈ (1

2 , 1), by Barrios, Figalli and the first author in [19], where they establish a
dichotomy for the free boundary points completely analogous to the elliptic case (in particular,
C1,s

x regularity is optimal). One the main difficulties in [19] was to establish a classification of
blow-ups in a context where Almgren-type monotonicity formulas are not available.

More recently, Borrin and Marcon established the quasi-optimal regularity of solutions for
the subcritical case, s ∈ (1

2 , 1), for a more general equation allowing lower order terms [29].
Despite these developments, in the supercritical case s ∈ (0, 1

2) the only known result was
the regularity of the solutions for the fractional Laplacian proved in [42]. Quite surprisingly,
we prove here that this was not optimal, and that solutions are C1,1 in x and t.

1.1.3 Main results
Our main results are the following. We first establish the optimal regularity of the solutions.

Theorem 1.1.1. Let n ≥ 2 and s ∈ (0, 1
2), and let u be the solution of (1.1) with L an operator

satisfying (1.2) and (1.3), and φ ∈ C2,1
c (Rn).

Then, u is Lipschitz in Rn × [0, T ] and

u ∈ C1,1(Rn × (0, T ]),

i.e., the solution u is globally2 C1,1 in x and t.

It is important to notice that because of the initial condition in (1.1), the solution u can
never be a solution of the elliptic problem; this is why solutions might be more regular than in

2Here we mean that for all t0 > 0, u ∈ C1,1(Rn × [t0, T ]).

51



the elliptic case. Notice also, though, that our solution u to (1.1) always converges as T → ∞
to a solution to the elliptic problem. For this reason, we cannot expect to get a uniform C1,1

bound in Rn × (0,∞).
Our proof is completely different from [42], and actually it is mainly based on barriers,

comparison principles, and the supercritical scaling of the equation. In particular, we do not
use any monotonicity formula, and this allows us not only to get the optimal C1,1 regularity for
the fractional Laplacian but also to extend the result to general integro-differential operators.

Then, we prove the global C1,α regularity of the free boundary.

Theorem 1.1.2. Let n ≥ 2 and s ∈ (0, 1
2), and let u be the solution of (1.1) with L an operator

satisfying (1.2) and (1.3), and φ ∈ C2,1
c (Rn). Then,

• The free boundary ∂{u > φ} is a C1,α graph in the t direction,

∂{u > φ} = {t = Γ(x)}

with Γ ∈ C1,α and α > 0.

• If (x0, t0) is any free boundary point, the solution admits an expansion

(u− φ)(x0 + x, t0 + t) = c0(t− a · x)2
+ +O(t2+α + |x|2+α), (1.4)

where c0 > 0, α > 0 and a ∈ Rn.

To have that all free boundary points have the same expansion is a very uncommon result in
the context of obstacle problems, and it contrasts notably with the elliptic and the parabolic
subcritical obstacle problems. Moreover, the blow-up techniques that are always used to study
free boundaries appeared ineffective here, and our proof of Theorem 1.1.2 uses Theorem 1.1.1
and the fact that L has order 2s < 1 to gain further regularity instead.

This global regularity result allows us to define regular and singular points a posteriori in
a very simple way: we say that a free boundary point (x0, t0) is regular if the vector a in the
expansion (1.4) is not zero, and is singular if a = 0.

Finally, as a consequence of Theorem 1.1.2, we deduce that the free boundary is C1,α in the
x direction near regular points, and that singular points are in some sense scarce.

Theorem 1.1.3. Let n ≥ 2 and s ∈ (0, 1
2), and let u be the solution of (1.1) with L an operator

satisfying (1.2) and (1.3), and φ ∈ C2,1
c (Rn). Then,

• The set of regular free boundary points is an open subset of ∂{u > φ}.

• If (x0, t0) is a regular free boundary point, the free boundary ∂{u > φ} is locally a C1,α

graph in the xi direction for some i ∈ {1, . . . , n},

∂{u > φ} ∩Br(x0, t0) = {xi = F (x1, . . . , xi−1, xi+1, . . . , xn, t)},

with F ∈ C1,α, α > 0 and r > 0.

• Let Σt be the set of singular free boundary points (x0, t0) with t0 = t. Then,

Hn−1(Σt) = 0 for almost every t ∈ (0, T ).
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This problem is very different than the rest of elliptic and parabolic free boundary problems.
Notice how Theorem 1.1.2 establishes a regularity result common to regular and singular free
boundary points, which deeply contrasts with how these problems were approached until now.
Besides, the fact that the free boundary is globally a C1,α graph in the t direction could also
be true in the subcritical (s > 1/2) case, but is not known in the latter setting.
Remark 1.1.4. There is more literature available for the related (but not equivalent) obstacle
problem with operator (∂t − ∆)s. It appears when one considers the parabolic thin obstacle
problem (s = 1

2) or the parabolic thin obstacle problem with a weight. In this setting, the
diffussion term is always the highest order term and thus the scaling is always subcritical. For
more information on the topic, see [8, 14, 69, 9, 191] and references therein.

1.1.4 Plan of the paper
The paper is organized as follows.

In Section 1.2 we prove a comparison principle and the semiconvexity of solutions. Then, in
Section 1.3 we prove that the solutions to (1.1) are C1, and in Section 1.4, we show that the
optimal regularity is C1,1. Finally, Section 1.5 is devoted to proving the C1,α regularity of the
free boundary and Theorem 1.1.3.

Besides, we include some technical tools in two appendices. Appendix 1.6 includes several
regularity and growth estimates for the linear nonlocal parabolic equation, and Appendix 1.7
is a discussion about the penalized obstacle problem.

1.2 Preliminaries and semiconvexity
In this Section we give some basic definitions and prove some basic results that will be used
later on.

Given any solution u of (1.1), we define

v(x, t) = u(x, t) − φ(x).

Notice that ∂tu = ∂tv. Let Br(x0) be the ball of radius r and center x0 in Rn, and let Qr(x0, t0)
be the following parabolic cylinders:

Qr(x0, t0) = Br(x0) × (t0 − r2s, t0 + r2s)

When the balls or cylinders are centered at the origin we will just write Br := Br(0) and
Qr := Qr(0, 0).

We will denote ∇ := ∇x, and we will write ∇x,t when we refer to the gradient in all variables.
We will also define the following weighted L1 norm:

∥u∥L1
s

= ∥u∥L1
s(Rn) :=

ˆ
Rn

|u(x)|
1 + |x|n+2s

dx

and the corresponding weighted Lebesgue space

L1
s(Rn) := {f : Rn → R, f measurable, ∥f∥L1

s
< +∞}.

Throughout the paper we will assume n ≥ 2.
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1.2.1 Basic tools
We recall some standard tools for elliptic and parabolic PDE that are useful to deal with
problem (1.1). Let us start with the comparison principle.

Theorem 1.2.1. Let L be a nonlocal operator satisfying (1.2) and (1.3), let φ and ψ be uni-
formly Lipschitz and bounded, and let u and v be the solutions of the following parabolic prob-
lems: {

min{∂tu+ Lu, u− φ} = 0 in Rn × (0, T )
u(·, 0) = φ in Rn,{

min{∂tv + Lv, v − ψ} = 0 in Rn × (0, T )
v(·, 0) = ψ in Rn.

Assume additionally that φ ≤ ψ. Then, u ≤ v in Rn × (0, T ).

To prove it, we use the penalization method. This approximation technique is based in
considering the solutions to the obstacle problem as the limit of the solutions to the following
parabolic problem {

∂tu
ε + Luε = βε(uε − φ) in Rn × (0, T )
uε(·, 0) = φ+

√
ε,

(1.5)

where βε(z) = e−z/ε.

Lemma 1.2.2. Let L be an operator satisfying (1.2) and (1.3), let φ ∈ C2,1
c (Rn) and let uε be

the solution of (1.5).
Then, uε → u0 as ε → 0 locally uniformly, where u0 is the solution of (1.1).

We give the proof in Appendix 1.7. Using this technique, we can now proceed.

Proof of Theorem 1.2.1. It suffices to write u and v as the limits of the penalized versions of
the respective problems, and then apply Lemma 1.7.1.

The following observation is based in the strong maximum principle and will be important
in our discussion.

Lemma 1.2.3. Let u be a solution of (1.1) with L an operator satisfying (1.2) and (1.3), and
φ ∈ C0,1

c (Rn). Then,
ut > 0 in {u > φ}.

Proof. First, we see that u is nondecreasing in t. Consider the function ũ(x, t) = u(x, t + δ),
δ > 0. Then, ũ is clearly also a solution of min{(∂t + L)ũ, ũ − φ} = 0, and ũ(·, 0) = u(·, δ) ≥
u(·, 0) = φ. Hence, ũ is a supersolution of (1.1), and thus ũ ≥ u. This yields u(x, t+δ) ≥ u(x, t)
for all x, t and δ > 0.

Let w = ut. Differentiating (1.1), we have

∂tw + Lw = 0 in {u > φ}.

We also know that w ≥ 0 because u is nondecreasing in time. Suppose w = 0 at (x, t) ∈
{u > φ}. Then, by the strong maximum principle, w ≡ 0 in all the connected component
of (x, t). In particular, w = 0 in the segment {x} × [0, t] because each point in the segment
belongs either to the contact set or to the connected component of (x, t) in {u > φ}. Hence,
u(x, t) = u(x, 0) = φ(x), contradicting (x, t) ∈ {u > φ}. Therefore, w > 0 in {u > φ}.
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1.2.2 Semiconvexity
An essential property of the solutions is that they are semiconvex, see [19, Lemma 2.1] for the
case L = (−∆)s with s > 1

2 . Here we can use the same strategy to prove it.

Proposition 1.2.4. Let s ∈ (0, 1
2), and let u be a solution of (1.1), with L an operator satisfying

(1.2) and (1.3), and φ ∈ C2,1
c (Rn). Then, u is semiconvex, i.e., for all unit vectors e in x, t,

∂eeu ≥ −Ĉ, with a uniform bound that depends only on φ, n, s and the ellipticity constants.

Remark 1.2.5. The assumption s ∈ (0, 1
2) can be substituted by the more general s ∈ (0, 1) and

φ ∈ Cmax{2,4s+ε}
c for some small ε > 0.

Proof of Proposition 1.2.4. Using Lemma 1.2.2, we can write u as the limit of solutions to the
penalized problem (1.5). Since the locally uniform limit of uniformly semiconvex functions is
semiconvex, we only need to prove it for the approximations uε.

First, we use Lemma 1.7.5 and notice that β′′
ε ≥ 0 to obtain

∂tu
ε
νν + Luε

νν ≥ β′
ε(uε − φ)(uε

νν − φνν),

for any unit vector ν ∈ Rn × R, and also

uε
t(·, 0) = e−1/

√
ε − Lφ,

uε
tt(·, 0) = L2φ− 1

ε
e−1/

√
ε(e−1/

√
ε − Lφ).

Define C0 := ∥uε
νν(·, 0)∥L∞(Rn). Then,

C0 ≤ ∥D2
xu

ε(·, 0)∥L∞(Rn) + ∥∇uε
t(·, 0)∥L∞(Rn) + ∥uε

tt(·, 0)∥L∞(Rn)

≤ ∥D2φ∥L∞(Rn) + ∥∇Lφ∥L∞(Rn) + ∥L2φ− 1
ε
e−1/

√
ε(e−1/

√
ε − Lφ)∥L∞(Rn)

≤ ∥D2φ∥L∞(Rn) + ∥∇Lφ∥L∞(Rn) + ∥L2φ∥L∞(Rn) + Cε+ ∥Lφ∥L∞(Rn)

≤ C∥φ∥C1,1(Rn) + Cε.

Using again that β′
ε ≤ 0, it follows that β′

ε(uε − φ)(uε
νν + C0) ≥ 0 whenever uε

νν + C0 ≤ 0.
Hence, w := min{0, uε

νν + C0} satisfies

∂tw + Lw ≥ 0 in Rn × (0, T ).

Finally, w ≡ 0 at t = 0 by construction, hence, by the maximum principle, w ≡ 0 everywhere,
i.e. uε

νν ≥ −C0. Since this constant does not depend on ε, we can pass to the limit to get the
desired result.

1.3 C1 regularity of solutions
Here we prove that solutions u to the problem (1.1) are globally C1 in x and t. This was already
known in the case of L = (−∆)s thanks to [42]; here we prove it in a different way for our
general class of operators (1.2). The first step is to prove global Lipschitz regularity.

Notice that we already know that u is Lipschitz because it is globally bounded and semicon-
vex, but we provide a simple proof to obtain the optimal Lipschitz constant under the minimal
requirements for φ.
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Proposition 1.3.1. Let s ∈ (0, 1
2), and let u be a viscosity solution of (1.1) with L an operator

satisfying (1.2) and (1.3), and φ ∈ C0,1
c (Rn). Then, u is globally Lipschitz,

∥∇u∥L∞(Rn×(0,T )) ≤ ∥φ∥C0,1(Rn) and ∥ut∥L∞(Rn×(0,T )) ≤ C∥φ∥C0,1(Rn),

where C depends only on the dimension, s and the ellipticity constants.

Proof. First of all, ∥u∥L∞(Rn×(0,T )) ≤ ∥φ∥L∞(Rn×(0,T )) by Theorem 1.2.1.
We will treat Lipschitz regularity in x and t separately. For spatial regularity, observe that

for every h ∈ Rn, the function wh(x, t) := u(x+ h, t) + ∥φ∥C0,1|h| is a solution of{
min{∂twh + Lwh, wh − φh} = 0 in Rn × (0, T ]

wh(·, 0) = φh in Rn,

with φh(x) = φ(x + h) + ∥φ∥C0,1|h| ≥ φ. Then, by Theorem 1.2.1, u ≤ wh for all h, and it
follows that

u(x, t) ≤ u(x+ h, t) + ∥φ∥C0,1|h| ⇒ u(x, t) − u(x+ h, t)
|h|

≤ ∥φ∥C0,1 .

Since x and h are arbitrary, the Lipschitz regularity follows.
On the other hand, concerning ut, it is zero in the interior of the contact set, and outside of

it ut = −Lu. Moreover, since u is continuous, the contact set is closed and we can estimate
the Lipschitz character of u in the t direction knowing it outside of the contact set. Hence,
∥ut∥L∞(Rn×(0,T )) ≤ ∥Lu∥L∞(Rn×(0,T )). Then, we can compute Lu. We omit the time dependence
to unclutter the notation.

|Lu(x)| =
∣∣∣∣∣
ˆ
Rn

(u(x) − u(x+ y))K(y)dy
∣∣∣∣∣

≤
∣∣∣∣∣
ˆ

B1

(u(x) − u(x+ y))K(y)dy
∣∣∣∣∣+

∣∣∣∣∣
ˆ

Bc
1

(u(x) − u(x+ y))K(y)dy
∣∣∣∣∣

≤
ˆ

B1

∥∇u∥L∞(Rn×(0,T ))|y|K(y)dy +
ˆ

Bc
1

2∥u∥L∞(Rn×(0,T ))K(y)dy

≤ C1∥∇u∥L∞(Rn×(0,T )) + C2∥u∥L∞(Rn×(0,T )) ≤ C∥φ∥C0,1(Rn).

Here we used that K(y) ≤ Λ|y|−n−2s and s < 1
2 , so that K(y) is integrable at infinity and

|y|K(y) is integrable near the origin, and finally we applied the previous estimates for ∥∇u∥L∞

and ∥u∥L∞ in terms of ∥φ∥C0,1 .

Then, we improve the regularity up until C1,α in t and C1 in x. We start with the time
regularity.

Proposition 1.3.2. Let s ∈ (0, 1
2), and let u be the solution of (1.1) with L an operator

satisfying (1.2) and (1.3), and φ ∈ C0,1
c (Rn). Then, ut ∈ Cα and

[ut]Cα(Rn×(0,T )) ≤ C∥φ∥C0,1(Rn),

where α = 1 − 2s > 0 and C depends only on the dimension, s and the ellipticity constants.
Moreover, we have

ut = (Lu)− in Rn × (0, T ).
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Proof. Let us prove the following estimates for Lu to begin. We prove the spatial regularity
first, omitting the time dependence for simplicity of reading.

|Lu(x1) − Lu(x2)| =
∣∣∣∣∣
ˆ
Rn

(u(x1) − u(x2) − u(x1 + y) + u(x2 + y))K(y)dy
∣∣∣∣∣

≤
ˆ

Br

(|u(x1) − u(x1 + y)| + |u(x2) − u(x2 + y)|)K(y)dy

+
ˆ

Bc
r

(|u(x1) − u(x2)| + |u(x1 + y) − u(x2 + y)|)K(y)dy

≤
(ˆ

Br

2|y|K(y)dy +
ˆ

Bc
r

2|x1 − x2|K(y)dy
)

∥∇u∥L∞(Rn×(0,T ))

≤ C(r1−2s + |x1 − x2|r−2s)∥∇u∥L∞(Rn×(0,T ))

≤ C∥φ∥C0,1(Rn×(0,T ))|x1 − x2|1−2s.

In the last steps we used that |K(y)| ≤ Λ|y|−n−2s, with s ∈ (0, 1
2), we chose r = |x1 − x2| and

we used the estimate from Proposition 1.3.1.
Then, we prove temporal regularity:

|Lu(x, t1) − Lu(x, t2)|

=
∣∣∣∣∣
ˆ
Rn

(u(x, t1) − u(x, t2) − u(x+ y, t1) + u(x+ y, t2))K(y)dy
∣∣∣∣∣

≤
ˆ

Br

(|u(x, t1) − u(x+ y, t1)| + |u(x, t2) − u(x+ y, t2)|)K(y)dy

+
ˆ

Bc
r

(|u(x, t1) − u(x, t2)| + |u(x+ y, t1) − u(x+ y, t2)|)K(y)dy

≤
ˆ

Br

2|y|K(y)∥∇u∥L∞(Rn×(0,T ))dy +
ˆ

Bc
r

2|t1 − t2|K(y)∥ut∥L∞(Rn×(0,T ))dy

≤ C∥φ∥C0,1(Rn×(0,T ))|t1 − t2|1−2s.

Here r = |t1 − t2| and the rest of the estimates are used analogously.
Hence, [Lu]Cα(Rn×(0,T )) ≤ C∥φ∥C0,1(Rn). In particular, Lu is continuous. Then, recall that

ut + Lu = 0 in the set {u > φ}. Moreover, by Lemma 1.2.3, ut > 0 in this set, and therefore
Lu < 0.

In the interior of the contact set, however, u(x, t) ≡ φ(x) and ut ≡ 0. Moreover, ut +Lu ≥ 0,
and it follows that Lu ≥ 0 in the interior of the contact set.

By continuity of Lu, Lu = 0 on the free boundary. Then, ut = 0 on the free boundary as
well.

We deduce that
ut = (Lu)−

and thus [ut]Cα(Rn×(0,T )) ≤ [Lu]Cα(Rn×(0,T )), as wanted.

Then, we continue with the regularity in x. First, we need the following estimate, analogous
to the elliptic estimate [46, Lemma 2.3].
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Lemma 1.3.3. Let s ∈ (0, 1). There exist constants τ ∈ (0, s) and δ > 0 such that the following
holds.

Let v be a globally Lipschitz solution of
v ≥ 0 in Rn × (−1, 0]

∂ννv ≥ −δ in Q2 ∩ {t ≤ 0}, for all ν ∈ Sn−1

(∂t + L)(v − Thv) ≤ δ|h| in {v > 0} ∩Q2 ∩ {t ≤ 0},

where Th is the translation operator defined for any h in the x directions, i.e. Thv(x, t) =
v(x+ h, t), and L is a nonlocal operator satisfying (1.2) and (1.3).

Assume that v(0, t) = 0 for t ≤ 0 and that sup
QR

|∇v| ≤ Rτ for all R ≥ 1. Then,

sup
Br×(−r2s,0]

|∇v| ≤ 2rτ ,

for all r > 0. The constants τ and δ depend only on the dimension, s and the ellipticity
constants.

Proof. Let Wr = Br × (−r2s, 0] be the past cyilinders at the origin.
We define

θ(r) := sup
r′≥r

(r′)−τ sup
Wr′

|∇v|.

Notice that θ(r) ≤ 1 for r ≥ 1 because sup
WR

|∇v| ≤ sup
QR

|∇v| ≤ Rτ for R ≥ 1. The result

we aim to prove is equivalent to showing θ(r) ≤ 2 for all r ∈ (0, 1). Observe also that θ is
nonincreasing by definition.

Assume by contradiction that θ(r) > 2 for some r. Then, by construction there exists
r0 ∈ (r, 1) such that

θ(r0) ≥ r−τ
0 sup

Wr0

|∇v| ≥ (1 − ε)θ(r) ≥ (1 − ε)θ(r0) ≥ 3
2 ,

where ε > 0 is to be chosen later.
Then, we define the scaling

v0(x, t) := v(r0x, r
2s
0 t)

θ(r0)r1+τ
0

.

Let τ ∈ (0, s). Then, the rescaled function satisfies
v0 ≥ 0 in Rn × (−2r−2s

0 , 0]
∂ννv0 ≥ −r2−1−τ

0 δ ≥ −δ in Q2/r0

(∂t + L̃)(v0 − Thv0) ≤ r2s−1−τ
0 δ|r0h| ≤ δ|h| in {v0 > 0} ∩Q2/r0 ,

where L̃ is the corresponding nonlocal operator with the appropriate scaled kernel, and it has
the same ellipticity constants. Notice that ∥∇v0∥L∞(W1) ≤ 1 by construction.

Moreover, by the definition of θ and r0, for all R ≥ 1 the following estimates hold:

1 − ε ≤ sup
|h|≤ 1

4

sup
W1

v0(x, t) − v0(x+ h, t)
|h|

and sup
|h|≤ 1

4

sup
WR

v0 − Thv0

|h|
≤ (R + 1

4)τ .
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Let η ∈ C2
c (Q3/2) with η ≡ 1 in Q1 and 0 ≤ η ≤ 1. Then,

sup
|h|≤ 1

4

sup
W1

(
v0 − Thv0

|h|
+ 3εη

)
≥ 1 + 2ε.

Notice that if τ > 0 is small enough,

sup
|h|≤ 1

4

sup
W3

v0 − Thv0

|h|
≤ (3 + 1

4)τ < 1 + ε.

Then, we can choose h0 ∈ B1/4 such that

M := max
W3/2

(
v0 − Th0v0

|h0|
+ 3εη

)
≥ 1 + ε,

and the maximum is attained at a point (x0, t0) where η(x0, t0) > 0.
Define

w := v0 − Th0v0

|h0|
.

By construction, w + 3εη ≤ M in W3/2 and in W3 \ W3/2. Therefore, w + 3εη ≤ M in
Q3 ∩ {t ≤ 0}. Besides, v0(x0, t0) > 0 because if not w(x0, t0) < 0 and then w + 3εη < 1 + ε.

Now we evaluate the equation at (x0, t0) to obtain a contradiction.
On the one hand, since (x0, t0) is a maximum of w + 3εη, and (x0, t0) is either an interior

point of W3/2 or a point in B3/2 × {0},

∂t(w + 3εη) ≥ 0.

On the other hand, we can use the semiconvexity of v0, together with v0(0, t) = 0 for t ≤ 0
to obtain a lower bound for L̃w. Let e = h0

|h0| and k = |h0|. Then, for x ∈ B1 and omitting the
dependence on t,

v0(x) ≤
kv0(0) + |x|v0

(
x+ k x

|x|

)
k + |x|

+ kδ

2 |x|2 ≤ v0

(
x+ k

x

|x|

)
+ δ,

using that |x| < 1 and k < 1. Then, combining this fact with the definition of w,

w(x) = v0(x) − v0(x+ ke)
k

≤
v0
(
x+ k x

|x|

)
− v0(x+ ke)
k

+ δ ≤
∣∣∣∣∣ x|x|

+ e

∣∣∣∣∣+ δ,

for all x ∈ B1, where we also used that ∥∇v0∥L∞(W1) ≤ 1. In particular, w(x, t) < 1
2 for all

t ≤ 0 when δ < 1
4 and

x ∈ Ce :=
{
x ∈ B1 :

∣∣∣∣∣ x|x|
+ e

∣∣∣∣∣ < 1
4

}
.

Using that M ≥ 1 + ε and w < 1 + ε in W3,

1 − 2ε ≤ w(x0, t0) < 1 + ε.
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Moreover, w + 3εη has a maximum at (x0, t0) (global in B3 × {t0}), and hence

w(x0, t0) − w(x, t0) ≥ −3ε|D2η(x0, t0)|
|x− x0|2

2 = −Cε|x− x0|2,

for all x ∈ B3.
Let us now compute L̃w at the point (x0, t0). Using the previous estimates,

L̃w(x0, t0) =
ˆ
Rn

(w(x0, t0) − w(x0 + y, t0))K(y)dy

≥λ

ˆ
Rn

(w(x0, t0) − w(x0 + y, t0))+|y|−n−2sdy

− Λ
ˆ
Rn

(w(x0, t0) − w(x0 + y, t0))−|y|−n−2sdy

≥λ

ˆ
Ce−x0

(1
2 − 2ε)|y|−n−2sdy − Λ

ˆ
B3/2

Cε|y|2|y|−n−2sdy

− Λ
ˆ

Bc
3/2

((|y| + 3
2)τ − 1 + 2ε)|y|−n−2sdy

≥ c− Cε− Λ
ˆ

Bc
3/2

((|y| + 3
2)τ − 1)|y|−n−2sdy ≥ c− Cε,

where in the last step we choose τ > 0 even smaller if needed to absorb the integral into the
Cε term.

Finally,
(∂t + L̃)w(x0, t0) ≥ −3εηt(x0, t0) + c− Cε > δ,

choosing small enough ε and δ, reaching a contradiction. Hence, θ(r) ≤ 2 for all r ∈ (0, 1), as
we wanted to prove.

Now we can apply Lemma 1.3.3 to obtain C1 regularity.

Proposition 1.3.4. Let s ∈ (0, 1
2), and let u be the solution of (1.1) with L an operator

satisfying (1.2) and (1.3), and φ ∈ C2,1
c (Rn). Then, ∇u ∈ C(Rn × (0, T )). In particular,

u ∈ C1(Rn × (0, T )).

Proof. First, by Proposition 1.3.2, ut is already continuous, and by Proposition 1.3.1, ∇u is
globally defined in L∞. We will prove that it is continuous at every point.

In the interior of the contact set, u(x, t) ≡ φ(x) ∈ C1, and in the interior of {u > φ}, we can
use interior estimates (Proposition 1.6.4) to see that u is C1.

Therefore, we only need to work with the points on the free boundary. Assume without loss
of generality that the origin is a free boundary point, and we will prove that ∇u is continuous
at it.

Let v = u− φ. After a scaling and a translation, we can apply Lemma 1.3.3 to obtain

sup
BR(x0)×(t0−R2s,t0]

|∇v| ≤ CRτ ,

for all R ≥ 0. The constant C here depends only on φ, the dimension, s and the ellipticity
constants.
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We distinguish two cases:
Case 1. If the free boundary continues to the future, more precisely, for all ρ ∈ (0, r), there

exists tρ > 0 such that
{v = 0} ∩ (Bρ × {tρ}) ̸= ∅,

it follows that for all t ∈ (0, tρ), {v = 0} ∩ (Bρ × {t}) ̸= ∅, because ut ≥ 0 and therefore the
contact set shrinks in time.

Let δ ∈ (0, r). Let |x| < δ, and t < tδ as defined above. Then, there exists x′ ∈ Bδ such that
(x′, t) belongs to the contact set, and it follows that

|∇v(x, t)| ≤ C|x− x′|τ ≤ C(2δ)τ .

Then, letting δ → 0, we obtain a sequence of neighbourhoods of the origin where |∇v| ≤
C(2δ)τ , and hence ∇v vanishes continuously at (0, 0).

Case 2. If the free boundary ends at the origin, there exists some r0 > 0 such that for all
t > 0, v > 0 in Br0 ×{t}. Assume after a scaling that r0 = 1 (notice that L may change but the
ellipticity constants will be the same). We will prove that the limit of vi is zero as it approaches
the origin. If we approach from the past, then (0,−t) belongs to the contact set for all t > 0,
and we can use the same argument that in Case 1.

To consider approaching the origin from the future, recall that u solves ut = (Lu)− globally,
hence, we can consider u a solution of the nonlocal heat equation with right hand side

(∂t + L)u = (Lu)+ in Rn × (0, T ′)

and apply Duhamel’s formula at (x, t) with x ∈ B1/2 and t ∈ (0, 1
2), to get

u(x, t) =
ˆ
Rn

pt(x− y)u(y, 0)dy +
ˆ t

0

ˆ
Rn

pt−ζ(x− y)(Lu)+(y, ζ)dydζ,

where pt(x) is the fundamental solution for this particular operator (see Theorem 1.6.1). Then,
differentiating with respect to xi and using that pt ∈ C∞ and u is Lipschitz,

ui(x, t) =
ˆ
Rn

pt(x− y)ui(y, 0)dy +
ˆ t

0

ˆ
Rn

∂ipt−ζ(x− y)(Lu)+(y, ζ)dydζ.

Now let us estimate both integrals separately. For the first one, we will use that |ui(y, 0)| ≤
C|y|τ by Lemma 1.3.3, as well as |pt(x)| ≤ C min{t− n

2s , t|x|−n−2s} by Theorem 1.6.1.∣∣∣∣∣
ˆ
Rn

pt(x− y)ui(y, 0)dy
∣∣∣∣∣ ≲

ˆ
Rn

min{1, |y|τ } min
{
t−

n
2s ,

t

|x− y|n+2s

}
dy

≲
ˆ

B
t

1
2s /2

(x)
t−

n
2s |y|τ dy +

ˆ
B1/2(x)\B

t
1

2s /2
(x)

t|y|τ

|x− y|n+2s
dy +

ˆ
Bc

1/2(x)

t

|x− y|n+2s
dy

≤ t−
n
2s |x+ t

1
2s |τ |B

t
1

2s
| + t

ˆ
B1/2\B

t
1

2s

|y|−n−2s|x+ y|τ dy + t

ˆ
Bc

1/2

|y|−n−2sdy

≲ |x+ t
1

2s |τ + t(t 1
2s )−2s|x|τ + t(t 1

2s )τ−2s + t ≲ t
τ
2s + |x|τ .
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For the second integral, we will use that Lu is bounded because u is Lipschitz, Lu ≤ 0 in
B1/2(x) ⊂ B1, as well as Lu ≤ 0 outside of the support of the obstacle φ. Let R big enough
such that suppφ ⊂ BR. Then, by Corollary 1.6.5,∣∣∣∣∣

ˆ t

0

ˆ
Rn

∂ipt−ζ(x− y)(Lu)+(y, ζ)dydζ
∣∣∣∣∣ ≲

ˆ t

0

ˆ
BR\B1/2(x)

|∇pt−ζ(x− y)|dydζ

≲
ˆ t

0

ˆ
BR\B1/2(x)

1dydζ ≲ t.

Therefore, |ui(x, t)| ≲ t
τ
2s + |x|τ for t > 0, and it converges to zero as it approaches the origin

from the future, concluding that ∇u is continuous in x and t at that point.

1.4 Optimal C1,1 regularity
In this section, we establish the optimal C1,1 regularity of solutions. First, we prove that the
free boundary moves at a positive speed.

Proposition 1.4.1. Let s ∈ (0, 1
2), and let u be the solution of (1.1) with L an operator

satisfying (1.2) and (1.3), and φ ∈ C2,1
c (Rn)3. Let v = u− φ, and let 0 < t1 < t2 < T . Then,

|∇v| ≤ Cvt in Rn × [t1, t2],

for some positive C, depending only on t1, t2, φ, the dimension, s and the ellipticity constants.
Moreover, the free boundary is the graph of a Lipschitz function {t = Γ(x)} in Rn × (t1, t2),

with the same Lipschitz constant C.

To prove this proposition, we will use the following positivity lemma, see [46, Lemma 6.2]
for the elliptic version.

Lemma 1.4.2. Let E ⊂ Q1 be compact, let L be an operator satisfying (1.2) and (1.3), and
let w ∈ C(Q1) ∩ C1(Q1 \ E) satisfying

|∂tw + Lw| ≤ ε in Q1 \ E
w = 0 in E
w ≥ −ε in Ec,

in the viscosity sense, and also
ˆ
Rn

w+(x, t)
1 + |x|n+2s

dx ≥ 1 for all t ∈ [−1, 1].

Then,
w ≥ 0 in Q1/2.

The constant ε > 0 depends only on s, the dimension and the ellipticity constants.
3The compactness of the support is a technical condition needed for the proof of this proposition but it does

not seem crucial for the problem.
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Proof. Let ψ ∈ C∞
c (Q3/4), with ψ ≡ 1 in Q1/2 and 0 ≤ ψ ≤ 1. We proceed by contradiction.

Suppose the lemma does not hold. Then, for some c > 0, the function

ψε,c = −c− ε+ εψ

touches w from below in (x0, t0) ∈ Q3/4. Moreover, (x0, t0) ∈ Ec because w(x0, t0) < 0, so
(x0, t0) ∈ Q1 \ E.

Now we compute (∂t + L)w(x0, t0) to obtain a contradiction. By the definition of (x0, t0),
w − ψε,c attains a global minimum there. Thus,

(∂t + L)(w − ψε,c)(x, t) = L(w − ψε,c)(x, t)

= −
ˆ
Rn

(w(x+ y, t) − ψε,c(x+ y, t))K(y)dy

≤ −λ
ˆ
Rn

w+(x+ y, t)|y|−n−2sdy

≤ −λ
ˆ
Rn

w+(y, t)
|y − x|n+2s

dy ≤ −Cλ,

using that ψε,c < 0 and that |y − x|n+2s ≤ C(1 + |y|n+2s) for any x ∈ B3/4, with C depending
only on n+ 2s.

On the other hand,

(∂t + L)(w − ψε,c)(x, t) = (∂t + L)w(x, t) − (∂t + L)ψε,c ≤ ε+ ε∥(∂t + L)ψ∥L∞(Q3/4),

and choosing ε small enough we get a contradiction.

Using this lemma we are now able to prove that the free boundary moves at all values of t,
i.e., it is a Lipschitz graph in the t direction.

Proof of Proposition 1.4.1. We will prove the inequality for any directional derivative vi instead
of the gradient. The result follows as a consequence.

Let R ≥ max{1, T 1
2s } be such that suppφ ⊂ BR and let P > 0 large, to be chosen later.

Consider the set A = B1(3Re1) × [ t1
2 ,

t2+T
2 ]. Then, by construction, A ⊂ {v > 0}, and from

Lemma 1.2.3 and compactness, it follows that vt ≥ a > 0 in A.
Let r > 0 such that for all (x0, t0) ∈ BP R × [t1, t2], Qr(x0, t0) ⊂ Rn × [ t1

2 ,
t2+T

2 ]. We will use
a rescaled Lemma 1.4.2 in Qr(x0, t0) with a suitable linear combination

w = Mvt −mvi

with some positive M and m to be chosen later.
First, let E be the contact set. Then, w ≥ −m∥vi∥L∞(Rn×(0,T )) ≥ −2m∥φ∥C0,1(Rn) in the

whole space by Proposition 1.3.1. Moreover, in Ec we have

|(∂t + L)w| = m|(∂t + L)vi| = m| − Lφi| ≤ m∥φ∥C1,1(Rn) in Ec.

On the other hand, for all t ∈ [t0 − r2s, t0 + r2s],ˆ
Rn

w+(x, t)
1 + |x− x0|n+2s

dx ≥
ˆ

B1(3Re1)

w+(x, t)
1 + |x− x0|n+2s

dx ≥
ˆ

B1(3Re1)

Ma−m∥vi∥L∞(Rn×(0,T ))

1 + |x− x0|n+2s
dx ≥

(Ma−m∥φ∥C0,1(Rn))|B1|
1 + (PR + 3R + 1)n+2s

.
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Then, choosing m small enough and M big enough suffices to be able to apply Lemma 1.4.2,
and these constants depend only n, s, λ, Λ, R and φ. Therefore, w ≥ 0 in BP R × [t1, t2].

Finally, outside of BP R, we will use a barrier argument. Since vt > 0 in the set (BP R/2 \
BR) × [0, T ], by compactness we can choose M and m such that w(·, 0) ≥ 0 in BP R and also
w ≥ m in (BP R/2 \BR) × [0, T ].

Let w̃ = w +m(1 + 2∥φ∥C0,1(Rn))χBR
. Now, since

w ≥ mvi ≥ −m∥vi∥L∞(Rn×[0,T ]) ≥ −2m∥φ∥C0,1(Rn),

w̃ ≥ m in BP R/2 × [0, T ). On the other hand, v = u − φ is identically zero at t = 0 and
vt(·, 0) = −Lφ > 0 outside of the support of φ, and hence w̃(·, 0) ≥ 0 in Bc

P R.
To apply the comparison principle, we also need to compute the right hand side for x ∈ Bc

P R.
Using that u is a solution of the nonlocal heat equation,

(∂t + L)w̃ = (∂t + L)(w +m(1 + 2∥φ∥C0,1(Rn))χBR
) = mL[φi + (1 + 2∥φ∥C0,1(Rn))χBR

],

and since the expression inside of the brackets is supported in BR, for all x such that |x| ≥ PR,

|(∂t + L)w̃| ≤ C ′mRn∥φi + (1 + 2∥φ∥C0,1(Rn))χBR
∥L∞(BR×[0,T ))(|x| −R)−n−2s

≤ CmRn|x|−n−2s in Bc
P R × [t1, t2],

where C depends only on n, s, λ, Λ and φ.
Let now ψ be defined as the solution of{

(∂t + L)ψ = [(∂t + L)w̃]χBc
P R

in Rn × (0, T )
ψ = m

2 χBP R/2 on Rn × {t = 0}

Then, |(∂t + L)ψ| ≤ CmRn(PR)−n−2s = CmP−n−2sR−2s, and it follows that (∂t + L)(ψ −
CmP−n−2sR−2st) ≤ 0. Therefore, since it is a subsolution for the nonlocal heat equation, apply-
ing the comparison principle4 with a constant we deduce
ψ−CmP−n−2sR−2st ≤ m

2 in Rn ×(0, T ), and in particular ψ ≤ m
2 +CmP−n−2sR−2sT . Choosing

P large enough, ψ ≤ m in Rn × (0, T ).
Now, we apply the comparison principle again. Notice that ψ ≤ w̃ at t = 0 by construction,

and that (∂t + L)ψ = (∂t + L)w̃ for all (x, t) ∈ Bc
P R × (0, T ). Furthermore, ψ ≤ m ≤ w̃ in

BP R × (0, T ). Therefore, ψ ≤ w̃ in Rn × (0, T ).
Finally, let

ψ̃(x, t) = 2
m|B1|

ψ

(
PR

2 x,
(
PR

2

)2s

t

)
.

Then, ψ̃(·, 0) = |B1|−1χB1 , so it is positive, supported in B1 and ∥ψ̃(·, 0)∥L1(B1) = 1. Moreover,

|(∂t + L)ψ̃| ≤ 2CmRn

m|B1|

(
PR

2

)2s ∣∣∣∣PR2 x
∣∣∣∣−n−2s

χBc
1

≤ C ′P−n|x|−n−2sχBc
1
,

and if we take P large enough such that C ′P−n < δ, from Proposition 1.6.6 we get that ψ̃ ≥ 0
in Bc

2 × (0, T (PR/2)−2s)5. Then, w̃ ≥ 0 in Bc
2 × (0, T ), and since w̃ = w in Bc

P R × (0, T ) we
obtain w ≥ 0 in Bc

P R × (0, T ), as we wanted to prove.
From the inequality |∇v| ≤ Cvt, it follows that the free boundary is a Lipschitz graph in the

t direction with constant C.
4Here, ψ can be defined with the Duhamel formula and the heat kernel introduced in Theorem 1.6.1, and

the comparison principle follows from the positivity of the heat kernel.
5Here we need to choose P large enough to have T (PR/2)−2s < 1.
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Once we know that the free boundary is a Lipschitz graph in the direction of t, we can
use barriers to gain insight on the boundary behaviour of vt. We will prove first a Hopf-type
estimate in the t direction. Here we use crucially the fact that the diffussion is supercritical,
i.e. s < 1

2 .

Proposition 1.4.3. Let s ∈ (0, 1
2), and let u be the solution of (1.1) with L an operator

satisfying (1.2) and (1.3), and φ ∈ C2,1
c (Rn). Let v = u − φ, and let 0 < t1 < t2 < T . Then,

there exists c0 > 0 such that for all free boundary points (x0, t0) ∈ Rn × [t1, t2],

vt(x0, t0 + t) ≥ c0t for t ∈ (0, δ),

where c0 and δ are small positive constants depending only on t1, t2, T , φ, the dimension, s
and the ellipticity constants.

Proof. Let R ≥ 1 such that suppφ ⊂ BR. Then, consider the compact set

A = B1(3Re1) ×
[
t1
2 ,
t2 + T

2

]
.

Then, by construction, A ⊂ {v > 0}, and from Lemma 1.2.3 and compactness, it follows that
vt ≥ a > 0 in A.

By Proposition 1.4.1, there exists C0 such that |∇v| ≤ C0vt in Rn × [ t1
2 ,

t2+T
2 ]. Assume

without loss of generality that C0 ≥ 1.
Now, there exists r > 0 such that for all (x, t) ∈ Rn × [t1, t2],

Qr(x, t) ⊂ Rn ×
(
t1
2 ,
t2 + T

2

)
.

Let (x0, t0) be a free boundary point with t0 ∈ [t1, t2], and define the cone

C = {t0 + 2C0|x− x0| < t < t0 + r2s} ⊂ Rn ×
(
t1
2 ,
t2 + T

2

)
.

Since C0 is also the Lipschitz constant of the free boundary in Rn × ( t1
2 ,

t2+T
2 ), C is entirely

above the free boundary, and v > 0 in C. Then, it follows from Lemma 1.2.3 that vt > 0 in C
as well.

With this information, we can construct a subsolution in C to compare with vt. Let us assume
after a translation that (x0, t0) = (0, 0). Let w defined in Rn × [0, r2s] as follows:

w(x, t) = c0(t− 2C0|x|)+ + aχÃ(x, t) = c0(t− 2C0|x|)+ + aχB1(3Re1−x0)(x),

with c0 > 0 to be chosen later.
Then, we need to check that (∂t + L)w ≤ 0 in C and that w ≤ vt in (Rn × (0, r)) \ C. The

latter follows by construction, because for any (x, t) ∈ Rn × (0, r) that does not belong to C,
t− 2C0|x| < 0 and then w ≡ aχB1(3Re1−x0)(x) in the relevant set. Thus, recalling that vt ≥ a in
A, w ≤ vt outside of the cone.

To check that w is a subsolution in C, first notice that wt = c0 inside the cone. Then,

Lw(x, t) ≤ c0∥L(t− 2C0|x|)+∥L∞(Rn×(0,r)) + a(LχB1(3Re1−x0))(x)

≤ C1C0c0 − a

ˆ
Rn

χB1(3Re1−x0)(y)K(y)dy ≤ C1C0c0 − aλ|B1|
(4R + 1)n+2s

,
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where we used that |x0| < R, and it follows that

(∂t + L)w ≤ c0 + C1C0c0 − C2

and then choosing c0 small enough suffices to have (∂t + L)w ≤ 0.
Finally, by the comparison principle6, vt ≥ w in C, and in particular vt(0, t) ≥ c0t for

t ∈ [0, r2s), and undoing the translation,

vt(x0, t0 + t) ≥ c0t for t ∈ (0, r2s),

and for all (x0, t0) ∈ ∂{u > φ} ∩ (Rn × [t1, t2]), as we wanted to prove.

Integrating the lower bound for vt, we can obtain a quadratic nondegeneracy of v in the t
direction.

Corollary 1.4.4. Let s ∈ (0, 1
2), and let u be the solution of (1.1) with L an

operator satisfying (1.2) and (1.3), and φ ∈ C2,1
c (Rn). Let v = u−φ, and let (x0, t0) ⊂ Rn × [t1, t2]

be a free boundary point. Then, there exists c0 > 0 such that

v(x0, t0 + r) ≥ c0r
2

for all r ∈ (0, δ), where c0 and δ are positive and depend only on φ, t1, t2, T , s, the dimension
and the ellipticity constants.

Proof. Use Proposition 1.4.3 to see that vt(x0, t0 + r) ≥ c0r for all r ∈ (0, δ). Then, since
v ∈ C1, we can recover the value of v integrating vt and therefore we get v(x0, t0 + r) ≥
v(x0, t0) + c0r

2/2 = c0r
2/2. Finally rename c0/2 as c0.

The counterpart is an upper bound for the growth of vt. Much like the Hopf-type estimate
can be proved with a subsolution taking advantage of a future cone of positivity, the anti-Hopf-
type estimate is proved with a supersolution that takes advantage of a past cone in the contact
set. Again, here we use crucially that the diffussion is supercritical.

Proposition 1.4.5. Let s ∈ (0, 1
2), and let u be the solution of (1.1) with L an operator

satisfying (1.2) and (1.3), and φ ∈ C2,1
c (Rn). Let v = u − φ, and let 0 < t1 < t2 < T . Then,

there exists M > 0 such that for all free boundary points (x0, t0) ∈ Rn × [t1, t2],

vt(x0, t0 + t) ≤ Mt for all t > 0,

where M depends only on φ, t1, t2, T , s, the dimension and the ellipticity constants.

Proof. By Proposition 1.4.1, there exists C0 such that |∇v| ≤ C0vt in Rn × [ t1
2 ,

t2+T
2 ]. Assume

without loss of generality that C0 ≥ 1.
Now, there exists r > 0 such that for all (x, t) ∈ Rn × [t1, t2],

Qr(x, t) ⊂ Rn ×
(
t1
2 ,
t2 + T

2

)
.

6Here, vt and w are classical solutions and the comparison principle follows from the standard pointwise
bounds. We shall use this feature again in subsequent arguments.
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Let (x0, t0) be a free boundary point with t0 ∈ [t1, t2], and define the cone

C = {t0 − r2s < t < t0 − 2C0|x− x0|} ⊂ Rn ×
(
t1
2 ,
t2 + T

2

)
.

Notice that this cone is backwards, whereas the cone defined in the proof of Proposition 1.4.3
was forward. Since C0 is also the Lipschitz constant of the free boundary in Rn × ( t1

2 ,
t2+T

2 ), C
is entirely below the free boundary, and then vt ≡ 0 in C.

Assume after a translation that (x0, t0) = (0, 0). Now, we want to construct a supersolution
in

Ωρ = Bρ × (−ρ, ρ) \ C,

with ρ ∈ (0, r) to be chosen later.
To do so, we introduce the auxiliary function h(x, t) := min{4C0 + 1, (t + |x|)+}. First, we

notice ∂th ≡ 1 in {h > 0} ∩Q1 and estimate Lh as follows.

∥Lh∥L∞(Rn×R) ≤ C1∥h∥C0,1(Rn×R) = C1.

Let now hρ(x, t) = h(4C0ρ
−1x, ρ−1t). By the scaling of the equation (notice that the bound

on Lh depends on the ellipticity constants but not on the particular operator),

(∂t + L)hρ ≥ ρ−1 − C1(4C0)2sρ−2s ≥ 0 in Ωρ,

provided that ρ is small enough. Notice that ρ depends only on t1, t2, T , the dimension, s and
the ellipticity constants.

Finally, let us check that there exists M > 0 such that vt ≤ Mhρ in Ωρ. To do so, we will
check that vt ≤ Mhρ in the parabolic boundary of Ωρ. Indeed, vt = 0 ≤ Mhρ in C for any
positive M .

On the other hand, if we choose M = ∥vt∥L∞(Rn×(0,T )), for all t ∈ [−ρ, ρ] and x ̸∈ Bρ,

hρ(x, t) = min{1, ρ−1(t+ 4C0|x|)+} ≥ min{1, ρ−1(−ρ+ 4C0ρ)+} = 1,

and for all x ∈ Bρ × (−ρ, ρ) \ C, |x| ≥ ρ
2C0

, and therefore

hρ(x,−ρ) = min{1, ρ−1(−ρ+ 4C0|x|)+} ≥ min{1, (−1 + 2)+} = 1.

Hence,
vt ≤ ∥vt∥L∞(Rn×(0,T )) = M = Mhρ(x, t)

in the whole parabolic boundary of Ωρ, and together with the fact that (∂t + L)hρ ≥ 0 in Ωρ

we can conclude that vt ≤ Mhρ in Ωρ by the comparison principle.
In particular, for every free boundary point (x0, t0) ∈ Rn × [t1, t2], we have

vt(x0, t0 + t) ≤ Mt for t ∈ (0, ρ),

with uniform M and ρ.
To conclude, observe that vt(x0, t0 + t) ≤ ρ−1∥vt∥L∞(Rn×(0,T ))t for all t ≥ ρ, completing the

proof.

Now, using the previous estimate and the semiconvexity, we are ready to prove the global
C1,1 regularity of the solutions.
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Proposition 1.4.6. Let s ∈ (0, 1
2), and let u be the solution of (1.1) with L an operator

satisfying (1.2) and (1.3), and φ ∈ C2,1
c (Rn). Let 0 < t1 < t2 < T . Then, there exists C > 0

such that
∥D2

xu∥L∞(Rn×[t1,t2]) + ∥∂t∇u∥L∞(Rn×[t1,t2]) + ∥∂ttu∥L∞(Rn×[t1,t2]) ≤ C.

The constant C depends only on φ, t1, t2, T , s, the dimension and the ellipticity constants.

Proof. By Proposition 1.4.1, there exists η ∈ (0, 1) such that η|∇v| ≤ vt in Rn × [ t1
3 ,

t2+2T
3 ]. Let

e be a vector in the x directions with |e| ≤ 1, and let ν = en+1 +ηe. Thus, ∂νv = (∂t +η∂e)v ≥ 0
in Rn × [ t1

3 ,
t2+2T

3 ].
Besides, for any given (x, t) ∈ Rn × (0, T ) and r ∈ (0, 2−1− 1

2s t), consider the cutoff ψ ∈
C∞

c (Q
21+ 1

2s r
(x, t)) with ψ ≡ 1 in Q

2
1

2s r
(x, t). By Proposition 1.2.4, since |ν| ≤

√
2, vνν ≥ −2Ĉ,

and Ĉ does not depend on the choice of ν. Then,

0 ≤
ˆ

Q
2

1
2s r

(x,t)
vνν + 2Ĉ ≤

ˆ
Q

21+ 1
2s r

(x,t)
(vνν + 2Ĉ)ψ =

ˆ
Q

21+ 1
2s r

(x,t)
vψνν + 2Ĉψ ≤ C(r),

and then ∥vνν∥L1(Q
2

1
2s r

(x,t)) ≤ C(r) + 2Ĉ|Q
2

1
2s r

| =: C1(r). Observe that this bound is indepen-
dent of (x, t) and ν.

Then we define the auxiliary function

w := ∂νv(x+ ηhe, t+ h) − ∂νv(x, t)
h

= 1
h

ˆ h

0
∂ννv(x+ ηζe, t+ ζ)dζ.

Since w is an average of vνν , we can obtain a L1 bound as well. Let h ∈ (0, r). Then,

∥w∥L1(Qr(x,t)) ≤ 1
h

ˆ h

0
∥vνν∥L1(Qr(x+ηζe,t+h))dζ ≤ ∥vνν∥L1(Q

2
1

2s r
(x,t)) = C1(r).

This shows that w ∈ L1((t3, t4] → L1
s(Rn)) for any t3, t4 ∈ (0, T − h]. Let us compute it:

Let r ∈ (0, 2−1− 1
2s t3) and N = ⌈ t4−t3

2r
⌉. Then, we decompose the space in the following way:

∥w∥L1((t3,t4]→L1
s(Rn)) ≤

N−1∑
i=0

∥w∥L1((t3+2ir,t3+2(i+1)r]→L1
s(Rn)) + ∥w∥L1((t4−2r,t4]→L1

s(Rn))

=
N−1∑
i=0

ˆ t3+2(i+1)r

t3+2ir

ˆ
Rn

|w(x, t)|
1 + |x|n+2s

dxdt+
ˆ t4

t4−2ir

ˆ
Rn

|w(x, t)|
1 + |x|n+2s

dxdt

≤
N−1∑
i=0

∑
x∈Zn

ˆ t3+2(i+1)r

t3+2ir

ˆ
Br(rx/

√
n)

|w(x, t)|
1 + |x|n+2s

dxdt

+
∑

x∈Zn

ˆ t4

t4−2ir

ˆ
Br(rx/

√
n)

|w(x, t)|
1 + |x|n+2s

dxdt

=
N−1∑
i=0

∑
x∈Zn

ˆ
Qr(rx/

√
n,t3+(2i+1)r)

|w(x, t)|
1 + |x|n+2s

dxdt+
∑

x∈Zn

ˆ
Qr(rx/

√
n,t4−r)

|w(x, t)|
1 + |x|n+2s

dxdt

≤ N
∑

x∈Zn

C1(r)
1 + (|rx/

√
n| − r)n+2s

+
=: NC2(r).
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Moreover, let τyw be the translation of w by the vector y ∈ Rn. Analogously, we can deduce
that

∥τyw∥L1((t3,t4]→L1
s(Rn)) ≤ NC2(r),

independently of y.
Now, recall that v is a solution of (∂t + L)v = −Lφ in the set {v > 0}. Furthermore, if

v > 0 at (x, t) ∈ Rn × [ t1
3 ,

t2+2T
3 ], since ∂νv ≥ 0, v(x+ ηhe, t+ h) > 0 also holds (provided that

t+ h ≤ t2+2T
3 ), and it follows that the translated function is also a solution. Hence,

∂tw + Lw = η
∂eLφ(x) − ∂eLφ(x+ ηhe)

h
in {v > 0} ∩

(
Rn ×

[
t1
3 ,
t2 + 2T

3 − h
])
,

and then |∂tw + Lw| ≤ C∥Lφ∥C1,1(Rn) ≤ C∥φ∥C2,1(Rn) in

{v > 0} ∩
(
Rn ×

[
t1
3 ,
t2 + 2T

3 − h
])

⊂ {v > 0} ∩
(
Rn ×

[2t1
3 ,

2t2 + T

3

])
,

provided that h is small enough.
Moreover, if (x1, t1) ∈ {v = 0}∩(Rn×[2t1

3 ,
2t2+T

3 ]), then ∂νv(x1, t1) = 0, and using Proposition
1.4.5 and taking h small enough, it follows that

w(x1, t1) = ∂νv(x1 + ηhe, t1 + h)
h

≤ 2vt(x1 + ηhe, t1 + h)
h

≤ 2M(t1 + h− Γ(x1 + ηhe))+

h
≤ 2M(h+ C0ηh|e| + t1 − Γ(x1))

h
≤ 4M.

Therefore, w̃ = max{w, 4M} is a subsolution for

∂tw̃ + Lw̃ ≤ C∥φ∥C2,1(Rn) in Rn ×
[2t1

3 ,
2t2 + T

3

]
,

and we can apply Lemma 1.6.3 to τyw̃ obtain

sup
B1×[t1,t2]

τyw̃ ≤ C
(

∥τyw̃∥
L1(( 2t1

3 ,
2t2+T

3 ]→L1
s(Rn)) + ∥φ∥C2,1(Rn)

)
,

with C depending only on t1, t2, T , the dimension, the ellipticity constants and s. Then, since
the bound is uniform on y, it follows from the definition of w that

sup
Rn×[t1,t2]

w ≤ C(NC2(r) + 2M + ∥φ∥C2,1(Rn)) =: C0.

Since C0 does not depend on ν or h, combining this with Proposition 1.2.4, it follows that
∥vνν∥L∞(Rn×[t1,t2]) ≤ C∗ = max{C0, 2Ĉ} for all ν = en+1 + ηe with e in the x direction and
|e| < 1.

Now, let e = λê with ê a unit vector. Then,

D2
en+1+ηev = vtt + η(vte + vet) + η2vee = vtt + ηλ(vtê + vêt) + η2λ2vêê.
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Since this expression is bounded by C∗ for all values of ê and λ ∈ (−1, 1), we can evaluate
at λ = 0, 1

2 ,−
1
2 to get:

|vtt| ≤ C∗∣∣∣∣vtt + 1
2η(vtê + vêt) + 1

4η
2vêê

∣∣∣∣ ≤ C∗∣∣∣∣vtt − 1
2η(vtê + vêt) + 1

4η
2vêê

∣∣∣∣ ≤ C∗,

and then it is easy to check that |vêê| + |vtê + vêt| ≤ C(η)C∗.
Hence, for any e ∈ Sn (all unit vectors in x, t), |vee| ≤ C ′(η)C∗. Then, given two points

(x1, t1) and (x2, t2) in Rn × [t1, t2],

|v(x1, t1) − ∇x,tv(x1, t1) · (x2 − x1, t2 − t1) − v(x2, t2)| ≤ C ′(η)C∗∥(x1 − x2, t1 − t2)∥2.

This means that v ∈ C1,1(Rn × [t1, t2]), and u = v + φ as well.

We can now give the:

Proof of Theorem 1.1.1. The global Lipschitz regularity follows from Proposition 1.3.1. The
C1,1 regularity follows from Proposition 1.4.6.

1.5 Regularity of the free boundaries
In this section we use the regularity of the solutions established before to deduce the regularity
of the free boundaries. Here again, we will use crucially the fact that s < 1

2 . We first take
advantage of the different orders of derivation in the equation (1.1) to obtain further regularity
in t.

Lemma 1.5.1. Let s ∈ (0, 1
2), let u be the solution of (1.1) with L an operator satisfying (1.2)

and (1.3), and φ ∈ C2,1
c (Rn). Let v = u−φ, and let 0 < t1 < t2 < T . Then, there exists C > 0

such that
∥vtt∥Cα((Rn×[t1,t2])∩{v>0}) +

n∑
i=0

∥vti∥Cα((Rn×[t1,t2])∩{v>0}) ≤ C.

where α = 1 − 2s > 0.

Proof. Let ν ∈ Sn be any unit vector in x and t, and let w = ∂νu. Then, by Proposition 1.4.6,
∥w∥C0,1(Rn×[t1,t2]) ≤ C. Moreover, by the same arguments as in the proof of Proposition 1.3.2,
we deduce ∥Lw∥Cα(Rn×[t1,t2]) ≤ C.

Then, since vt = ut = −Lu in {v > 0}, differentiating the equation with respect to ν it
follows that wt = −Lw in {v > 0}, and therefore ∥vtν∥Cα(Rn×[t1,t2]) ≤ C.

We next show that the free boundary is C1,α.

Theorem 1.5.2. Let s ∈ (0, 1
2), and let u be the solution of (1.1) with L an operator satisfying

(1.2) and (1.3), and φ ∈ C2,1
c (Rn). Let 0 < t1 < t2 < T .

Then, the free boundary is a C1,α graph in the t direction in Rn × [t1, t2], i.e.

∂{u > φ} ∩ (Rn × (t1, t2)) = {t = Γ(x)},

with Γ ∈ C1,α and α = 1 − 2s > 0.
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Proof. We already know that the free boundary is a Lipschitz graph by Proposition 1.4.1. Then,
let α = 1 − 2s. By Lemma 1.5.1,

∥vtt∥Cα((Rn×[t1,t2])∩{v>0}) +
n∑

i=0
∥vti∥Cα((Rn×[t1,t2])∩{v>0}) ≤ C.

Then, vtt > 0 at the free boundary by Proposition 1.4.3, and by continuity vtt ≥ c0 in
E = {t ∈ [Γ(x),Γ(x) + δ]} ∩ [t1, t2] for some small δ > 0. Thus,∥∥∥∥vti

vtt

∥∥∥∥
Cα(E)

≤ C.

Finally, notice that the free boundary can be seen as the zero level surface of vt. The normal
vector to the level surfaces of vt is given by the formula

ν = ∇x,tvt

|∇x,tvt|
= (∂t1v/∂ttv, . . . , ∂tnv/∂ttv, 1)√

1 +
n∑

j=1
(∂tjv/∂ttv)2

,

and therefore ν ∈ Cα(E) uniformly, thus {vt = 0} is a C1,α manifold, as desired.

Once we know that the free boundary is a C1,α graph, we can provide an expansion for the
solution.

Corollary 1.5.3. Let s ∈ (0, 1
2), and let u be the solution of (1.1) with L an operator satisfying

(1.2) and (1.3), and φ ∈ C2,1
c (Rn). Let (x0, t0) ∈ ∂{u > φ} be a free boundary point. Then,

ut(x0 + x, t0 + t) = c0(t− a · x)+ +O(t1+α + |x|1+α)

and
(u− φ)(x0 + x, t0 + t) = c0

2 (t− a · x)2
+ +O(t2+α + |x|2+α),

with α = 1 − 2s > 0, c0 = utt(x0, t0) > 0 and a = ∇Γ(x0).

Proof. We will use strongly that Γ ∈ C1,α by Theorem 1.5.2, and that ut ∈ C1,α({u > φ}) by
Lemma 1.5.1.

We distinguish two cases. If (x0 + x, t0 + t) ∈ {u = φ}, t0 + t ≤ Γ(x0 + x), then expanding
Γ(x0 + x) = t0 + ∇Γ(x0) · x+O(|x|1+α) we obtain

t− ∇Γ(x0) · x ≤ O(|x|1+α),

and therefore
(t− ∇Γ(x0) · x)2

+ ≤ O(|x|2+2α) ≤ O(|x|2+α),
and since (u− φ)(x0 + x, t0 + t) = ut(x0 + x, t0 + t) = 0 this is exactly what we needed.

On the other hand, outside of the contact set,

ut(x0 + x, t0 + t) =
ˆ t0+t

Γ(x0+x)
utt(x0 + x, τ)dτ

= (t0 + t− Γ(x0 + x))(utt(x0, t0) +O(tα + |x|α))
= (t− ∇Γ(x0) · x)+utt(x0, t0) +O(t1+α + |x|1+α),
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where in the last equality we expanded Γ(x0 +x) as before, and if t− ∇Γ(x0) ·x ≤ 0, the whole
term is O(t1+α + |x|1+α) and can be absorbed in the error term because t0 + t− Γ(x0 + x) ≥ 0.

Then, we can repeat the procedure and integrate ut, knowing already its expansion, and the
conclusion follows from an analogous computation.

We can now give the:

Proof of Theorem 1.1.2. The first part is Theorem 1.5.2, the second part is Corollary 1.5.3.

1.5.1 Regular and singular points
Definition 1.5.4. Let s ∈ (0, 1

2), and let u be the solution of (1.1) with L an operator satisfying
(1.2) and (1.3), and φ ∈ C2,1

c (Rn). Let (x0, t0) ∈ ∂{u > φ} be a free boundary point. Then,

• We say (x0, t0) is a regular free boundary point if there exists c0 > 0 such that for all
small r > 0,

∥u(·, t0) − φ∥L∞(Br(x0)) ≥ c0r
2.

• We say (x0, t0) is a singular free boundary point if it is not regular.

One important first observation is the following.

Proposition 1.5.5. Let s ∈ (0, 1
2), and let u be the solution of (1.1) with L an operator

satisfying (1.2) and (1.3), and φ ∈ C2,1
c (Rn). Then, if (x0, t0) is any free boundary point, the

following are equivalent:

i. (x0, t0) is a regular free boundary point.

ii. If ν0 is the normal vector to the free boundary at (x0, t0), ν0 ̸= en+1.

iii. ∇ut(x0, t0) ̸= 0.

Moreover, the set of regular free boundary points is an open subset of ∂{u > φ}.

Proof. (ii) ⇔ (iii):
It follows directly from

ν0 = (∇ut(x0, t0), utt(x0, t0))√
1 + |∇ut(x0, t0)|2/utt(x0, t0)2

and the fact that utt(x0, t0) > 0.
(i) ⇔ (ii):
We will distinguish the cases ν0 = en+1 and ν0 ̸= en+1. If ν0 = en+1, let {t = Γ(x)} be the

free boundary. Then, Γ ∈ C1,α and ∇Γ(x0) = 0 because ν0 = en+1. Then,

Γ(x0 + x) ≥ t0 − C|x|1+α,
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and therefore

(u− φ)(x0 + x, t0) ≤
ˆ t0

Γ(x0+x)

ˆ τ

Γ(x0+x)
uttdτ ′dτ

≤ (t0 − Γ(x0 + x))2

2 ∥utt∥L∞(Rn×[Γ(x0+x),t0])

≤ C|x|2+2α,

contradicting the assumption that (x0, t0) is a regular point.
On the other hand, if ν0 = αen+1 + βe, with e a unit vector in the x directions and β > 0,

we can also approximate Γ as

Γ(x0 + x) ≤ t0 − β

α
(x · e) + C|x|1+α.

Notice that α ̸= 0 because utt > 0 on the free boundary as a consequence of Proposition
1.4.3. We also need to use that, for some small δ > 0, utt ≥ cδ > 0 in the set Eδ = {t ∈
[Γ(x),Γ(x) + δ]} ∩ [t0 − δ, t0 + δ], by the same argument as in the proof of Theorem 1.5.2.

Then, if r is small,

∥u(·, t0) − φ∥L∞(Br(x0)) ≥ u(x0 + r

2e, t0) − φ(x0 + r

2e) ≥ 1
2

(
βr

2α − Cr1+α

)2

cδ ≥ c0r
2.

For the last part, first notice that ∇ut is a continuous function in {u > φ} because ut ∈
C1,α({u > φ}) by Lemma 1.5.1. As a consequence, the set of regular points, {∇ut ̸= 0}∩∂{u >
φ}, is a relatively open set.

In a neighbourhood of a regular free boundary point, the free boundary is also C1,α in space:

Proposition 1.5.6. Let s ∈ (0, 1
2), and let u be the solution of (1.1) with L an operator

satisfying (1.2) and (1.3), and φ ∈ C2,1
c (Rn). Let (x0, t0) be any regular free boundary point.

Then, there exists an open neighbourhood x0 ∈ U ⊂ Rn × (0, T ) such that the free boundary
is a C1,α graph in the x direction, i.e., there exists i ∈ {0, . . . , n} such that

∂{u > φ} ∩ U = {xi = Fi(x1, . . . , xi−1, xi+1, . . . , xn, t)},

with Fi ∈ C1,α and α = 1 − 2s > 0.

Proof. First, by Theorem 1.5.2, the free boundary can be represented as
∂{u > φ} = {t = Γ(x)} in a neighbourhood of (x0, t0), with Γ ∈ C1,α. Moreover, since
(x0, t0) is regular, by Proposition 1.5.5, the normal vector to the free boundary ν(x0,t0) ̸= en+1,
and thus ∇Γ(x0) ̸= 0, and in particular ∂xi

Γ(x0) ̸= 0.
Therefore, by the implicit function theorem, {u > φ} ∩ {t = t0} is locally a C1,α graph of the

form (x1 . . . , xi−1, xi+1, . . . , xn, t) 7→ xi.

On the other hand, in the time slice of a singular point, the free boundary could be very
complicated. Nevertheless, we can prove that singular points are scarce. To do so, we will use
the following lemma from geometric measure theory.
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Lemma 1.5.7 ([102]). Consider the family {Et}t∈(0,T ) with Et ⊂ Rn, and let us denote E :=⋃
t∈(0,T )

Et.

Let 1 ≤ γ ≤ β ≤ n, and assume that the following holds:

• dimH Et ≤ β,

• for all ε > 0, t0 ∈ (0, T ) and x0 ∈ Et0, there exists ρ > 0 such that

Br(x0) ∩ Et = ∅,

for all r ∈ (0, ρ) and t > t0 + rγ−ε.

Then, dimH Et ≤ β − γ, for H1-a.e. t ∈ (0, T ).

Using the global C1,α regularity of the free boundary, and noticing that the normal vector is
en+1 at singular points, we can prove the following dimension bound.

Proposition 1.5.8. Let s ∈ (0, 1
2), and let u be the solution of (1.1) with L an operator

satisfying (1.2) and (1.3), and φ ∈ C2,1
c (Rn). Let Σ ⊂ ∂{u > φ} be the set of singular free

boundary points, and let Σt = {(x, t′) ∈ Σ : t′ = t} be the time slices of the singular set.
Then,

dimH Σt ≤ n− 1 − α, for almost every t ∈ (0, T ),

with α = 1 − 2s > 0. In particular, Hn−1(Σt) = 0 for almost every t ∈ (0, T ).

Proof. We just need to check the hypotheses of Lemma 1.5.7, with β = n and γ = 1 + α. The
first condition is obvious, because since Σt ⊂ Rn × {t}, dimH Σt ≤ n.

For the second condition, we use the C1,α regularity of the free boundary. Let x0 ∈ Et0 . This
means that (x0, t0) is a singular free boundary point. In particular, since vt(x0,Γ(x0)) = 0 and
vtt(x0, t0) ̸= 0,

∇Γ(x0) = −∇vt(x0, t0)
vtt(x0, t0)

= 0.

Now, Γ ∈ C1,α. Therefore, Γ(x) ≤ t0 + C|x− x0|1+α for all x ∈ Bρ(x0) for some ρ > 0.
Finally, for any ε > 0, there exists ρ(ε) such that for all r ∈ (0, ρ(ε)),

Γ(x) ≤ t0 + Cr1+α < t0 + r1+α−ε,

and thus Br(x0) ∩ Σt = ∅ for all t > t0 + r1+α−ε, completing the proof.

We finally give the:

Proof of Theorem 1.1.3. The first part follows from Proposition 1.5.5, the second is Proposition
1.5.6 and the last is Proposition 1.5.8.

74



1.6 Appendix: Some tools for nonlocal parabolic
equations

We start recalling the following estimates on the fundamental solution to the nonlocal heat
equation, see [58].

Theorem 1.6.1 ([58]). Let L be an operator satisfying (1.2) and (1.3), and let w ∈ L∞(Rn ×
(0, T )) be the solution of (∂t + L)w = 0 in Rn × (0, T )

w = w0 on {t = 0}.

Then,
w(x, t) = pt ∗ w0,

and pt is nonnegative, ∥pt(·, t)∥L1(Rn) = 1 for all t ∈ (0, T ),

(∂t + L)pt = 0 in Rn × (0, T ),

and
c1 min{t−

n
2s , t|x|−n−2s} ≤ pt(x) ≤ c2 min{t−

n
2s , t|x|−n−2s},

for some 0 < c1 < c2 depending only on T , the dimension, s and the ellipticity constants.

It is worth noticing that pt is an approximation to the identity, in the following sense.

Corollary 1.6.2. Let f ∈ L∞(Rn) be uniformly continuous, and define ft = pt ∗f for all t > 0,
with pt the fundamental solution introduced in Theorem 1.6.1. Then,

∥ft∥L∞(Rn) ≤ ∥f∥L∞(Rn)

and
∥ft − f∥L∞(Rn) → 0 as t → 0.

Proof. Since pt ≥ 0 and ∥pt(·, t)∥L1(Rn) = 1, the trivial bound of the convolution suffices to
obtain the first inequality.

For the second inequality, for any ε > 0 and any x ∈ Rn,

|ft(x) − f(x)| =
∣∣∣∣∣
ˆ
Rn

pt(y)(f(x− y) − f(x))dy
∣∣∣∣∣

≤
ˆ

Bδ

pt(y)|f(x− y) − f(x)|dy +
ˆ

Bc
δ

pt(y)|f(x− y) − f(x)|dy

≤ ε

ˆ
Bδ

pt + 2∥f∥L∞(Rn)

ˆ
Bc

δ

pt ≤ ε+ 2c2δ
−2s∥f∥L∞(Rn)t < 2ε,

as we can choose δ sufficiently small to ensure |f(x − y) − f(x)| < ε inside Bδ by uniform
continuity, and then use Theorem 1.6.1 and make t tend to zero.

We will also use the following L1 to L∞ bound for subsolutions.
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Lemma 1.6.3. Let L be an operator satisfying (1.2) and (1.3), and let w ∈ L∞(Rn × (−1, 0))
be a subsolution of

(∂t + L)w ≤ C0 in Rn × (−1, 0).
Then,

sup
B1×[−1+δ,0)

w ≤ C

(ˆ 0

−1

ˆ
Rn

|w(x, t)|
1 + |x|n+2s

dxdt+ C0

)
,

where C depends only on δ > 0, s, the dimension and the ellipticity constants.

Proof. Since w −C0(t+ 1) ≥ w −C0 and (∂t + L)(w −C0(t+ 1)) ≤ 0, we can assume without
loss of generality that C0 = 0.

Then, since w is a subsolution for the nonlocal heat equation, the following holds for any
−1 < t0 < t < 0:

w(x, t) ≤
ˆ
Rn

pt−t0(x− y)w(y, t0)dy,

where pt(x) is the heat kernel associated to the operator L (see Theorem 1.6.1). Then, given
δ > 0, x ∈ B1 and t ∈ [−1 + δ, 0) we can integrate the relation in time to obtain the following:

w(x, t) ≤
ˆ t− δ

2

t−δ

ˆ
Rn

pt−ζ(x− y)|w(y, ζ)|dydζ

≤
ˆ t− δ

2

t−δ

ˆ
Rn

C min{(t− ζ)− n
2s , (t− ζ)|x− y|−n−2s}|w(y, ζ)|dydζ

≤ C

ˆ t− δ
2

t−δ

ˆ
Rn

2
(t− ζ) n

2s + (t− ζ)−1|x− y|n+2s
|w(y, ζ)|dydζ

≤ C

ˆ t− δ
2

t−δ

ˆ
Rn

2
( δ

2) n
2s + δ−1|x− y|n+2s

|w(y, ζ)|dydζ

≤ C

ˆ t− δ
2

t−δ

ˆ
Rn

1
1 + |y|n+2s

|w(y, ζ)|dydζ,

and C depends on δ, and universal constants (n, s, λ and Λ).

For the interior regularity, we will need an analogue of [94, Corollary 3.4].

Proposition 1.6.4. Let L be an operator satisfying (1.2) and (1.3). Let u ∈ L∞(Rn × (−1, 0))
be a viscosity solution of ut + Lu = f in B1 × (−1, 0). Assume additionally that

C0 = sup
t∈(−1,0)

∥u(·, t)∥Cα(Rn) + sup
x∈Rn

∥u(x, ·)∥Cβ((−1,0))

+ sup
t∈(−1,0)

∥f(·, t)∥Cα(B1) + sup
x∈B1

∥f(x, ·)∥Cβ((−1,0)) < ∞,

for some α, β ≥ 0 (with the L∞ norm if α or β are 0).
Then, for all ε > 0, u ∈ Cα+2s−ε

x Cβ+1−ε
t (B1/2 × [−1

2 , 0]), and

sup
t∈[− 1

2 ,0]
∥u(·, t)∥Cα+2s−ε(B1/2) + sup

x∈B1/2

∥u(x, ·)∥Cβ+1−ε([− 1
2 ,0]) ≤ CC0,

where C only depends on the dimension, s, ε, and the ellipticity constants.
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Proof. The proof is the same as the proof of [94, Corollary 3.4], but using [180, Theorem 2.2]
instead of [94, Theorem 1.3].

Combining the heat kernel estimates with the interior regularity result, we obtain the follow-
ing bound.

Corollary 1.6.5. Let L be an operator satisfying (1.2) and (1.3), and let pt as introduced in
Theorem 1.6.1. Then, for all r0 > 0,

∥∇pt∥L∞(Bc
r0 ×(0,T )) ≤ C,

where C depends only on r0, T , the dimension, s and the ellipticity constants.

Proof. Assume after a scaling that r0 = 1. Iterating proposition 1.6.4, we obtain that

sup
t∈[−2−k,0]

∥pt(·, t)∥C1(B2−k ) ≤ C∥pt∥L∞(B1×(−1,0)),

for some big enough k depending only on s. After a scaling and a covering argument, for all
x ∈ Bc

1 it holds

∥∇pt∥L∞(Bδ/2(x)×[t− δ2s

2 ,t]) ≤ Cδ∥pt∥L∞(Bδ(x)×(t−δ2s,t)), for all t ∈ (δ2s, T ),
∥∇pt∥L∞(B

t
1

2s /2
(x)×[ t

2 ,t]) ≤ C0t
−1∥pt∥L∞(B

t
1

2s
(x)×(0,t)), for all t ∈ (0, T ),

where we leave δ > 0 to be chosen later.
Then, using Theorem 1.6.1, substituting the estimate |pt(x)| ≤ c2t|x|−n−2s,

∥∇pt∥L∞(Bδ/2(x)×[t− δ2s

2 ,t]) ≤ Cδc2t(1 − δ)−n−2s, for all t ∈ (δ2s, T ),

and
∥∇pt∥L∞(B

t
1

2s /2
(x)×[ t

2 ,t]) ≤ C0c2(1 − t
1

2s )−n−2s
+ , for all t ∈ (0, T ).

Finally, choosing δ = 1
4 , for all x ∈ Bc

1 and t ≥ 4−2s,

|∇pt(x, t)| ≤ C1/4c2t(3/4)−n−2s ≤ C1/4c2T (3/4)−n−2s,

and for all x ∈ Bc
1 and t ∈ (0, 4−2s),

|∇pt(x, t)| ≤ C0c2(3/4)−n−2s,

as we wanted to prove.

We will also make use of the following estimate for the nonlocal heat equation.

Proposition 1.6.6. Let L be an operator satisfying (1.2) and (1.3). Then, there exists δ > 0
such that the following holds. If b ∈ L∞ is continuous and satisfies{

|(∂t + L)b| ≤ δmax{|x|, 1}−n−2s in Rn × (0, 1)
b = b0 on {t = 0},

where b0 ≥ 0, supp b0 ⊂ B1 and ∥b0∥L1(B1) = 1, the following estimate holds:

c1t|x|−n−2s ≤ b(x, t) ≤ c2t|x|−n−2s for all (x, t) ∈ Bc
2 × (0, 1)

The constants δ, c1 and c2 are positive and depend only on the dimension, s and the ellipticity
constants.
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Proof. We will use Duhamel’s formula with the fundamental solution, together with Theorem
1.6.1. Let us take δ = 0 first and then we will show that the perturbation introduced by the
right hand side can be absorbed by the constants.

If |x| > 2 and t < 1, pt(x) ≍ t|x|−n−2s. Thus, if |x| ≥ 2, for all y ∈ B1, |x−y| ≍ |x|, and then

b(x, t) =
ˆ
Rn

pt(x− y)b0(y)dy =
ˆ

B1

pt(x− y)b0(y)dy

≍
ˆ

B1

t|x|−n−2sb0(y)dy = t|x|−n−2s.

Now, if we allow a right hand side in the PDE, making δ > 0, we obtain the following:∣∣∣∣∣bR(x, t) −
ˆ
Rn

pt(x− y)b0(y)dy
∣∣∣∣∣ ≤ δ

ˆ t

0

ˆ
Rn

pt−ζ(x− y) max{|y|, 1}−n−2sdydζ,

and then we can estimate the second integral as follows. First we separate the integral in pieces,
taking into account that pt(x− y) ≲ min{t− n

2s , t|x− y|−n−2s}, and also that |x| ≥ 2.

I1 :=
ˆ

B1

t|x− y|−n−2sdy ≲ t|x|−n−2s,

I2 :=
ˆ

B
t

1
2s

(x)
t−

n
2s max{1, |y|}−n−2sdy ≲ (t 1

2s )nt−
n
2s |x|−n−2s = |x|−n−2s,

I3 :=
ˆ

B1(x)\B
t

1
2s

(x)
t|x− y|−n−2s|y|−n−2sdy ≲ t(t 1

2s )−2s|x|−n−2s = |x|−n−2s,

I4 :=
ˆ

Bc
1∩Bc

1(x)
t|x− y|−n−2s|y|−n−2sdy = t

ˆ
Bc

1∩Bc
1(x)

|x− y|−n−2s|y|−n−2sdy

= 2t
ˆ

Bc
1∩{x·y≤|x|2/2}

|x− y|−n−2s|y|−n−2sdy ≲ t|x|−n−2s

ˆ
Bc

1

|y|−n−2sdy ≲ t|x|−n−2s,

where we used that |x− y| ≥ |x|
2 in the half-space {x · y ≤ |x|2/2} to estimate I4.

Putting everything together, we have
ˆ
Rn

pt(x− y) max{|y|, R}−n−2sdy ≤ I1 + I2 + I3 + I4 ≲ |x|−n−2s.

Therefore, the error term introduced by the right hand side in the PDE can be bounded by
the main term:∣∣∣∣∣bR(x, t) −

ˆ
Rn

pt(x− y)b0(y)dy
∣∣∣∣∣ ≤ δ

ˆ t

0

ˆ
Rn

pt−ζ(x− y) max{|y|, 1}−n−2sdydζ

≲ δt|x|−n−2s ≲ δ

ˆ
Rn

pt(x− y)b0(y)dy.

Thus, choosing δ small enough, we have bR(x, t) ≍ t|x|−n−2s for |x| ≥ 2.
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1.7 Appendix: The penalized parabolic obsta-
cle problem

First, we need that the penalized problem has a unique solution. To do that, we first prove
that there holds a comparison principle.

Lemma 1.7.1. Let ε > 0, let L be a nonlocal operator satisfying (1.2) and (1.3), and let
f, g, φ, ψ, u0 and v0 be uniformly Lipschitz and bounded, and let u and v be uniformly Lipschitz
and bounded solutions of the following parabolic problems:{

∂tu+ Lu = βε(u− φ) + f in Rn × (0, T )
u(·, 0) = u0,{

∂tv + Lv = βε(v − ψ) + g in Rn × (0, T )
v(·, 0) = v0,

where βε(z) = e−z/ε. Assume additionally that u0 ≤ v0, φ ≤ ψ and f ≤ g. Then, u ≤ v in
Rn × (0, T ).

Proof. Assume that inf(v−u) < 0, otherwise there is nothing to prove. Let δ > 0 small, M > 0
large to be chosen later, and let p(x) = (1 + |x|)s. First, one can check by a direct computation
that Lp is bounded. Then, the function

w(x, t) = v(x, t) − u(x, t) + δ

T − t
+ δp(x) + δM

has an absolute minimum in Rn × [0, T ], and taking δ small enough, the minimum is negative.
Let (x0, t0) be the minimum point. First, observe that, since the minimum is negative, t0 > 0,
because v ≥ u at t = 0. Notice also that t0 < T because δ(T − t)−1 tends to infinity as t → T .
Then, (x0, t0) is an interior point and then we can differentiate in t and evaluate L, which is
well defined thanks to the uniform Lipschitz regularity. Therefore,

vt(x0, t0) − ut(x0, t0) + δ

(T − t0)2 = 0

Lv(x0, t0) − Lu(x0, t0) + δLp(x0) ≤ 0.

Furthermore, we can also evaluate the equations at (x0, t0) to obtain

(∂t + L)u(x0, t0) = βε(u(x0, t0) − φ(x0)) + f(x0, t0)
(∂t + L)v(x0, t0) = βε(v(x0, t0) − ψ(x0)) + g(x0, t0).

And then combining the equations and using that βε is decreasing,

β(v − φ) − β(u− φ) ≤ β(v − ψ) + g − β(u− φ) − f

= (∂t + L)(v − u) ≤ δ

[
Lp− 1

(T − t0)2

]
≤ Cδ,

where we have omitted that all the functions are considered at the point (x0, t0) for ease of
read. It follows that v(x0, t0) − u(x0, t0) ≥ −C ′δ. Therefore, choosing M > C ′, w(x0, t0) > 0,
a contradiction. Therefore v ≥ u in Rn × (0, T ).
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Then, using the Perron method, one can construct a viscosity solution for the penalized
problem.

Proposition 1.7.2. For all ε > 0 and φ ∈ C2,1
c (Rn), there exists a unique viscosity solution,

uε ∈ C(Rn × [0, T ]) ∩ L∞(Rn × [0, T ]), to the penalized problem{
∂tu

ε + Luε = βε(uε − φ) in Rn × (0, T )
uε(·, 0) = φ+

√
ε,

where βε(z) = e−z/ε.

Sketch of the proof. The proof follows the standard techniques in viscosity solutions, see [119]
for a detailed explanation in the case of local operators.

To see existence, we construct a bounded continuous subsolution and supersolution, and then
we will take the infimum of all supersolutions as our solution.

It is easy to check that u−(x, t) = −∥φ∥L∞(Rn) is a subsolution. Indeed,

u−(·, 0) ≤ φ+
√
ε and (∂t + L)u− − βε(u− − φ) = −βε(u− − φ) ≤ 0.

On the other hand, u+(x, t) = ∥φ∥L∞(Rn) +
√
ε + t is a supersolution. The initial condition

is immediately fulfilled, and

(∂t + L)u+ − βε(u+ − φ) = 1 − βε(u+ − φ) ≥ 1 − βε(
√
ε) = 1 − e−1/

√
ε > 0.

Then, we can apply the standard procedure for viscosity solutions and define

u∗(x, t) := inf{u(x, t)| u is a supersolution},

and then it can be checked that u∗ is a solution in the viscosity sense. Furthermore, u− ≤ u∗ ≤
u+.

By interior regularity, such solution u∗ is a classical solution, and thus uniqueness follows
from Lemma 1.7.1.

Then, we prove some basic properties of solutions to this problem. The following lemma is
analogous to the first part of [42, Lemma 3.3] for our case, and the proof is very similar.

Lemma 1.7.3. Let L be an operator satisfying (1.2) and (1.3), let φ ∈ C2,1
c (Rn) and let uε be

the solution of (1.5).
Then,

βε(uε − φ) ≤ max{1, ∥Lφ∥L∞(Rn)}.

In particular,
uε − φ ≥ −ε ln+ ∥Lφ∥L∞(Rn).

Proof. If uε ≥ φ everywhere, then βε ≤ 1 and there is nothing to prove. Assume then otherwise,
i.e., inf

Rn×[0,T ]
(uε − φ) < 0.

Then, since uε ∈ L∞(Rn × (0, T )), if p(x) = (1 + |x|)s as in Lemma 1.7.1, for any δ > 0 the
function

w = uε − φ+ δ

T − t
+ δp
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has a minimum point (xδ
ε, t

δ
ε) ∈ Rn × [0, T ]. Furthermore, if δ is small enough, w(xδ

ε, t
δ
ε) < 0,

and it follows that tδε ∈ (0, T ). Hence, since the point is interior and uε is smooth, then
∂tw(xδ

ε, t
δ
ε) = 0 and Lw(xδ

ε, t
δ
ε) ≤ 0, which combined with the penalized equation (1.5) yields

βε(uε − φ)(xδ
ε, t

δ
ε) ≤ Lφ(xδ

ε) − δ

(T − tδε)2 − δLp(xδ
ε) ≤ ∥Lφ∥L∞(Rn) + Cδ.

Finally, since βε is decreasing and (uε −φ)(xδ
ε, t

δ
ε) → inf

Rn×[0,T ]
(uε −φ) as δ → 0, we obtain that

sup
Rn×[0,T ]

βε(uε − φ) ≤ ∥Lφ∥L∞(Rn),

as wanted.

We can also prove an upper bound for uε.

Lemma 1.7.4. Let L be an operator satisfying (1.2) and (1.3), let φ ∈ C2,1
c (Rn) and let uε be

the solution of (1.5).
Then,

uε(·, t) − φ ≤
√
ε+ 2tmax{1, ∥Lφ∥L∞(Rn)}.

Proof. First, let us compute

(∂t + L)(uε − φ) = βε(uε − φ) − Lφ ≤ max{1, ∥Lφ∥L∞(Rn)} + ∥Lφ∥L∞(Rn),

where we used Lemma 1.7.3 to estimate βε.
Therefore, if we define

w(x, t) = uε(x, t) − φ(x) −
√
ε− 2tmax{1, ∥Lφ∥L∞(Rn)},

we get that w(·, 0) ≡ 0 and that w is a subsolution, (∂t + L)w ≤ 0, by construction, and then
the comparison principle for classical solutions of the nonlocal parabolic equation yields the
result.

We also need to see that we can differentiate the penalized problem.

Lemma 1.7.5. Let L be an operator satisfying (1.2) and (1.3), let φ ∈ C2,1
c (Rn) and let uε be

the solution to the penalized problem (1.5). Then, given any unit vector ν ∈ Rn × R,

(∂t + L)uε
ν = β′

ε(uε − φ)(uε
ν − φν),

(∂t + L)uε
νν = β′

ε(uε − φ)(uε
νν − φνν) + β′′

ε (uε − φ)(uε
ν − φν)2,

uε
t(·, 0) = −Lφ+ e−1/

√
ε,

uε
tt(·, 0) = L2φ− 1

ε
e−1/

√
ε(e−1/

√
ε − Lφ),

where the two last expressions must be understood in the sense of the uniform limit as t → 0+.
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Proof. We will iterate Proposition 1.6.4. First, uε ∈ L∞(Rn × (0, T )) by Lemmas 1.7.3 and
1.7.4. Then, observe that βε(uε − φ) ∈ L∞ as well.

Let W = Wx × [t1, t2] be a compact cylinder in Rn × (0, T ). Then, by Proposition 1.6.4 and
a covering argument, ∥uε∥C2s−δ

x C1−δ
t (W ) ≤ C for a small δ > 0 to be chosen later. Since W is

arbitrary,
uε ∈ C2s−δ

x C1−δ
t (Rn × (0, T )),

and, since the previous estimates where invariant with respect to translations in x,

∥uε∥C2s−δ
x C1−δ

t (Rn×[t1,t2]) ≤ C(t1, t2),

for any 0 < t1 < t2 < T .
Now, repeating the same argument k times we obtain that

∥uε∥
C3,2s−δ

x C
k(1−δ)
t (Rn×[t1,t2]) ≤ C(t1, t2),

provided that k is large enough. The cap in the x regularity comes from the fact that φ ∈ C2,1
c

and then βε(uε − φ) cannot attain further regularity in x.
In particular, uε ∈ C3(Rn × (0, T )), it is a classical solution, and then uε

ν and uε
νν are at least

C1 in Rn × (0, T ), and they are also bounded for each t ∈ (0, T ), and therefore they are also
classical solutions of their respective equations.

For the initial conditions, we recover the expression of uε from Duhamel’s formula,

uε = pt ∗ φ+
√
ε+

ˆ t

0
pτ ∗

(
β(uε(·, t− τ) − φ)

)
dτ,

and then differentiate it with respect to t to get

uε
t = ∂tpt ∗ φ+ pt ∗ β|t=0 +

ˆ t

0
pτ ∗

(
β′(uε(·, t− τ) − φ)uε

t(·, t− τ)
)
dτ.

Then, notice that ∂tpt = −Lpt because pt is a solution, and it follows that
∂tpt ∗ φ = pt ∗ (−Lφ). Furthermore, β(uε − φ) ≡ e−1/

√
ε at t = 0, so putting everything

together,

uε
t = −pt ∗ (Lφ) + e−1/

√
ε − 1

ε

ˆ t

0
pτ ∗

(
β(uε(·, t− τ) − φ)uε

t(·, t− τ)
)
dτ. (1.6)

Since pt is an approximation to the identity (see Corollary 1.6.2) and β is bounded by Lemma
1.7.3, taking the L∞ norm we can conclude that

∥uε
t(·, t)∥L∞(Rn) ≤ C1 + C2

ˆ t

0
∥uε

t(·, τ)∥L∞(Rn)dτ,

which implies by the Gronwall inequality that uε
t ∈ L∞(Rn × (0, t)).

Then, again by (1.6), since β and uε
t are bounded, Lφ is uniformly C2 and pt is an approxi-

mation to the identity, it follows that uε
t → −Lφ+ e−1/

√
ε uniformly as t → 0+.

For the last identity, we first differentiate (1.6) with respect to time to obtain

uε
tt = −∂tpt ∗ (Lφ) − 1

ε
pt ∗ (βuε

t)|t=0 − 1
ε

ˆ t

0
pτ ∗ (β′(uε

t)2 + βuε
tt)(·, t− τ)dτ. (1.7)
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Now, by the same arguments used to simplify (1.6),

uε
tt = pt ∗

(
L2φ− 1

ε
e−1/

√
ε(−Lφ+ e−1/

√
ε)
)

− 1
ε

ˆ t

0
pτ ∗ (β′(uε

t)2 + βuε
tt)(·, t− τ)dτ,

and then using the boundedness of uε
t and a Gronwall inequality, analogously to what we did

with uε
t ,

uε
tt → L2φ− 1

ε
e−1/

√
ε(−Lφ+ e−1/

√
ε),

uniformly as t → 0+.

Finally, we prove that the solutions to the penalized problem converge to the solution to the
obstacle problem.

Proof of Lemma 1.2.2. Let ε ∈ (0, 1).
Step 1. First, recall the L∞ estimates for uε − φ. From Lemmas 1.7.3 and 1.7.4,

−ε ln+ ∥Lφ∥L∞(Rn) ≤ uε − φ ≤
√
ε+ 2tmax{1, ∥Lφ∥L∞(Rn)}.

Now we use interior estimates and Arzelà-Ascoli to show that uε → u0 locally uniformly
along a subsequence.

Let W ⊂⊂ Rn × (0, T ). Then, we can apply a version of [94, Theorem 1.3] to obtain

∥uε∥C1−δ
t (W ) + ∥uε∥

C
2s(1−δ)
x (W ) ≤ C

(
∥uε∥L∞(Rn×(0,T )) + ∥βε(uε − φ)∥L∞(Rn×(0,T ))

)
≤ C,

with C only depending on W , ∥Lφ∥L∞(Rn), δ > 0, the dimension, s, and the ellipticity constants,
because of the previous L∞ estimates on uε and βε.

Hence, choosing a suitable small δ, by the compact inclusion of Hölder spaces and Arzelà-
Ascoli, uεk → u0 uniformly in W for some subsequence εk → 0.

Now, consider a sequence of compact sets W0 ⊂ W1 ⊂ . . . such that their union is Rn ×
(0, T ) and repeat the same reasoning above. By a standard diagonalization argument, we can
construct a sequence εk such that uεk → u0 locally uniformly in Rn × (0, T ).

Step 2. Putting it together, we want to prove that, for all κ > 0, uεk → u0 also in the
L∞([0, T − κ] → L1

s) norm. To do it, let τ > 0 to be chosen later. Then, we distinguish two
cases. If t < τ ,

∥uεk(·, t) − u0(·, t)∥L1
s

≤ ∥uεk(·, t) − φ∥L1
s

+ ∥φ− u0(·, t)∥L1
s

≤ 2 sup
m≥k

∥uεm − φ∥L1
s

≤ 2C sup
m≥k

∥uεm − φ∥L∞(Rn)

< 2C
(√

εk + 2τ max{1, ∥Lφ∥L∞(Rn)}
)
.

On the other hand, if t ≥ τ we use the locally uniform convergence of the sequence. Let
R > 0. Then, for all t ∈ [τ, T − κ],

∥uεk(·, t) − u0(·, t)∥L1
s
≲ ∥uεk(·, t) − u0(·, t)∥L∞(BR) +R−2s∥uεk(·, t) − u0(·, t)∥L∞(Bc

R)

≲ ∥uεk(·, t) − u0(·, t)∥L∞(BR) + 2R−2s sup
m≥k

∥uεm(·, t)∥L∞(Bc
R)

≲ ∥uεk(·, t) − u0(·, t)∥L∞(BR) +R−2s,
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and then the second term tends to zero as R → ∞ and then the first term tends to zero as k
goes to infinity by the local uniform convergence.

Therefore, choosing first τ small, then R big and then k big, ∥uεk(·, t) − u0(·, t)∥L1
s

can be
made arbitrarily small, as we wanted to see.

Step 3. Then we prove that u0 is the solution of (1.1).
First, from the lower bound uεk ≥ φ− εk ln+ ∥Lφ∥L∞(Rn), taking the limit εk → 0 it becomes

clear that u0 ≥ φ. Then (∂t + L)uεk = βεk
(uεk − φ) ≥ 0, and the uniform limit of viscosity

supersolutions is also a supersolution (with the extra convergence assumption of Step 2), by
[55, Theorem 5.3].

Hence, we only need to check that (∂t +L)u0 = 0 in the set {u0(x, t) > φ(x)} in the viscosity
sense. Again by [55, Theorem 5.3], it suffices to check the following.

Consider a compact set E ⊂ {u0(x, t) > φ(x)}. By the uniform convergence of uεk to u0,
there exist µ > 0 and k0 such that for all k ≥ k0, uεk(x, t) > φ(x) +µ, for all (x, t) ∈ E. Hence,

(∂t + L)uεk(x, t) = βεk
(uεk − φ)(x, t) ∈ (0, e−µ/εk),

and the limit of the right hand side is zero when εk → 0.
Finally, from the L∞ estimates in Lemmas 1.7.3 and 1.7.4, it follows the concordance of the

initial conditions, u0(·, 0) = φ, and the continuity of u0 as t → 0+.
Step 4. Using the uniqueness of the solution we can eliminate the need to consider subse-

quences. Indeed, for any εn ↓ 0, we can repeat Steps 2 and 3 to obtain a subsequence uεnj that
converges locally uniformly to the solution of (1.1). Therefore, uε → u0 locally uniformly as
well.
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Chapter 2
Generic regularity of free boundaries for

the thin obstacle problem

The free boundary for the Signorini problem in Rn+1 is smooth outside of a degenerate set,
which can have the same dimension (n− 1) as the free boundary itself.

In [96] it was shown that generically, the set where the free boundary is not smooth is at
most (n− 2)-dimensional. Our main result establishes that, in fact, the degenerate set has zero
Hn−3−α0 measure for a generic solution. As a by-product, we obtain that, for n + 1 ≤ 4, the
whole free boundary is generically smooth. This solves the analogue of a conjecture of Schaeffer
in R3 and R4 for the thin obstacle problem.

2.1 Introduction
The Signorini problem (also known as the thin or boundary obstacle problem) is a classical free
boundary problem that was originally studied by Antonio Signorini in connection with linear
elasticity [183, 184, 127]. The same equations appear in a variety of settings such as Biology,
Fluid Mechanics, and Finance, and they have received a lot of interest from different areas
[81, 151, 66, 165, 91].

The thin obstacle problem is equivalent to the obstacle problem for the half-Laplacian
(−∆)1/2, and has been extensively studied by the mathematical community in the last two
decades; see [35, 7, 49, 11, 110, 160, 133, 72, 69, 107, 134, 65, 191, 93, 108], and the references
therein. In particular, the study of the Signorini problem is a crucial ingredient to understand
the free boundary in the thick obstacle problem [101, 102, 175, 174].

Obstacle problems belong to a wide class of problems known as free boundary problems, where
one of the unknowns is the contact set, and more precisely, its boundary, the free boundary.
There are explicit constructions [177] for the classical obstacle problem that give rise to free
boundaries having a set of singular points of the same dimension as the whole free boundary.
Still, singular points are expected to be infrequent: Schaeffer conjectured in 1974 ([176]) that,
for a generic boundary datum, the free boundary is regular. The conjecture was proved to hold
true in the plane R2 by Monneau in [154], and much more recently in a breakthrough work,
[102], Figalli, Ros-Oton, and Serra showed that it also holds in R3 and R4.

Given the parallels between the classical obstacle problem and the thin obstacle problem, it
is natural to extend the conjecture of Schaeffer to the setting of the latter:
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Conjecture 2.1.1. Generically, the free boundary in the Signorini problem is smooth.
Also for the thin obstacle problem, there are examples of particular solutions having non-

regular points of the same dimension as the whole free boundary (see e.g. [110, 96]). The
validity of the previous conjecture would imply that such solutions are rare.

Conjecture 2.1.1 was recently proved in R2 by the first author and Ros-Oton in [96] (with
operators div(|xn+1|a∇·) for a ∈ (−1, 1)). In this work, we will extend its validity to the
physical dimension R3, and R4. Moreover, we will also provide dimensional estimates for the
size of the set of degenerate points for dimensions n+ 1 ≥ 5.

2.1.1 The Signorini problem and the free boundary
The Signorini problem with zero obstacle (originally introduced as the Laplace equation with
ambiguous boundary conditions) can be written as{

∆u = 0 in B+
1

min{u,−∂xn+1u} = 0 on B1 ∩ {xn+1 = 0}. (2.1)

Alternatively, we study the problem posed in the whole ball B1 ⊂ Rn+1 (extending by even
symmetry) as 

∆u = 0 in B1 \ {xn+1 = 0}
min{u,−∆u} = 0 on B1 ∩ {xn+1 = 0}

u(x′, xn+1) = u(x′,−xn+1) in B1,
(2.2)

where now ∆u needs to be understood in the sense of distributions. For the Signorini problem,
solutions are always C1,1/2 (on each side in (2.2), see [7]).

Like the obstacle problem, the Signorini problem is a free boundary problem. That is, one
of the unknowns of the problem is the contact set

Λ(u) := {x′ ∈ Rn : u(x′, 0) = 0} × {0},

and in particular, its boundary (in the relative topology on the thin space), the free boundary

Γ(u) := ∂{x′ ∈ Rn : u(x′, 0) = 0} × {0}.

The free boundary has been mainly studied so far by means of blow-up methods. Namely,
assume that u is a solution to (2.2) with 0 ∈ Γ(u), and define the blow-up sequence

ur(x) := u(rx)
∥u∥L2(∂Br)

. (2.3)

It can be shown that, up to a subsequence rk ↓ 0, ur converges (locally uniformly) to a global
κ-homogeneous solution u0. The value κ is what we call the order or frequency of the free
boundary point.

The free boundary is divided into regular points, Reg(u) (with homogeneity κ = 3/2), and
degenerate points, Deg(u) (with homogeneity κ ≥ 2), [11]:

Γ(u) = Reg(u) ∪ Deg(u).

Moreover, for almost every solution, the dimension of the set of degenerate points is at most
n − 2, so they are rare [96]. We refer to [160, 91] for more details about the structure of the
free boundary, and the thin obstacle problem in general.
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2.1.2 Main results
We prove that generically, the set of degenerate points is empty in dimensions n + 1 = 3 and
n+ 1 = 4. More precisely, we consider monotone families of solutions as follows.

Let u : B1 × [−1, 1] → R be such that u(·, t) solves (2.2) for each t ∈ [−1, 1] and
u(·, t′) − u(·, t) ≥ 0 in B1
u(·, t′) − u(·, t) ≥ t′ − t on ∂B1 ∩ {|xn+1| ≥ 1

2}
∥u(·, t)∥C0,1(B1) ≤ 1,

(2.4)

for all −1 ≤ t < t′ ≤ 1. As there is no room for confusion, we will say that u : B1 × [−1, 1] → R
solves (2.2) if u(·, t) solves it for all t ∈ [−1, 1]. Our main result is the following:

Theorem 2.1.2. Let u : B1 × [−1, 1] → R be a solution to (2.2)-(2.4). Then, for almost every
t ∈ [−1, 1],

(a) If n ≤ 3, Deg(u(·, t)) = ∅.

(b) If n ≥ 4, dimH(Deg(u(·, t))) ≤ n− 3 − α◦, for some α◦ > 0 depending only on n.

Here, dimH denotes the Hausdorff dimension of a set; see for example [150, Chapter 4]. We
actually prove stronger results for several subsets of the free boundary, see Proposition 2.6.1.
See also subsection 2.2.5 for a sketch of the proof of Theorem 2.1.2.

As a consequence of our main result we obtain that, generically, free boundaries are smooth
in R3 and R4, thus showing that the analogue of Schaeffer’s conjecture for the thin obstacle
problem holds true in these dimensions.

Corollary 2.1.3. Conjecture 2.1.1 holds in R3 and R4.

We recall that this was only known in R2, [96].
Remark 2.1.4. The notion of genericity needs to be understood in the context of the theory
of prevalence, [118] (see also [158]). In this language, we will prove that the set of solutions
satisfying that the free boundary has an empty degenerate set is prevalent within the set of
solutions in R3 and R4 (say, given by C0 or L∞ boundary data). Alternatively, we show that
the set of solutions whose degenerate set is non-empty is shy. In particular, this means that for
almost every boundary data (see [158, Definition 3.1]) the corresponding solution has a smooth
free boundary (by [133, 72]).
Remark 2.1.5. The result in Corollary 2.1.3 is in correspondence with the results in the thick
case in [102], in R3 and R4 as well. Part of the appeal of the present manuscript is that, due
to the nature of the problem, the methods developed in [102] become much simpler in the
context of the Signorini problem (once combined with [65, 96, 93, 175]), allowing us to obtain
an equally strong result with far fewer technical details. Indeed, in our case, the free boundary
is a set of co-dimension 2 (instead of co-dimension 1), making it a set of zero harmonic capacity.
This implies, in particular, that the second-order expansion around singular points is harmonic
(see Propositions 2.2.8 and 2.2.10). Conversely, in the thick case, the second-order term in the
expansion around singular points can have different behaviors, one of them being, precisely, a
solution to a thin obstacle problem, that also needs to account for the curvature of the contact
set around the point, and has a different thin space at each point. Roughly speaking, the role

87



played by u− p in the thick case (where p is the first order expansion around a free boundary
point, that depends on the point), is now played by u (which is the same at all points, thus
allowing for a simpler analysis).

In the same way, this also means that the dimension in which Conjecture 2.1.1 holds cannot
be improved only using the approach in [102]. (More specifically, completely new ideas are
needed to improve the generic size of the set Γa

2(u); see subsections 2.2.2 and 2.2.5.)
Remark 2.1.6. In this work, we deal with the Signorini problem with zero obstacle, (2.1) or (2.2)
(as in [65, 93, 175]), which is a model case including the problem with an analytic obstacle.

Indeed, given a function φ : B′
1 ⊂ Rn → R where B′

1 denotes the unit ball in Rn, the Signorini
problem with obstacle φ is{

∆u = 0 in B1 ∩ {xn+1 > 0}
min{u(x′, 0) − φ(x′),−∂xn+1u(x′, 0)} = 0 for x′ ∈ B′

1.

When φ is analytic, it can be extended to a harmonic function in B1 ⊂ Rn+1 (i.e., with
φ̃(x′, 0) = φ(x′) for all x′ ∈ B1), even in the last coordinate, so that v := u − φ̃ is a solution
to the Signorini problem with zero obstacle, (2.2). That is, our result also applies to analytic
obstacles.
Remark 2.1.7. Apart from the aforementioned works, [102, 96], the recent preprints [99] and
[61, 62] obtain similar results using related techniques in the context of the Alt-Caffarelli and
Alt-Phillips functionals, and minimal surfaces, respectively.

2.1.3 Plan of the paper
This paper is organized as follows.

In Section 2.2 we introduce some technical tools, such as the frequency formula, and some
preliminary results. We also sketch the strategy of the proof of Theorem 2.1.2 at the end of the
section. Then, the goal of Section 2.3 is to recover the known dimensional bounds for Deg(u)
and one of its subsets, that we denote Γ∗(u) (see (2.5)), but for a monotone family of solutions
(instead of a single solution). In Section 2.4 we study the points of order 2, separating them into
ordinary quadratic points, for which we show an improved cleaning; and anomalous quadratic
points, for which we perform a further dimension reduction; and in Section 2.5 we study the
cubic points. Finally, in Section 2.6 we combine our results to compute the final dimensional
estimates.

2.2 Preliminaries
In this section we recall some background results and we develop some technical tools that will
be useful later. We start with the following Liouville-type result.

Lemma 2.2.1. Let u : Rn+1 → R be a κ-homogeneous solution to (2.2). Then,

(a) If u ≥ 0, then u ≡ 0.

(b) If u ≤ 0 and κ > 1, then u ≡ 0.
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(c) If ∂eu ≥ 0 for some direction e and κ ≥ 2, then u is invariant in the direction e.

Proof. (a) Suppose u is not identically zero. Then, by the Hopf lemma ∂n+1u(0, 0+) > 0, which
together with u being even in the xn+1 direction contradicts the fact that u is superharmonic
across the thin space {xn+1 = 0}.

(b) Suppose u is not identically zero. Then, by the Hopf lemma ∂n+1u(0, 0+) < 0. On the
other hand, ∇u(0) = 0 because the homogeneity of u is κ > 1. A contradiction.

(c) First, ∂eu(0) = 0 because κ ≥ 2. Assume by contradiction that ∂eu > 0 in {xn+1 > 0},
and thus by the Hopf lemma ∂n+1∂eu(0, 0+) > 0. Therefore, D2u(0) ̸≡ 0, which in turn implies
κ = 2, and it follows by [11, Theorem 3] that u(x) = ∑n

i=1 ai(x2
i − x2

n+1) with ai ≥ 0, after a
change of coordinates if necessary. Hence, ∂eu is linear and since ∂eu ≥ 0, we get ∂eu ≡ 0, a
contradiction.

We continue with a Hopf-type estimate to quantify the monotonicity of the families of solu-
tions near the thin space.

Lemma 2.2.2. Let u : B1 × [−1, 1] → R be a solution to (2.2)-(2.4). Then, for all t ≥ 0,

ht(x) := u(x, t) − u(x, 0) ≥ ct|xn+1| in B1/2,

for some c > 0 depending only on n.

Proof. By (2.4), ht ≥ 0 in B1, and ht ≥ t on ∂B1 ∩ {|xn+1| ≥ 1
2}. Let φ be such that φ = 1

on ∂B1 ∩ {|xn+1| ≥ 1
2}, φ = 0 on ∂B1 ∩ {|xn+1| < 1

2} and {xn+1 = 0}, and ∆φ = 0 in
B1 ∩ {xn+1 ̸= 0}. Then, on the one hand, thanks to the Hopf Lemma we have that φ ≥ c|xn+1|
in B1/2 for some c depending only on n; and on the other hand, by the maximum principle,
φ ≤ ht

t
in B1.

Given u : B1 × [−1, 1] → R a family of solutions of (2.2)-(2.4), we define the free boundary

Γ(u(·, t)) = ∂{x′ ∈ Rn : u((x′, 0), t) = 0} × {0},

and we denote
Γ :=

⋃
t∈[−1,1]

Γ(u(·, t)).

Analogously, we will denote by Reg and Deg the union of all regular and degenerate points
for a family of solutions. For our setting, it is convenient to define the following map:

Proposition 2.2.3 ([96, Corollary 2.7]). Let u : B1 × [−1, 1] → R be a solution to (2.2)-(2.4).
Then, the mapping τ : Γ → [−1, 1] defined as τ(x0) = t0 such that x0 ∈ Γ(u(·, t0)) is well
defined and continuous. Moreover, for any ε > 0, the map

Γ ∩B1−ε ∋ x0 7→ u(x0 + ·, τ(x0))

is continuous in the C0 norm.
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2.2.1 The frequency formula
Here, we recall and prove some facts about Almgren’s frequency function.

Given w ∈ H1loc, we define
ϕ(r, w) := D(r, w)

H(r, w) ,

where
D(r, w) := r1−n

ˆ
Br

|∇w|2 and H(r, w) := r−n

ˆ
∂Br

w2.

We recall that the frequency function ϕ is nondecreasing in r for solutions of (2.2):
Lemma 2.2.4 ([11, Lemma 1]). Let u be a solution to (2.2). Then, the function r 7→ ϕ(r, u)
is nondecreasing. Moreover, ϕ(r, u) is constant with respect to r, ϕ(r, u) ≡ λ, if and only if u
is λ-homogeneous.

This justifies that the frequency of a point x0, ϕ(0+, u(x0 + ·)), is always well defined; and
hence, we can stratify the free boundary according to the frequency κ as follows (see Proposition
2.2.3):

Γκ(u(·, t)) := {x0 ∈ Γ(u(·, t)) : ϕ(0+, u(x0 + ·, t)) = κ}, Γκ :=
⋃

t∈[−1,1]
Γκ(u(·, t)),

and we also introduce the sets
Γ≥κ(u(·, t)) :=

⋃
ν≥κ

Γν(u(·, t)), Γ≥κ :=
⋃

ν≥κ

Γν ,

Γ∗(u(·, t)) :=
⋃

ν∈R\S

Γν(u(·, t)), Γ∗ :=
⋃

ν∈R\S

Γν ,
(2.5)

where S = {1, 3
2 , 2, 3,

7
2 , 4, . . .} = N ∪ {2N − 1

2} is the set of possible homogeneities of the
solutions of Signorini in dimension n+ 1 = 2.

Observe that the frequency function can act as a proxy for the growth rate of a function:
Lemma 2.2.5. Let u : B1 → R be a solution to (2.2). Suppose that for 0 < r < R < 1 we
have λ ≤ ϕ(r, u) ≤ ϕ(R, u) ≤ λ. Then,(

R

r

)2λ

≤ H(R, u)
H(r, u) ≤

(
R

r

)2λ

.

Proof. Let ur := u(r·). Then, H(r, u) =
´

∂B1
u2

r, and integrating by parts,

H ′(r, u) = 2
r

ˆ
∂B1

ur∂νur = 2
r

(ˆ
B1

|∇ur|2 +
ˆ

B1

ur∆ur

)
= 2
r
D(u, r),

because ur∆ur = 0 for solutions of (2.2), and hence
H ′(r, u)
H(r, u) = 2

r
ϕ(r, u).

Then, integrating from r to R (and since ϕ is monotone nondecreasing, see Lemma 2.2.4),

2λ ln(R/r) ≤ ln
(
H(R, u)
H(r, u)

)
≤ 2λ ln(R/r),

and the conclusion follows.
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Finally, once the frequency is properly defined, we may recall two results that will be used
later. The first one is a strong comparison principle, from which we copy the proof for the
convenience of the reader.

Lemma 2.2.6 ([102, Lemma A.4]). Let u, v be two solutions of (2.2) satisfying u ≥ v in B1
and u(0) = v(0) = 0. If ϕ(0+, v) > 1 or v ≡ 0, then u ≡ v.

Proof. Assume by contradiction that u ̸≡ v. Then, u > v in {xn+1 > 0}, and by the Hopf
lemma ∂n+1(u − v)(0, 0+) > 0. On the other hand, since ϕ(0+, v) > 1 or v ≡ 0, ∇v(0) = 0,
and it follows that ∂n+1u(0, 0+) > 0, and since ∆u = 2∂n+1uHn|{xn+1=0} distributionally, this
contradicts the fact that ∆u ≤ 0.

The second one is the following cleaning result.

Proposition 2.2.7 ([96, Propositions 2.4 & 2.9]). Let u : B1 × [−1, 1] → R be a solution to
(2.2)-(2.4). Let δ > 0 small, and let x0 ∈ B1−δ ∩ Γ≥κ(u(·, t0)). Then, there exists ρ > 0 such
that

{(x, t) ∈ Bρ(x0) × [−1, 1] : t > t0 + C|x− x0|κ−1} ∩ {u = 0} ∩ {xn+1 = 0} = ∅,

for some constant C depending only on n, κ and δ. Moreover, if κ = 2, for every ε > 0 there
exists ρ > 0 such that

{(x, t) ∈ Bρ(x0) × [−1, 1] : t > t0 + C|x− x0|2−ε} ∩ {(x, t) : x ∈ Γ2(u(·, t))} = ∅,

for some constant C depending only on n and ε.

2.2.2 Quadratic points
Given u a solution to (2.2) and a singular point x0 ∈ Γ2(u), we denote by p2,x0 the first blow-up1

of u at x0,

p2,x0 := lim
r→0

u(x0 + r·)
r2 . (2.6)

This expression is uniquely defined by [110, Theorem 1.3.6 or Theorem 1.5.4], and p2,x0 ≡ 0
if and only if x0 ∈ Γ>2(u) (by [110, Lemmas 1.5.1 and 1.5.2]). The blow-up p2,x0 belongs to
the set of homogeneous quadratic harmonic even polynomials that are nonnegative on the thin
space, i.e.

P2 := {p : ∆p = 0, x · ∇p = 2p, p(x′, 0) ≥ 0, p(x′, xn+1) = p(x′,−xn+1)}.

Notice how p = 0 also belongs to P2.
The following proposition will allow us to perform a second blow-up at the points of frequency

2 to attain a finer understanding of singular points:
1Observe that these are not rescalings that preserve the L2(∂B1) norm (cf. the sequence (2.3)). In fact, at

singular points both types of rescalings coincide up to a multiplicative constant. By rescaling directly by r2 we
obtain the first order expansion of u, that is, u(x◦ + ·) = p2,x◦(x) + o(|x|2).
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Proposition 2.2.8 ([93, Proposition 2.2]). Let u be a solution to (2.2), and assume that
0 ∈ Γ≥2(u) (i.e. ϕ(0+, u) ≥ 2). Let p ∈ P2 and let w := u− p. Then, the function r 7→ ϕ(r, w)
is nondecreasing, and its derivative satisfies

ϕ′(r, w) ≥ 2
r

(´
B1
wr∆wr´

∂B1
w2

r

)2

,

with wr(x) := w(rx). Moreover, ϕ(0+, w) ≥ 2.

Proof. This result corresponds to [93, Proposition 2.2] in combination with the computations
inside its proof.

The following lemma asserts that the L2 rate of growth of u − p can be estimated by its
frequency (cf. Lemma 2.2.5).
Lemma 2.2.9. Let u : B1 → R be a solution to (2.2), and assume that 0 ∈ Γ2(u) (i.e.
ϕ(0+, u) = 2). Let p ∈ P2. Suppose that for 0 < r < R < 1 we have λ ≤ ϕ(r, u − p) ≤
ϕ(R, u− p) ≤ λ. Then, for any given δ > 0,(

R

r

)2λ

≤ H(R, u− p)
H(r, u− p) ≤ Cδ

(
R

r

)2λ+δ

,

where Cδ depends only on δ, λ, and the dimension.

Proof. First, we define w := u− p, wr := w(r·), and

F (r, w) :=
r1−n

´
Br
w∆w

r−n
´

∂Br
w2 =

´
B1
wr∆wr´

∂B1
w2

r

.

Since p ≥ 0 on the thin space, and ∆u = 0 outside of it, w∆w = −p∆u ≥ 0.
Observe that

H ′(r, w) = 2
r

ˆ
B1

|∇wr|2 + 2
r

ˆ
B1

wr∆wr ⇒ H ′(r, w)
H(r, w) = 2

r
(ϕ(r, w) + F (r)) .

Integrating, we get

ln
(
H(R,w)
H(r, w)

)
=
ˆ R

r

2
ρ

(ϕ(ρ, w) + F (ρ, w)) dρ.

On the one hand, since F (ρ, w) ≥ 0 and ϕ is nondecreasing (by Proposition 2.2.8),

ln
(
H(R,w)
H(r, w)

)
≥
ˆ R

r

2
ρ
ϕ(ρ, w)dρ ≥ 2λ ln(R/r),

and the inequality in the left follows. On the other hand, using Proposition 2.2.8,
ˆ R

r

F (ρ, w)dρ
ρ

≤
(ˆ R

r

F (ρ, w)2 dρ
ρ

)1/2 (ˆ R

r

dρ
ρ

)1/2

≤
(
λ− λ

2

)1/2

ln(R/r)1/2,

and then

ln
(
H(R,w)
H(r, w)

)
=
ˆ R

r

2
ρ

(ϕ(ρ, w) + F (ρ, w)) dρ ≤ 2λ ln(R/r) + C ln(R/r)1/2,

so that the conclusion follows by the estimate
√
t ≤ δt+ Cδ.
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By means of Proposition 2.2.8, quadratic free boundary points can be further stratified in
terms of a second blow-up. That is, if x0 ∈ Γ2(u), we define the second blow-up sequence

w̃r := u(x0 + r·) − p2,x0(r·)
∥u(x0 + r·) − p2,x0(r·)∥L2(∂B1)

,

which converges to a λ-homogeneous function with λ = ϕ(0+, u(x0 + ·) − p2,x0), up to a subse-
quence, thanks to the monotonicity of ϕ along u− p given by Proposition 2.2.8:

Proposition 2.2.10 ([93, Proposition 3.2]). For every sequence rj ↓ 0, there is a subsequence
rjl

↓ 0 such that w̃rjl
⇀ q in H1loc, and q ̸≡ 0 is a λ-homogeneous harmonic polynomial, with

λ = ϕ(0+, u(x0 + ·) − p2,x0) ∈ {2, 3, 4, . . .}.

Then, we define the ordinary and anomalous quadratic points as follows:

Γo
2(u) := {x0 ∈ Γ2(u) : ϕ(0+, u(x0 + ·) − p2,x0) ≥ 3}

Γa
2(u) := {x0 ∈ Γ2(u) : ϕ(0+, u(x0 + ·) − p2,x0) = 2},

(2.7)

and we define the sets Γo
2 and Γa

2 analogously for a family of solutions (cf. (2.5)). Ordinary
quadratic points are called generic quadratic points in [93], but we have decided to change the
terminology in order to avoid confusion.

The second blow-up satisfies the following orthogonality property with the first one, coming
from an optimality condition:

Lemma 2.2.11 ([93, Lemma 3.3]). Let u be a solution to (2.2) with 0 ∈ Γ2(u). Let p2 ∈ P2 be
the blow-up of u at 0, and let q be a second blow-up as introduced in Proposition 2.2.10. Then,

ˆ
∂B1

p2q = 0

and ˆ
∂B1

pq ≤ 0 ∀p ∈ P2.

2.2.3 Cubic points
We will take advantage of the following recently improved convergence to the cubic blow-up:

Theorem 2.2.12 ([175, Theorem 1.1]). Let u be a solution to (2.2) with 0 ∈ Γ3(u) and
∥u∥L∞(B1) ≤ 1. Then, there exists a 3-homogeneous solution to (2.2), p3, such that

∥u− p3∥L∞(Br) ≤ Cr3+α,

for some C, α > 0 depending only on n.

We will also use the following characterization of global cubic solutions.

Lemma 2.2.13 ([102, Lemma 5.2]). Let p3 be a 3-homogeneous solution to (2.2). Then,

p3(x) = |xn+1|(ax2
n+1 − x′ · Ax′),

where a ≥ 0, A is symmetric and nonnegative definite, and a = TrA.

93



2.2.4 Geometric measure theory tools
We will use the following Reifenberg-type result using the frequency function ϕ as f , to perform
dimension reduction arguments only at the points of continuity of ϕ.

Lemma 2.2.14 ([102, Lemma 7.3]). Let E ⊂ Rn, and f : E → R. Assume that, for any ε > 0
and x ∈ E, there exists ρ > 0 such that, for all r ∈ (0, ρ),

E ∩Br(x) ∩ f−1
(
[f(x) − ρ, f(x) + ρ]

)
⊂ {y : dist(y,Πx,r) ≤ εr},

for some m-dimensional plane Πx,r passing through x (possibly depending on r). Then, dimH(E) ≤
m.

We will also use the following abstract proposition in the proof of our main result, Theorem
2.1.2, in order to bound the sizes of each of the subsets of the free boundary.

Proposition 2.2.15 ([102, Corollary 7.8]). Consider the family {Et}t∈[−1,1] with Et ⊂ Rn, and
let us denote E := ⋃

t∈[−1,1]
Et.

Let 1 ≤ β ≤ n, and assume that the following holds:

• dimH E ≤ β,

• for all ε > 0, t0 ∈ [−1, 1], and x0 ∈ Et0, there exists ρ > 0 such that

Br(x0) ∩ Et = ∅,

for all r ∈ (0, ρ) and t > t0 + rγ−ε.

Then,

(a) If γ > β, dimH({t : Et ̸= ∅}) ≤ β/γ.

(b) If γ ≤ β, dimH(Et) ≤ β − γ, for H1-a.e. t ∈ [−1, 1].

2.2.5 Sketch of the proof
The proof is done by combining the ideas and techniques from [102] with the results in [65, 93,
96, 175].

The two key parts of our strategy are dimension reduction arguments for families of solutions
and cleaning lemmas combined with Proposition 2.2.15. We then apply the two steps to different
subsets of the free boundary, using the following stratification:

Deg(u) = Γo
2(u) ∪ Γa

2(u) ∪ Γ3(u) ∪ Γ≥7/2(u) ∪ Γ∗(u).

First, given a family of solutions u : B1×[−1, 1] → R to (2.2)-(2.4), using dimension reduction
arguments one can compute the maximum total dimension of each of the five sets for all the
solutions of the family at the same time, see Propositions 2.3.1 and 2.4.3. Here, monotonicity
is key to get the same results as one would get for a single solution.
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Then, for each type of points we use that if x0 ∈ Γ(u(·, t0)), there exists some r0 > 0 such
that u is positive (or identically zero, depending on the case) in one of the following sets

{x ∈ Br0 : |x− x0|γ < t− t0} or {x ∈ Br0 : |x− x0|γ < t0 − t},

and hence there are no other free boundary points there. This is done via an expansion of the
solution at x0 and comparison arguments. The novel results in this step are Propositions 2.4.1
and 2.5.1, that deal with quadratic and cubic points, respectively.

Finally, applying Proposition 2.2.15 one can get an estimate on the size of each of the degen-
erate strata for almost every solution. For n ≥ 4, the situation can be summarized as follows,
where α, γ ∈ (0, 1) are dimensional constants, and ε > 0 is an arbitrarily small number.

Set dimH Γ Cleaning exponent Generic2 dimH Γ
Γo

2 n− 1 3 − ε n− 4
Γa

2 n− 2 2 − ε n− 4
Γ3 n− 1 2 + γ n− 3 − γ

Γ≥7/2 n− 1 5/2 − ε n− 7/2
Γ∗ n− 2 1 + α n− 3 − α

For n = 2 and n = 3, the conclusion is that, generically, the free boundary contains no
degenerate points.

2.3 Dimensional bounds for Γ≥2 and Γ∗

First, we will estimate the size of the sets Γ≥2 and Γ∗ with a dimension reduction argument
(recall (2.5)), taking advantage of the fact that the possible global homogeneous solutions of
the Signorini problem are completely classified in low dimensions.

In particular, the goal of this section is to prove the following result:

Proposition 2.3.1. Let u : B1 × [−1, 1] → R be a solution to (2.2)-(2.4). Then,

(a) dimH(Γ≥2) ≤ n− 1 if n ≥ 2, and Γ≥2 is discrete if n = 1.

(b) dimH(Γ∗) ≤ n− 2 if n ≥ 3, Γ∗ is discrete if n = 2, and it is empty if n = 1.

In order to do it, we first show the following lemma (cf. [102, Lemma 6.5]).

Lemma 2.3.2. Let u : B1 × [−1, 1] → R be a solution to (2.2)-(2.4), with 0 ∈ Γ≥2(u(·, 0)). Let
xk ∈ Γ≥2 satisfy |xk| ≤ rk, with rk ↓ 0, tk := τ(xk) → 0, and assume that

ũrk
:= u(rk·, 0)

∥u(rk·, 0)∥L2(∂B1)
⇀ q in H1

loc(Rn+1), yk := xk

rk

→ y∞ ̸= 0, and κk → κ,

where
κk := ϕ(0+, u(xk + ·, tk)), κ := ϕ(0+, u(·, 0)),

and q ̸≡ 0 is a κ-homogeneous solution to (2.2).
Then, q is translation invariant in the direction y∞.
2In the sense of Remark 2.1.4.
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Proof. Let us define wk := u(xk + rk·, tk) and wk,0 := u(xk + rk·, 0) so that, for each k ∈ N,
they are ordered in B1/(2rk) (that is, either wk ≥ wk,0 or wk ≤ wk,0 in B1/(2rk)). Observe that,
by assumption, since ũrk

⇀ q and q ̸≡ 0,

wk,0

∥wk,0∥L2(∂B1)
= ũrk

(yk + ·)
∥ũrk

(yk + ·)∥L2(∂B1)
⇀

q(y∞ + ·)
∥q(y∞ + ·)∥L2(∂B1)

weakly in H1loc. We now divide the proof into two steps.
Step 1. We first prove that, up to a subsequence,

w̃k := wk

∥wk∥L2(∂B1)
→ Q locally uniformly,

for some Q a global κ-homogeneous solution to the Signorini problem.
Indeed, by the upper semicontinuity and monotonicity of ϕ, and the fact that κk → κ, for

all δ > 0 there exist rδ > 0 and kδ ∈ N such that

ϕ(r, u(xk + ·, tk)) ∈ (κ− δ, κ+ δ) ∀r ∈ (0, rδ), ∀k ≥ kδ,

and hence
ϕ(r, w̃k) ∈ (κ− δ, κ+ δ) ∀r ∈ (0, rδ/rk), ∀k ≥ kδ.

In particular, by Lemma 2.2.5,

H(R, w̃k) ≤ R2κ+2δH(1, w̃k) = R2κ+2δ ∀R ∈ [1, rδ/rk), ∀k ≥ kδ,

maybe with a smaller rδ > 0 and larger kδ. Combined with interior Lipschitz estimates [7,
Theorem 1], this implies that w̃k → Q locally uniformly, up to a subsequence, for some Q a
global solution to the thin obstacle problem. Moreover, thanks to the uniform C1,1/2 estimates
for solutions [7] we also have that ϕ(r, w̃k) → ϕ(r,Q) as k → ∞ for each r > 0 fixed (observe
that |∂n+1w̃k|2 is C1/2), and therefore

ϕ(r,Q) ∈ [κ− δ, κ+ δ] ∀r > 0.

Since this holds for any δ > 0, Lemma 2.2.4 yields that Q is κ-homogeneous.
Step 2. We now show that y∞ · ∇q has a constant sign and deduce that y∞ · ∇q = 0.
Let ε̂k := ∥wk∥L2(∂B1) + ∥wk,0∥L2(∂B1). By the first observation we have

ŵk,0 := wk,0/ε̂k ⇀ bq(y∞ + ·) =: Q̂0 weakly in H1loc

for some b ∈ [0, 1]. Moreover, by Step 1 and up to a subsequence,

ŵk := wk/ε̂k → aQ =: Q̂ locally uniformly,

with a ∈ [0, 1].
We cannot have a = b = 0, because it contradicts the fact that ∥Q̂∥L2(∂B1) + ∥Q̂0∥L2(∂B1) = 1.

Suppose now that a = 0. Then, for each k ∈ N, ŵk and ŵk,0 are ordered in B1/(2rk), and
therefore Q̂0 and Q̂ are ordered in Rn+1 (that is, either Q̂0 ≥ Q̂ ≡ 0 or Q̂0 ≤ Q̂ ≡ 0 in Rn+1).
Since q (and then Q̂0) is a global solution with homogeneity κ ≥ 2, by Lemma 2.2.1 it cannot
have constant sign, a contradiction. The same argument with Q gives that b cannot be zero.
Hence, a and b are both positive.
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If we assume without loss of generality that Q̂ ≥ Q̂0 and let z = λx, by homogeneity we have

aQ(x) ≥ bq(y∞ + x) ⇒ aQ(z) ≥ bq(λy∞ + z) ∀λ > 0 ⇒ aQ ≥ bq.

Since aQ and bq are ordered global solutions of (2.2) with homogeneity greater than 1, they
are equal by Lemma 2.2.6. It follows that

bq = aQ ≥ bq(y∞ + ·),

and by homogeneity again (since b > 0)

q ≥ q(λy∞ + ·) ∀λ > 0.

Thus, y∞ · ∇q ≤ 0, and applying Lemma 2.2.1(c), q is invariant in the y∞ direction.

We can now give the proof of Proposition 2.3.1.

Proof of Proposition 2.3.1. (a) We will apply Proposition 2.2.14 to the set Γ≥2 with the function
f : Γ≥2 → R given by

f(x0) = ϕ(0+, u(·, τ(x0))).

To obtain the desired result, thanks to Lemma 2.2.14 it suffices to prove the following: for
all x0 ∈ Γ≥2 and for all ε > 0, there exists ρ > 0 such that for all r ∈ (0, ρ),

Br(x0) ∩ Γ≥2 ∩ f−1
(
[f(x0) − ρ, f(x0) + ρ]

)
⊂ {y : dist(y,Πx,r) ≤ εr},

where Πx,r is a (n− 1)-dimensional plane passing through x0.
Assume without loss of generality that x0 = 0 and τ(x0) = 0, and let us prove the statement

by contradiction. If such ρ > 0 did not exist for some ε0 > 0, then we would have sequences
rk ↓ 0 and x

(j)
k ∈ Γ≥2 ∩Brk

, 1 ≤ j ≤ n, such that

y
(j)
k := x

(j)
k /rk → y(j)

∞ ∈ B1, dim(span(y(1)
∞ , . . . , y(n)

∞ )) = n, |f(x(j)
k ) − f(0)| ↓ 0.

Let ũr := u(r·)/H(r, u)1/2. Then, by [11, Section 4] ũr ⇀ q along a subsequence, where q is
a nonzero κ-homogeneous global solution to the Signorini problem (2.2). Also, since x0 ∈ Γ≥2,
κ ≥ 2.

Applying Lemma 2.3.2 to the sequences (x(j)
k , τ(x(j)

k )) we deduce that q is translation invariant
in the n linearly independent directions y(j)

∞ , 1 ≤ j ≤ n. It follows that q is a one dimensional
nonzero κ-homogeneous solution to Signorini, with κ ≥ 2, which contradicts the fact that the
only possible homogeneities in dimension one are 0 and 1.

(b) Repeating the arguments in (a), but with 1 ≤ j ≤ n − 1 instead, we end up with
a nonzero κ-homogeneous two dimensional solution to Signorini, but since x0 ∈ Γ∗, κ /∈
{1, 3

2 , 2, 3,
7
2 , 4, 5, . . .}, contradicting that these are the only possible homogeneities in dimension

2.
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2.4 Quadratic points

2.4.1 Ordinary quadratic points
If the next term of the expansion at a quadratic point is at least cubic (that is, we are at an
ordinary quadratic point, (2.7)), we can adapt the arguments in [102, Section 9] to improve the
cleaning rate up to 3 − ε. Hence, we show:

Proposition 2.4.1. Let u : B1 × [−1, 1] → R be a solution to (2.2)-(2.4). Assume that
0 ∈ Γo

2(u(·, 0)).
Then, for all ε > 0 there exists ρ > 0 such that

{(x, t) ∈ Bρ × [0, 1] : t > |x|3−ε} ∩ {u = 0} ∩ {xn+1 = 0} = ∅.

In order to prove Proposition 2.4.1, we first show the following auxiliary lemma.

Lemma 2.4.2. Let u : B1 × [−1, 1] → R be a solution to (2.2)-(2.4), with 0 ∈ Γ2(u(·, 0)). Let
Dr := ∂Br ∩ {|xn+1| > r/2}. Then, for every ε > 0,

min
Dr

ht := min
Dr

[u(·, t) − u(·, 0)] ≥ cεr
εt, ∀r ∈ (0, ρε), ∀t ∈ [0, 1],

for some cε, ρε > 0.

Proof. By [110, Theorem 1.3.6]),

u(x, 0) = p(x) + o(|x|2),

for some nonzero p ∈ P2. Therefore, for all δ > 0 there exists rδ > 0 such that for all ρ ∈ (0, 2rδ),

B1 ∩ {u(ρ·, 0) = 0} ∩ {xn+1 = 0} ⊂ Cδ :=
{
x ∈ Rn+1 : dist

(
x

|x|
, {p = 0} ∩ {xn+1 = 0}

)
<δ

}
.

Indeed, let m be the minimum of p in (∂B1 ∩ {xn+1 = 0}) \ Cδ. Since p ≥ 0 on the thin
space, m > 0. Now, choosing rδ small enough, for all ρ < rδ,

u(ρx, 0) ≥ p(ρx) − m

2 ρ
2|x|2 = ρ2|x|2

(
p

(
x

|x|

)
− m

2

)
> 0,

for all x ∈ (B1 ∩ {xn+1 = 0}) \ Cδ.
Let now φδ := |x|µ(δ)Φδ(x/|x|), where Φδ ≥ 0 is the first eigenfunction of the spherical

Laplacian on ∂B1 \Cδ, and µ(δ) is chosen so that φδ is harmonic when positive. Then, φδ is a
positive harmonic function defined in Rn \ Cδ vanishing on ∂Cδ.

Since p ̸≡ 0 and p is a homogeneous quadratic polynomial nonnegative on the thin space,
{p = 0} ∩ {xn+1 = 0} is a linear space of dimension at most n − 1, and in particular has zero
harmonic capacity. Therefore, as δ → 0, µ(δ) → 0, and we can choose δ such that µ(2δ) < ε.
Moreover, choosing δ < 1

4 , Drδ
and C2δ are disjoint.

Notice that ht = u(·, t) − u(·, 0) is harmonic in {u(·, 0) > 0} and in B1 \ {xn+1 = 0}. In
particular, ht is harmonic in

(B1 \ {xn+1 = 0}) ∪ (B2rδ
∩ {xn+1 = 0} \ Cδ) .
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Hence, using the monotonicity assumption (2.4) and the interior Harnack, there exists cδ > 0
such that

ht ≥ cδt on ∂Brδ
\ C2δ.

Then, we can use
wt := cδt

φ2δ

∥φ2δ∥L∞(∂Brδ
)

as a lower barrier in Brδ
\ C2δ because ht ≥ wt in ∂Brδ

\ C2δ by construction, and ht ≥ 0 and
wt = 0 on ∂C2δ.

Hence,
min
Dr

ht ≥ min
Dr

wt = crµ(2δ)t ≥ crεt ∀r ∈ (0, rδ),

as we wanted to see.

By means of the previous result, we can now prove the improved cleaning for the ordinary
quadratic points.

Proof of Proposition 2.4.1. By the definition of Γo
2, there exists a harmonic quadratic polyno-

mial p ∈ P2 such that

|r−2u(r·, 0) − p| ≤ Cr in B1, ∀r ∈ (0, 1),

Let us then bound v(x) := r−2u(rx, t). By Lemma 2.4.2 and the previous estimates, taking
t ≥ r3−2ε,

v(x) ≥ p(x) − Cr + cεr
ε−2tχ{|xn+1|>1/2} ≥ p(x) − Cr + cεr

1−εχ{|xn+1|>1/2} on ∂B1.

Let φ be a harmonic function in B1 with boundary data φ = χ{|xn+1|>1/2} on ∂B1. Then,
since v is superharmonic and p is harmonic,

v(x) ≥ p(x) − Cr + cεr
1−εφ in B1,

and using that φ ≥ c(n) > 0 in B1/2,

v ≥ p− Cr + cεc(n)r1−ε > 0 on B1/2 ∩ {xn+1 = 0},

for sufficiently small r, using that p ≥ 0 on the thin space.

2.4.2 Anomalous quadratic points
Now we consider the points in the set Γa

2 (see (2.7)). We will use a dimension reduction
argument to show that dimH(Γa

2) ≤ n−2. Hence, in this subsection we will prove the following
proposition.

Proposition 2.4.3. Let u : B1 × [−1, 1] → R be a solution to (2.2)-(2.4). Then, dimH(Γa
2) ≤

n− 2 if n ≥ 3, Γa
2 is discrete if n = 2, and it is empty if n = 1.

The following lemmas are analogous to the first part of [102, Section 6] combined with results
from [65, 93, 96]. The first one is about the continuity of the first and second blow-ups on the
set Γ2.
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Lemma 2.4.4. Let u : B1 × [−1, 1] → R be a solution to (2.2)-(2.4), and let us denote by p2,x

the blow-up of u(·, τ(x)) at x ∈ Γ≥2 according to (2.6); in particular, p2,x ≡ 0 if and only if
x ∈ Γ>2. Then:

(a) For all ρ < 1, Γ≥2 ∩Bρ is closed. Moreover, given a convergent sequence {xk} ⊂ Γ≥2 ∩Bρ,
xk → x∞,

p2,xk
→ p2,x∞ ,

where p2,x∞ ≡ 0 if x∞ ∈ Γ>2.

(b) The frequency function

Γ≥2 ∋ x0 7→ ϕ
(
0+, u(x0 + ·, τ(x0)) − p2,x0

)
is upper semicontinuous.

Proof. (a) We first show that if xk ∈ Γ≥2 and xk → x∞, then x∞ ∈ Γ≥2. Notice that tk :=
τ(xk) → t∞ := τ(x∞) by Proposition 2.2.3. Now, by [65, Proposition 7.1] (or by the frequency
gap [65, Theorem 4] if xk ∈ Γ>2) we have

∥u(xk + ·, tk) − p2,xk
∥L∞(Br) ≤ r2ω(r), ∀r > 0,

where ω is a universal modulus of continuity.
Then, p2,xk

→ P up to a subsequence for some harmonic 2-homogeneous polynomial P and,
by Proposition 2.2.3, u(xk + ·, tk) → u(x∞ + ·, t∞) in C0. Therefore,

∥u(x∞ + ·, t∞) − P∥L∞(Br) ≤ r2ω(r), ∀r > 0.

It follows that x∞ ∈ Γ≥2 and that p2,x∞ = P . Finally, the estimate can only hold for one unique
P , and a posteriori we deduce that for any other subsequence, p2,xkj

→ P up to a subsequence
again.

(b) First, we consider the function Γ≥2 ∋ x0 7→ ϕ(r, u(x0 + ·, τ(x0)) − p2,x0) for a fixed r > 0,

ϕ(r, u(x0 + ·, τ(x0)) − p2,x0) = r

´
Br

|∇u(x0 + ·, τ(x0)) − ∇p2,x0|2´
∂Br

(u(x0 + ·, τ(x0)) − p2,x0)2 .

Given a convergent sequence xk ∈ Γ≥2, xk → x∞, using (a) the terms involving the second
order polynomial converge. Then, u(xk + ·, τ(xk)) → u(x∞ + ·, τ(x∞)) in L∞ by the second part
of Proposition 2.2.3. Thus, the quotient is continuous because of the uniform C1,1/2 estimates
for u(·, t) [7] (observe that |∂n+1u(x0 + ·, τ(x0)) − ∂n+1p2,x0|2 = |∂n+1u(x0 + ·, τ(x0))|2 is C1/2 in
Br).

Our desired result now follows by taking the infimum over r > 0 of the family of continuous
functions Γ≥2 ∋ x0 7→ ϕ(r, u(x0 + ·, τ(x0)) − p2,x0) (this is an increaing family in r > 0, by
Proposition 2.2.8).

Then, we show that points in Γ2 only accumulate in the directions of the null space of the
blow-up.
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Lemma 2.4.5. Let u : B1 × [−1, 1] → R be a solution to (2.2)-(2.4), and let 0 ∈ Γ2(u(·, 0)).
Let xk ∈ Γ2 satisfy |xk| ↓ 0 and tk := τ(xk) ↓ 0. Let p2,k := p2,xk

. Then, p2,k → p2, with p2 the
blow-up of u(·, 0) at 0, and we have∥∥∥∥∥p2,k − p2

(
xk

|xk|
+ ·
)∥∥∥∥∥

L∞(B1)
≤ Cω(2|xk|),

∥p2,k − p2∥L∞(B1) ≤ Cω(2|xk|),

where ω is a universal modulus of continuity, and

dist
(
xk

|xk|
, {p2 = 0} ∩ {xn+1 = 0}

)
→ 0 as k → ∞.

Proof. By Lemma 2.4.4 (a), p2,k → p2, up to a subsequence. Let rk = |xk|, so that by [65,
Proposition 7.1] we have

∥r−2
k u(xk + rkx, tk) − p2,k(x)∥L∞(B2) ≤ 4ω(2rk)

and
∥r−2

k u(rkx, 0) − p2(x)∥L∞(B2) ≤ 4ω(2rk).

Thus, defining yk := xk/|xk|, for all x ∈ B2 we have the following: if tk ≤ 0,

−4ω(2rk) + p2,k(x) ≤ r−2
k u(xk + rkx, tk) ≤ r−2

k u(xk + rkx, 0) ≤ 4ω(2rk) + p2(yk + x),

and if tk ≥ 0,

4ω(2rk) + p2,k(x) ≥ r−2
k u(xk + rkx, tk) ≥ r−2

k u(xk + rkx, 0) ≥ −4ω(2rk) + p2(yk + x).

Assume without loss of generality that tk ≥ 0 and consider the function q(x) = p2,k(x) −
p2(yk + x) + 8ω(2rk). On the one hand, q is nonnegative and harmonic in B2. On the other
hand, since p2(yk + ·) ≥ 0 on {xn+1 = 0}, q(0) ≤ 8ω(2rk). Then, by the Harnack inequality,
0 ≤ q ≤ Cω(2rk) in B1.

Consequently,

∥p2,k − p2(yk + ·)∥L2(∂B1) ≤ C∥p2,k − p2(yk + ·)∥L∞(B1) ≤ Cω(2rk).

Finally, p2,k − p2 is 2-homogeneous and harmonic, and p2 − p2(yk + ·) is affine. Therefore,
they are orthogonal. Hence, when k → ∞,

∥p2,k − p2∥2
L2(∂B1) + ∥p2 − p2(yk + ·)∥2

L2(∂B1) = ∥p2,k − p2(yk + ·)∥2
L2(∂B1) → 0.

In particular, ∥p2 −p2(yk + ·)∥L2(∂B1) → 0, and it follows that dist(yk, {p2 = 0}∩{xn+1 = 0}) →
0.

The following auxiliary lemma plays a similar role to Lemma 2.3.2, but for the second blow-up
at anomalous quadratic points.
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Lemma 2.4.6. Let u : B1 × [−1, 1] → R be a solution to (2.2)-(2.4), let 0 ∈ Γa
2(u(·, 0)). Let

xk ∈ Γa
2 satisfy |xk| ≤ rk with rk ↓ 0 and tk := τ(xk) → 0. Assume that

w̃rk
:= w(rk·)

∥w(rk·)∥L2(∂B1)
⇀ q in H1

loc(Rn+1) for w := u(·, 0) − p2, yk := xk

rk

→ y∞,

where p2 is the blow-up of u(·, 0) at 0 and y∞ ̸= 0.
Then, q(y∞) = 0.

Proof. Let us define vk := u(xk + rk·, tk) − p2(rk·) = v
(1)
k + v

(2)
k + v

(3)
k , where

v
(1)
k := u(xk + rk·, tk) − u(xk + rk·, 0),
v

(2)
k := u(xk + rk·, 0) − p2(xk + rk·),
v

(3)
k := p2(xk + rk·) − p2(rk·).

Observe that w̃rk
⇀ q, and ∥q(yk + ·)∥L2(∂B1) ̸= 0 because q is homogeneous and nonzero by

Proposition 2.2.10. Therefore,

v
(2)
k

∥v(2)
k ∥L2(∂B1)

= wrk
(yk + ·)

∥wrk
(yk + ·)∥L2(∂B1)

= w̃rk
(yk + ·)

∥w̃rk
(yk + ·)∥L2(∂B1)

⇀
q(y∞ + ·)

∥q(y∞ + ·)∥L2(∂B1)
,

weakly in H1loc.
On the other hand, notice that the zero level set of a nonnegative homogeneous quadratic

polynomial coincides with the linear space of invariant directions. Let L := {p2 = 0} ∩ {xn+1 =
0}. Then, L is a linear subspace of dimension at most n − 1 because p2 ̸≡ 0 on the thin
space. Now, p2(y∞) = 0 by the second part of Lemma 2.4.5, and denoting zk the orthogonal
projections of yk onto L,

v
(3)
k

∥v(3)
k ∥L2(∂B1)

= p2(yk + ·) − p2

∥p2(yk + ·) − p2∥L2(∂B1)
= p2(yk − zk + ·) − p2

∥p2(yk − zk + ·) − p2∥L2(∂B1)
⇀ ∇p2 · e,

weakly in H1loc, up to a subsequence, because yk − zk → 0, and for some non-zero e ∈ L⊥.
We now divide the proof into three steps.
Step 1. We prove that

ṽk := vk

∥vk∥L2(∂B1)
⇀ Q in H1

loc(Rn+1)

for some Q with polynomial growth.
By Proposition 2.2.3 and the monotonicity of ϕ, there exist r0 > 0 and k0 ∈ N such that, for

M := ϕ(0+, u(·, 0) − p2) + 1, we have

ϕ(r, u(xk + ·, tk) − p2) ≤ M ∀r ∈ (0, r0), ∀k ≥ k0

and equivalently
ϕ(r, ṽk) = ϕ(r, vk) ≤ M ∀r ∈ (0, r0/rk), ∀k ≥ k0.

Applying Lemma 2.2.9 to vk, we obtain

H(R, ṽk) ≤ CR2M+1H(1, ṽk) = CR2M+1 ∀R ∈ [1, r0/rk), ∀k ≥ k0,
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maybe with a smaller r0 > 0, and then ∥ṽk∥H1(BR) ≤ C(R).
By compactness, it follows that ṽk ⇀ Q in H1

loc(Rn+1), up to a subsequence.
Step 2. Observe that q is harmonic by Proposition 2.2.10. We now prove that Q is harmonic

as well and grows at most quadratically at the origin.
First, ∆ṽk ≤ 0 in B1/rk

. Moreover, by [65, Proposition 7.1],

∥u(xk + ρ·, tk) − p2,xk
(ρ·)∥L1(∂B1) ≤ ρ2ω(ρ),

with ω(ρ) → 0 as ρ → 0, and hence

∥u(xk + ρ·, tk) − p2,xk
(ρ·)∥L∞(B1) ≤ Cρ2ω(ρ).

Furthermore, for R ≥ 1, substituting ρ = Rrk ≤ 1,

∥u(xk + rk·, tk) − p2,xk
(rk·)∥L∞(BR) ≤ C(Rrk)2ω(Rrk),

and for any x ∈ BR ∩ {u(xk + rkx, tk) = 0}, using that the polynomial is 2-homogeneous,

p2,xk
(x) ≤ CR2ω(Rrk) ⇒ p2(x) ≤ CR2ω(Rrk),

by Lemma 2.4.5.
Then, since p2 grows quadratically away from its zero set,

BR ∩ {u(xk + rk·, tk) = 0} ∩ {xn+1 = 0} ⊂{
y ∈ BR : dist(y, L) ≤ CR [ω(Rrk)]1/2

}
∩ {xn+1 = 0},

and the right hand side tends to 0 as k → ∞ for any fixed R. This shows that

sup{dist(x, L) : x ∈ BR ∩ {u(xk + rk·, tk) = 0}} ∩ {xn+1 = 0} ↓ 0,

and it follows that the weak limit of the sequence of nonpositive measures ∆ṽk will be supported
on L.

Finally, since L is a linear space of at most dimension n − 1, given any test function ξ ∈
C∞

c (Rn+1), it can be approximated in H1 norm by ξj → ξ that vanish on L. Hence,
ˆ

∇Q · ∇ξ = lim
j→∞

ˆ
∇Q · ∇ξj = − lim

j→∞

ˆ
ξj∆Q = 0,

and it follows that Q is harmonic. Observe, also, that by Lemma 2.2.9, given that xk ∈ Γ2,

H(ρ, vk) ≤ ρ4H(1, vk) ∀ρ ∈ (0, 1),

and hence in the limit ∥Q(ρ·)∥2
L2(∂B1) = H(ρ,Q) ≤ ρ4 for all ρ ∈ (0, 1), so Q is at most quadratic

at the origin.
Step 3. We finally prove that q(y∞) = 0.
First, let ε̂k := ∥v(1)

k ∥L2(∂B1) +∥v(2)
k ∥L2(∂B1) +∥v(3)

k ∥L2(∂B1) and v̂k := vk/ε̂k. By Step 1 we have
v̂k ⇀ Q̂ = aQ for some a ∈ [0, 1]. Moreover, by the first observations,

v
(2)
k /ε̂k ⇀ bq(y∞ + ·) := Q̂(2), v

(3)
k /ε̂k ⇀ c∇p2 · e := Q̂(3),

103



weakly in H1loc, for some b, c ≥ 0.
Then, the following limit is well defined:

Q̂(1) := lim
k
v

(1)
k /ε̂k = lim

k
vk/ε̂k − lim

k
v

(2)
k /ε̂k − lim

k
v

(3)
k /ε̂k,

and it has a constant sign because all the v(1)
k do. Since Q̂, Q̂(2) and Q̂(3) are harmonic, Q̂(1)

must be harmonic as well, and by the Liouville theorem, it must be constant. Hence,

Q̂ = C + bq(y∞ + ·) + c∇p2 · e,

and, by the definition of ε̂k,

C∥1∥L2(∂B1) + b∥q(y∞ + ·)∥L2(∂B1) + c∥∇p2 · e∥L2(∂B1) = 1.

If Q̂ ≡ 0, since q is quadratic, we would have b = 0. Then, since ∇p2 · e is linear, it would
follow that all the terms in the sum are zero, a contradiction.

Therefore, Q̂ ̸≡ 0, i.e. a ̸= 0. Since Q grows at most quadratically, b > 0 and ∇Q(0) = 0.
Hence,

0 = y∞ · ∇Q̂(0) = by∞ · ∇q(y∞) + cy∞ · ∇(∇p2 · e)(0) = 2bq(y∞) + 0,

where we used that q is 2-homogeneous and y∞ ∈ {p2 = 0}, and it follows that q(y∞) = 0, as
required.

Now we are ready to prove our dimensional bound on Γa
2.

Proof of Proposition 2.4.3. We need to prove that, for any β > n − 2, the set Γa
2 has zero

β-dimensional Hausdorff measure. Assume by contradiction that

Hβ(Γa
2) > 0.

Then, by the basic properties of Hausdorff measures (see [89, 2.10.19(2)]) there exists a point
x0 ∈ Γa

2 (let us assume x0 = 0 without loss of generality), a sequence rk ↓ 0 and a set A ⊂ B1,
with Hβ(A) > 0, such that for every point y ∈ A, there is a sequence xk ∈ Γa

2 such that
xk/rk → y.

Let w = u(·, 0) − p2, wr = w(r·) and w̃r = wr/H(1, wr)1/2. Then, by assumption,

w̃rk
⇀ q in H1loc

up to a subsequence, where q is a 2-homogeneous harmonic polynomial.
Furthermore, by Lemma 2.4.6 we have A ⊂ {q = 0} ∩ {p2 = 0} ∩ {xn+1 = 0}. Then, since

Hβ(A) > 0, with β > n − 2, the only possibility is that dim({p2 = 0} ∩ {xn+1 = 0}) = n − 1,
and that q ≡ 0 on {p2 = 0} ∩ {xn+1 = 0}. Hence, after a change of variables, we may assume
p2(x′, 0) = x2

1, and therefore p2(x) = x2
1 − x2

n+1, and q(x) = x1(a · x) − a1x
2
n+1.

Now, by the first part of Lemma 2.2.11,

0 =
ˆ

∂B1

(x2
1 − x2

n+1)(x1(a · x) − a1x
2
n+1) = a1

ˆ
∂B1

(x2
1 − x2

n+1)2,

where we used that, for i > 1, x1xi is odd with respect to x1 and x2
1 − x2

n+1 is even. It follows
that a1 = 0.
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On the other hand, using the second part of Lemma 2.2.11, and letting p = C(x2
1 + x2

i −
2x2

n+1) + aix1xi with i > 1, and C > 0 large enough such that p(x′, 0) ≥ 0,

0 ≥
ˆ

∂B1

(C(x2
1 + x2

i − 2x2
n+1) + aix1xi)(x1(a · x)) = a2

i

ˆ
∂B1

x2
1x

2
i ,

using again the odd and even symmetries of the terms involved. We conclude that ai = 0 for
all i = 2, . . . , n. But then it follows that q ≡ 0, a contradiction.

2.5 Cubic points
In this section, we improve the cleaning rate of the cubic points using a barrier argument
combining [102, Lemma 9.4] with Theorem 2.2.12 and the Hopf-type estimate in Lemma 2.2.2.

Proposition 2.5.1. Let u : B1 × [−1, 1] → R be a solution to (2.2)-(2.4), with 0 ∈ Γ3(u(·, 0)).
Then, there exist some r0, c0 > 0 such that, for all t ∈ (−1, 0],

{x ∈ Br0 : |x|2+γ < −c0t} ∩ Γ(u(·, t)) = ∅,

for some γ > 0 only depending on n.

Proof. Let c0, γ > 0 to be chosen later. We will prove that there exists 0 < r0 <
1
8 such that

for all r ∈ (0, r0), and t with −c0t ≥ r2+γ,

u(·, t) ≡ 0 on Br ∩ {xn+1 = 0},

and in particular there are no free boundary points there.
By Theorem 2.2.12 and Lemma 2.2.13,

∥r−3u(r·, 0) − p3∥L∞(B2) ≤ Crα, p3(x′, xn+1) = |xn+1|(ax2
n+1 − x′ · Ax′),

with a ≥ 0 and A symmetric and nonnegative definite.
Let us then bound v(x) := r−3u(rx, t). By Lemma 2.2.2 (after reversing t) and the previous

estimates,

v(x) ≤ r−3u(rx, 0) − cr−3|t||rxn+1| ≤ a|xn+1|3 + Crα − C1r
γ|xn+1| in B2,

where C1 = c/c0. Now, given z′ ∈ Rn with |z′| < 1, and δ ≥ 0, we introduce the barrier

ψz′,δ(x′, xn+1) = −(n+ 1)x2
n+1 + (x′ − z′)2 + δ.

Let z = (z′, 0), and let s = (Crα)1/2, which is smaller than 1 for sufficiently small r. We will
prove that v ≤ ψz′,δ in Bs(z). First, given x ∈ ∂Bs(z), using that (x′ − z′)2 = s2 − x2

n+1, it
suffices to see that

a|xn+1|3 + Crα − C1r
γ|xn+1| ≤ −(n+ 2)x2

n+1 + s2 for |xn+1| ≤ s,

which after choosing s = (Crα)1/2 becomes

C1r
γ|xn+1| ≥ a|xn+1|3 + (n+ 2)x2

n+1 for |xn+1| ≤ (Crα)1/2,
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that is satisfied choosing γ = α/2 and a sufficiently large C1 (i.e., a sufficiently small c0).
Let us assume that there exists δ > 0 such that ψz′,δ touches v from above in Bs(z) at x0.

Observe that x0 ∈ Bs(z) because ψz′,δ > v on ∂Bs(z) for all positive δ. Now, if x0 /∈ {xn+1 =
0, v = 0}, ∆v(x0) = 0 and ∆ψz′,δ = −2, we have a superharmonic function touching a harmonic
function from above, which is a contradiction. On the other hand, if x0 belongs to the contact
set,

0 = v(x0) = ψz′,δ(x0) = (x′
0 − z′)2 + δ > 0,

a contradiction as well. Therefore, the only possibility is that v ≤ ψz′,δ in Bs(z) for all δ > 0,
and in particular v(z) ≤ 0.

Repeating the argument for all z ∈ B1∩{xn+1 = 0}, we obtain that v ≡ 0 on B1∩{xn+1 = 0},
which is the same as u(·, t) ≡ 0 on Br ∩ {xn+1 = 0}.

2.6 Proof of Theorem 2.1.2
We take advantage of the following stratification of the degenerate set to compute our estimates:

Deg = Γo
2 ∪ Γa

2 ∪ Γ3 ∪ Γ≥7/2 ∪ Γ∗.

We can now apply Proposition 2.2.15 to obtain generic dimensional estimates for all of these
sets.

Proposition 2.6.1. Let u : B1 × [−1, 1] → R be a solution to (2.2)-(2.4). Let π2 : (x, t) 7→ t
be the standard projection. Then, there exist α, γ > 0, depending only on n, such that:

(a) If n = 1,

• Γo
2 is discrete,

• Γa
2 = ∅,

• Γ3 = ∅,
• Γ≥7/2 is discrete,
• Γ∗ = ∅.

(b) If n = 2,

• dimH(π2(Γo
2)) ≤ 1/3,

• Γa
2 is discrete,

• dimH(π2(Γ3)) ≤ 1/(2 + γ),
• dimH(π2(Γ≥7/2)) ≤ 2/5,
• Γ∗ is discrete.

(c) If n = 3,

• dimH(π2(Γo
2)) ≤ 2/3,

• dimH(π2(Γa
2)) ≤ 1/2,
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• dimH(π2(Γ3)) ≤ 2/(2 + γ),
• dimH(π2(Γ≥7/2)) ≤ 4/5,
• dimH(π2(Γ∗)) ≤ 1/(1 + α).

(d) If n ≥ 4, for H1-a.e. t ∈ [−1, 1],

• dimH(Γo
2(u(·, t))) ≤ n− 4,

• dimH(Γa
2(u(·, t))) ≤ n− 4,

• dimH(Γ3(u(·, t))) ≤ n− 3 − γ,
• dimH(Γ≥7/2(u(·, t))) ≤ n− 7

2 ,
• dimH(Γ∗(u(·, t))) ≤ n− 3 − α.

Proof. For each of the sets considered, we combine a total dimension estimate with a cleaning
result.

• For Γo
2, by Proposition 2.3.1(a), dimH(Γo

2) ≤ n − 1, and Γo
2 is discrete when n = 1. By

Proposition 2.4.1, for all x0 ∈ Γo
2 and for all ε > 0, there exist r0, c > 0 such that

{x ∈ Br0 : |x− x0|3−ε < (t− τ(x0))} ∩ Γo
2 = ∅.

• For Γa
2, by Proposition 2.4.3, dimH(Γa

2) ≤ n − 2, Γa
2 is discrete when n = 2, and it is

empty when n = 1. By Proposition 2.2.7, for all x0 ∈ Γ2 and for all ε > 0, there exist
r0, c > 0 such that

{x ∈ Br0 : |x− x0|2−ε < (t− τ(x0))} ∩ Γ2 = ∅.

• For Γ3, by Proposition 2.3.1(a), dimH(Γ3) ≤ n − 1, and Γ3 is discrete when n = 1. By
Proposition 2.5.1, for all x0 ∈ Γ3, there exist r0, c > 0 such that

{x ∈ Br0 : |x− x0|2+γ < −c(t− τ(x0))} ∩ Γ3 = ∅,

and after changing t by −t, for all ε > 0 there exists r1 > 0 such that for all r ∈ (0, r1),

Br(x0) ∩ {(x, t) : x ∈ Γ3(u(·, t))} = ∅

for all t > τ(x0) + c−1r2+γ ≥ τ(x0) + r2+γ−ε.

• For the set Γ≥7/2, by Proposition 2.3.1(a), dimH(Γ≥7/2) ≤ n − 1, and Γ≥7/2 is discrete
when n = 1. By Proposition 2.2.7, for all x0 ∈ Γ≥7/2 and for all ε > 0, there exists r0 > 0
such that

{x ∈ Br0 : |x− x0|5/2−ε < (t− τ(x0))} ∩ Γ≥7/2 = ∅.

• Finally, for Γ∗, by Proposition 2.3.1(b), dimH(Γ∗) ≤ n−2, Γ∗ is discrete when n = 2, and
it is empty when n = 1. Then, thanks to [65, Theorem 4], the order of the points in Γ∗
is κ ≥ 2 + α for some dimensional α > 0. Applying Proposition 2.2.7 as in the previous
case, for all x0 ∈ Γ∗ and for all ε > 0, there exists r0 > 0 such that

{x ∈ Br0 : |x− x0|1+α−ε < (t− τ(x0))} ∩ Γ∗ = ∅.
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The conclusions follow now by Proposition 2.2.15.

Finally, we can prove our main results.

Proof of Theorem 2.1.2. It is a direct consequence of Proposition 2.6.1.

Proof of Conjecture 2.1.1. It is a direct consequence of Proposition 2.6.1. The smoothness of
the free boundary follows from [133, 72].
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Chapter 3
Semiconvexity estimates for nonlinear

integro-differential equations

In this paper we establish for the first time local semiconvexity estimates for fully nonlinear
equations and for obstacle problems driven by integro-differential operators with general ker-
nels. Our proof is based on the Bernstein technique, which we develop for a natural class
of nonlocal operators and consider to be of independent interest. In particular, we solve an
open problem from Cabré-Dipierro-Valdinoci [33]. As an application of our result, we estab-
lish optimal regularity estimates and smoothness of the free boundary near regular points for
the nonlocal obstacle problem on domains. Finally, we also extend the Bernstein technique to
parabolic equations and nonsymmetric operators.

3.1 Introduction
The aim of this work is to establish semiconvexity estimates for solutions to nonlinear equations
driven by integro-differential operators of the form

Lu(x) = p.v.
ˆ
Rn

(
u(x) − u(y)

)
K(x− y) dy, (3.1)

where K : Rn → [0,∞] is comparable to the kernel of the fractional Laplacian. To be precise,
we consider the following natural class of symmetric jumping kernels K (see [52], [51]) satisfying
the classical uniform ellipticity condition

λ|y|−n−2s ≤ K(y) ≤ Λ|y|−n−2s (K≍)

for some constants 0 < λ ≤ Λ and s ∈ (0, 1), and the smoothness conditions

|∇K(y)| ≤ Λ|y|−1K(y), (C1)
|D2K(y)| ≤ Λ|y|−2K(y). (C2)

We denote the family of all such operators by Ls(λ,Λ; 2); see also Definition 3.2.1.
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3.1.1 Fully nonlinear equations
The regularity theory for fully nonlinear nonlocal equations was developed by Caffarelli and
Silvestre in their celebrated series of papers [50], [51], and [52]. They established a nonlocal
counterpart of the Krylov-Safonov theorem, stating that solutions are C1+ε, and an Evans-
Krylov theorem, which yields C2s+ε-regularity of solutions to concave equations. Let us also
refer to [54], [116], [137], [181], [180], [56], [179], [124], [57], [80] for extensions of the aforemen-
tioned results, e.g., to operators with coefficients and to parabolic problems; see also [98] and
[16, 17, 18].

It remains an intriguing open problem after [51] to establish higher regularity of solutions to
nonlocal Bellman-type equations. So far, it is still unknown whether solutions are more regular
than C1+ε ∩ C2s+ε, even if the underlying class of operators possesses only smooth kernels.

Here we prove for the first time semiconvexity estimates for solutions to these equations:

Theorem 3.1.1. Let s ∈ (0, 1), and let u be any viscosity solution to a fully nonlinear equation

inf
γ∈Γ

{Lγu} = 0 in B1, (3.2)

where {Lγ}γ∈Γ ⊂ Ls(λ,Λ; 2). Then, u satisfies

∂2
eeu ≥ −C∥u∥L∞(Rn) in B1/2

for all e ∈ Sn−1, where C depends only on n, s, λ, Λ.

Our Theorem 3.1.1 establishes one-sided C1,1-regularity estimates and can be seen as the
first contribution after [51] to the higher regularity for solutions to (3.2). Note that the class
of operators Ls(λ,Λ; 2) is also considered in [51]. A more general version of the result, where
we allow for an x-dependent right hand side, will be proved in Theorem 3.4.2.

Semiconvexity estimates play a crucial role in the study of nonlinear elliptic PDE. For in-
stance, semiconvexity estimates for solutions to second order fully nonlinear PDE imply two-
sided C1,1 regularity estimates, if the operator under consideration is uniformly elliptic (see
[37]). In light of this, it is an interesting question to ask whether Theorem 3.1.1 also implies
C1,1-regularity estimates for (3.2)1, at least when s ≥ 1/2.

Let us emphasize that, for nonlocal fully nonlinear equations, the only known semiconvexity
estimate was that of Cabré, Dipierro, and Valdinoci [33], who proved (a priori) semiconvex-
ity estimates for fully nonlinear equations built from affine transformations of the fractional
Laplacian.

3.1.2 Obstacle problems
Semiconvexity estimates play a crucial role in the study of obstacle problems

min{Lu, u− ϕ} = 0 in Ω ⊂ Rn.

While the classical obstacle problem (corresponding to L = −∆) is very well understood
[34, 160, 97], the case of integro-differential operators L is significantly more complicated,

1Even in the local case, optimal regularity for Bellman equations remains an open problem; see e.g. [97,
Chapter 4.5]. The only partial result in this direction is due to Caffarelli, De Silva, and Savin [40], who
established optimal C2,1 regularity in case n = 2 and for equations of the type min{L1u, L2u} = 0.
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and several questions remain open. The regularity theory for nonlocal obstacle problems
was initiated in the seminal works [11, 185, 48] for L = (−∆)s, and further developed in
[110, 159, 133, 123, 111, 107, 95, 65, 64, 93, 139, 175]. In that case, one can identify the obsta-
cle problem for (−∆)s with a (weighted) thin obstacle problem in Rn+1

+ thanks to the celebrated
Caffarelli-Silvestre extension [49], and this gives access to many local techniques. In particular,
it allows to prove local semiconvexity estimates in the extended variables; see [7, 11] for the
case s = 1

2 , and [33, 93] for all s ∈ (0, 1).
The regularity theory for obstacle problems (3.1.2) with general integro-differential operators

L requires quite different methods compared to the case L = (−∆)s, and has been developed in
[46, 39, 1, 104]. The best known results so far establish the optimal C1+s-regularity of solutions
[104], as well as the smoothness of free boundaries near regular points [46, 1], whenever solutions
are semiconvex. The semiconvexity property holds true for any global solution2 (i.e. when
Ω = Rn), which follows by a simple translation argument based on the maximum principle
[185, 46].

An important open problem was to establish local regularity estimates for solutions of (3.1.2),
not relying on any a priori assumptions on the boundary data. We solve this by proving local
semiconvexity estimates, which is exactly the content of our next result.

Theorem 3.1.2. Let s ∈ (0, 1), L ∈ Ls(λ,Λ; 2), and u be any solution to the nonlocal obstacle
problem

min{Lu, u− ϕ} = 0 in B1, (3.3)
where ϕ ∈ C4(Rn). Then, u satisfies

∂2
eeu ≥ −C(∥u∥L∞(Rn) + ∥Lϕ∥C1,1(B1)) in B1/2

for all e ∈ Sn−1, where C depends only on n, s, λ, Λ.

As said above, semiconvexity estimates are a key tool in the regularity theory for nonlo-
cal obstacle problems, mainly because they imply the convexity of blow-ups. Without this,
one cannot establish the optimal regularity of solutions and the regularity of free boundaries.
Moreover, as we will see next, this also allows us to study obstacle problems under minimal
regularity assumptions on the obstacle ϕ (which is new even in the global case Ω = Rn).

Regularity of solutions and free boundaries

Let us explain now the main applications of our new semiconvexity estimate for nonlocal ob-
stacle problems. We consider general nonlocal operators belonging to the class Ls(λ,Λ; 1), i.e.,
having symmetric jumping kernels K satisfying3 the ellipticity condition (K≍) and (C1). As in
[46, 1, 104], we also need to assume that K is homogeneous, i.e.,

K(y) = K(y/|y|)
|y|n+2s

for all y ∈ Rn \ {0}. (3.4)

Our first result in this direction is to obtain for the first time local C1+s-estimates.
2Also, if one assumes that the contact set {u = ϕ} is compactly contained in Ω, then one can use a cutoff

argument to transform the problem into a global one. However, this does not give local regularity estimates,
and all constants would depend on the distance from {u = ϕ} to ∂Ω.

3Note that, in contrast to global solutions, optimal regularity for local solutions to nonlocal obstacle prob-
lems cannot hold true in general without some regularity assumption on K, or prescribing regularity on the
complement data (see [166, Proposition 6.1], [180, Section 5.1]).
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Corollary 3.1.3 (Optimal regularity). Let s ∈ (0, 1) and L ∈ Ls(λ,Λ; 1) satisfying (3.4). Let
u be any solution to the obstacle problem

min{Lu, u− ϕ} = 0 in B1,

with ϕ ∈ Cβ(B1) for some β > 0. Then,

∥u∥Cβ(B1/2) ≤ C(∥ϕ∥Cβ(B1) + ∥u∥L∞(Rn)) for β < 1 + s,

while

∥u∥C1+s(B1) ≤ C(∥ϕ∥Cβ(B1) + ∥u∥L∞(Rn)) for β > 1 + 2s.

The constant C depends only on n, s, β, λ, and Λ.
The key point of this result is that the estimates are completely local, i.e., they do not depend

on any assumption on the boundary data nor on the obstacle on ∂B1. Still, even in case of global
solutions, observe that Theorem 3.1.3 only requires4 obstacles ϕ ∈ Cβ for some β > 1 + 2s in
order to obtain optimal C1+s-regularity estimates for solutions, which even improves the results
in [46, 104] for the global nonlocal obstacle problem in case s < 1

2 . Furthermore, the optimal
Cβ-regularity in case of non-smooth obstacles for β < 1 + s is also new even in case of global
solutions; it was only known for β ≤ max{1 + ε, 2s+ ε} [39, Theorem 5.1].

Our second result in this direction establishes the regularity of the free boundary near regular
points for local solutions to (3.1.3).
Corollary 3.1.4 (Free boundary regularity). Let s ∈ (0, 1) and L ∈ Ls(λ,Λ; 1) satisfying (3.4).
Let u be any solution to the obstacle problem (3.1.3) with ϕ ∈ Cβ(B1) for some β > 1 + 2s, and
let α ∈ (0, s) ∩ (0, 1 − s). Then, near any free boundary point x0 ∈ ∂{u > ϕ} ∩ B1, there exist
c0 ≥ 0 and e ∈ Sn−1 such that for any x ∈ B1(x0):∣∣∣u(x) − ϕ(x) − c0 ((x− x0) · e)1+s

+

∣∣∣ ≤ C(∥ϕ∥Cβ(B1) + ∥u∥L∞(Rn))|x− x0|1+s+α,

where C depends only on n, s, λ, Λ, and α.
Moreover, if c0 > 0, then the free boundary is a C1,α-graph in a ball Bρ0(x0) with Cρα

0 ≥ c0 and
C depending only on n, s, λ, Λ, and α.

If we assume in addition that ϕ ∈ C∞(B1) and K|Sn−1 ∈ C∞(Sn−1), then the free boundary
is actually C∞ near regular points (i.e., near those points x0 for which c0 > 0); see [1].

Convexity of blow-ups

As explained before, the semiconvexity of solutions to nonlocal obstacle problems is crucial
in the study of the regularity of the free boundary and of optimal regularity estimates. The
approach in [11, 185, 48, 46, 104] is to show first that solutions are semiconvex and to prove that
blow-ups, as limits of correctly rescaled semiconvex solutions, are then convex. The analysis
of the free boundary heavily relies on the classification of blow-ups, and their convexity is of
central importance in this procedure; see [46, 48].

Here, we are able to establish the convexity of the blow-ups directly, as follows.
4In case L = (−∆)s, it was proved in [39, Theorem 6.1] that optimal C1+s estimates already hold when

ϕ ∈ Cβ with β > 1 + s. Their proof is based on a truncated version of Almgren’s monotonicity formula for
the extension. Due to the lack of monotonicity formulas in the more general setting of nonlocal operators
L ∈ Ls(λ,Λ; 1), such proof cannot work in our context. Still, we expect that the same result for β > 1 + s can
be established for general kernels using our new result on the convexity of blow-ups, Theorem 3.1.5.
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Theorem 3.1.5 (Convexity of blow-ups). Let s ∈ (0, 1), L ∈ Ls(λ,Λ; 1), and α ∈ (0, s) ∩
(0, 1 − s). Let u0 ∈ C0,1

loc (Rn) ∩ C2s+ε
loc (Rn) be such that u0 ≥ 0 in Rn,

∥∇u0∥L∞(BR) ≤ cRs+α for all R ≥ 1, (3.5)

L

(
u0(x+ h) − u0(x)

|h|

)
≥ 0 for all x ∈ {u0 > 0}, h ∈ Rn. (3.6)

Then, u0 is convex, i.e., D2u0 ≥ 0 in Rn.
In particular, if in addition (3.4) holds and u ∈ C1({u0 > 0}) solves in the viscosity sense

L(∇u0) = 0 in {u0 > 0}, then u0(x) = κ(x · ν)1+s
+ , with ν ∈ Sn−1, κ ≥ 0.

A key advantage of establishing the convexity of blow-ups without relying on semiconvexity
of solutions is that we can relax the regularity assumptions of the obstacle ϕ in order to obtain
optimal regularity estimates, as in Theorem 3.1.3 above. Moreover, it also opens the door to
proving regularity estimates for x-dependent operators; we plan to study this in future works.

3.1.3 Bernstein technique for nonlocal operators
A central contribution of this article is the development of the Bernstein technique to obtain
semiconvexity estimates for general integro-differential operators, solving an important open
problem left in [33]. This technique plays an important role in the proofs of our main results
concerning fully nonlinear equations and obstacle problems (see Theorem 3.1.1 and Theorem
3.1.2 above). Still, we emphasize that, as in the local case, our nonlocal Bernstein technique
works in a rather general framework, so it could be useful in completely different contexts
(see e.g. [63] and [5] for applications of the classical Bernstein technique to Hamilton-Jacobi
equations and double obstacle problems).

The main insight behind the Bernstein technique is that, if derivatives of the solution u are
also subsolutions to an equation, then the maximum principle can be used in order to obtain
regularity estimates for these solutions. This observation can be traced back to Serge Bernstein
(see [25, 26]), who noticed that

u harmonic in B1 ⇒ |∇u|2 subharmonic in B1.

By the maximum principle, this yields an estimate of ∥∇u∥L∞(B1) by ∥∇u∥L∞(∂B1). This idea
can be generalized by considering, instead of |∇u|2, the following auxiliary function

ψ = η2(∂eu)2 + σu2, (3.7)

which allows to prove interior regularity estimates for ∂eu by lower order terms. Here, η ∈
C∞

c (Rn) is a cut-off function, and σ > 0 is a suitably chosen constant. Such choice of ψ has
already been applied in [37] in the context of (local) fully nonlinear PDEs. Different auxiliary
functions appear for instance in the context of the mean curvature equation (see [182], [200]).
Moreover, we refer to [142], [82], [15], [112], and [7], [90], [93], [33], [5] for further references
on the Bernstein technique applied to elliptic equations of second order and to free boundary
problems, respectively.

So far, the only work on the Bernstein technique for integro-differential operators is [33],
where the authors consider the auxiliary function (3.7) and are able to treat the family of
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nonlocal operators that arise as affine transformations of the fractional Laplacian (i.e., kernels
of the form K(y) = |Ay|−n−2s for some symmetric, uniformly elliptic matrix A). Moreover,
they obtain Lipschitz estimates for operators belonging to the class Ls(λ,Λ; 2) — but not
semiconvexity estimates like the ones in Theorems 3.1.1 and 3.1.2 above. A central contribution
of our work is to extend and improve the results of [33] by establishing the Bernstein technique
for general nonlocal operators belonging to the natural class Ls(λ,Λ; 1), and to solve all the
problems that were left open after [33]. Moreover, as explained in more detail in Section 3.7,
we are able to extend our method to treat

• parabolic equations,

• nonsymmetric operators with drifts, and

• nonlocal operators not necessarily comparable to (−∆)s.

Key estimates

The main ingredient in the proof of our semiconvexity estimates via the Bernstein technique is
the following:

Theorem 3.1.6. Let s ∈ (s0, 1), with s0 > 0, and L ∈ Ls(λ,Λ; 1). Let η ∈ C1,1(Rn) be such
that η ≥ 0. Then, there exists σ0 = σ0(n, s,Λ/λ, ∥η∥C1,1(Rn)) > 0 such that for every σ ≥ σ0
and every u ∈ C1+2s+ε

loc (Rn) ∩ L∞(Rn)

L
(
η2(∂eu)2 + σu2

)
≤ 2η2L(∂eu)∂eu+ 2σL(u)u in Rn. (3.8)

We emphasize that Theorem 3.1.6 has so far only been established in [33] for affine trans-
formations of the fractional Laplacian, by using the Caffarelli-Silvestre extension. Finding a
proof of (3.8) without using the extension remained open after [33], even in case L = (−∆)s

(see Open problem 1.6 in [33]). As we explain below, our proof merely relies on elementary
arguments using the precise shape of L (see (3.1)), thereby solving Open problem 1.6 in [33].
Moreover, our approach allows us to obtain Theorem 3.1.6 for the natural class of operators
Ls(λ,Λ; 1) without any additional remainder terms as in [33]. This solves Open problem 1.7 in
[33].

It is important to emphasize that, for linear operators of second order, (3.8) is a simple
consequence of the product rule. However, for nonlocal operators such estimate is very far from
trivial, and was left as an open problem in [33].
Remark 3.1.7. The key estimate Theorem 3.1.6 is robust with respect to the limit s ↗ 1, i.e.,
the constants σ0 and C depend only on n, s0, λ,Λ. Since any operator L of the form

Lu(x) =
n∑

i,j=1
aij∂iju(x), with λ|ξ|2 ≤

n∑
i,j=1

aijξiξj ≤ Λ|ξ|2 ∀ξ ∈ Rn (3.9)

can be approximated by a sequence of operators Ls ∈ Ls((1 − s)λ, (1 − s)Λ; 1) as s ↗ 1, our
results are a true generalization of the corresponding ones for operators (3.9).

Observe that the key estimate Theorem 3.1.6 is not suitable for proving one-sided regu-
larity estimates, such as Theorem 3.1.1 and Theorem 3.1.2. Therefore, in order to establish
semiconvexity estimates, we rely on one-sided key estimates of the following form:
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Theorem 3.1.8. Let s ∈ (s0, 1), with s0 > 0, and L ∈ Ls(λ,Λ; 1). Let η ∈ C1,1(Rn) be such
that η ≥ 0. Then, there exists σ0 = σ0(n, s,Λ/λ, ∥η∥C1,1(Rn)) > 0 such that for every σ ≥ σ0
and every v ∈ C1+2s+ε

loc (Rn) ∩ L∞(Rn)

L
(
η2(∂ev)2

+ + σv2
)

≤ 2η2L(∂ev)(∂ev)+ + 2σL(v)v in Rn. (3.10)

We will prove the one-sided estimate (3.10) by a slight modification of the proof of Theorem
3.1.6. Before our work, (3.10) was only known for affine transformations of the fractional
Laplacian (see [33]). Therefore, after [33], it even remained unclear, whether semiconvexity
estimates such as Theorem 3.1.1 for nonlocal fully nonlinear equations driven by operators
from the class Ls(λ,Λ; 1) do hold true (see Open problem 1.8 in [33]). Theorem 3.1.8 is the
main ingredient in our proofs of the desired semiconvexity estimates Theorem 3.1.1, Theorem
3.1.2, the first of which solves Open problem 1.8 in [33].

Difference quotients

In (3.8), it is apparent that one needs to consider sufficiently smooth solutions u in order for
L(∂eu) to be well-defined (u ∈ C1+2s+ε

loc (Rn) is sufficient, for any ε > 0). In case of fully nonlinear
equations, this is not a problem, as one can approximate any viscosity solution u by smooth
solutions uε, thanks to the results in [92]. However, in the obstacle problem, solutions are
never more regular than C1+s, and therefore, Theorem 3.1.6 and Theorem 3.1.8 cannot be used
directly to derive semiconvexity estimates. In order to be able to apply the Bernstein technique
to the obstacle problem (and also to other equations where such approximation argument is
not possible), we prove an estimate reminiscent of (3.8) for difference quotients. To this end,
we introduce for h ∈ Rn

uh(x) :=
ˆ 1

0
u(x+ th) dt and Dhu(x) = u(x+ h) − u(x)

|h|
,

and establish the following.

Proposition 3.1.9. Let s ∈ (s0, 1), with s0 > 0, and L ∈ Ls(λ,Λ; 1). Let η ∈ C1,1(Rn) be such
that η ≥ 0, and |h| ≤ 1/8. Then, there exists σ0 = σ0(n, s,Λ/λ, ∥η∥C1,1(Rn)) > 0 such that for
every σ ≥ σ0 and every u, v ∈ C2s+ε

loc (Rn) ∩ L∞(Rn)

L(η2(Dhu)2 + σu2
h) ≤ 2η2L(Dhu)Dhu+ 2σL(uh)uh, (3.11)

L(η2(Dhv)2
+ + σv2

h) ≤ 2η2L(Dhv)(Dhv)+ + 2σL(vh)vh. (3.12)

For another version of such estimate for difference quotients, we refer the reader to Lemma
3.5.4. Let us point out that the idea to prove Bernstein estimates for difference quotients has
already been presented in an earlier version of [33] (see Section 3 in [32]). However, Lemma
3.1.9 was only proved for the local Laplacian in [32]. We refer to [79] for a version of the
Bernstein technique for finite difference operators.

Finally, as we mentioned before, we are able to extend our proof of the aforementioned Bern-
stein key estimates in several directions. In Subsection 3.7.1, we explain how to modify the
Bernstein technique in order to obtain a priori regularity estimates for nonlocal parabolic equa-
tions. Moreover, in Subsection 3.7.2, we prove Bernstein key estimates for nonlocal operators
with nonsymmetric kernels under the presence of additional drift terms, and in Subsection 3.7.3
we consider nonlocal operators that are not necessarily comparable to the fractional Laplacian.
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3.1.4 Outline
This article is structured as follows: In Section 3.2 we present and prove several auxiliary results
which will be crucial in the derivation of our main results. Section 3.3 is devoted to the study
of Bernstein key estimates for nonlocal operators and contains the proof of our main results,
Theorem 3.1.6 and Theorem 3.1.8. Moreover, in Section 3.4, we prove semiconvexity estimates
for solutions to nonlocal fully nonlinear equations (see Theorem 3.1.1). The Bernstein key
estimates for difference quotients, and in particular Lemma 3.1.9, are established in Section
3.5. In Section 3.6, we prove our main results on the nonlocal obstacle problem, Theorem 3.1.3,
and Theorem 3.1.4. By application of the Bernstein technique, we prove our main auxiliary
result, the convexity of blow-ups (see Theorem 3.1.5) and establish semiconvexity estimates
for solutions (see Theorem 3.1.2). Finally, in Section 3.7, we discuss several extensions of our
technique to parabolic equations, nonlocal equations with drifts, and nonlocal operators that
are not necessarily comparable to the fractional Laplacian.

3.2 Preliminaries
Let us introduce the classes of operators we will be working with throughout this article.

Definition 3.2.1 (regularity classes). Let L be an integro-differential operator of the form
(3.1) where K : Rn → [0,∞] is symmetric, i.e., K(y) = K(−y).

(i) We say that L ∈ Ls(λ,Λ) for some s ∈ (0, 1) and 0 < λ ≤ Λ if L satisfies the following
ellipticity condition:

λ|y|−n−2s ≤ K(y) ≤ Λ|y|−n−2s. (K≍)

(ii) We say that L ∈ Ls(λ,Λ; 1) if L ∈ Ls(λ,Λ) and satisfies in addition

|∇K(y)| ≤ Λ|y|−1K(y). (C1)

(iii) We say that L ∈ Ls(λ,Λ; 2) if L ∈ Ls(λ,Λ; 1) and satisfies in addition

|D2K(y)| ≤ Λ|y|−2K(y). (C2)

Remark 3.2.2. (i) Notice that if L ∈ Ls(λ,Λ), then Lu(x0) is well-defined for any x0 ∈ Rn and
u ∈ C2s+ε(Bδ(x0)) ∩ L∞(Rn), for some ε, δ > 0.

(ii) The assumptions (C1) and (C2) are common in the study of higher regularity for nonlocal
equations and appeared first in [50, 52, 51].

Let us associate L with a bilinear form B, defined by

B(u, v)(x) =
ˆ
Rn

(
u(x) − u(y)

)(
v(x) − v(y)

)
K(x− y) dy.

Sometimes, we write L = LK or B = BK in order to emphasize the corresponding kernel
through the notation.

We observe the following nonlocal product rule:
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Lemma 3.2.3. Let s ∈ (0, 1) and L ∈ Ls(λ,Λ). Then, for any u, v ∈ C2s+ε(Bδ(x0)) ∩L∞(Rn)
we have

L(uv) = uLv + vLu−B(u, v) in Bδ(x0).

In particular,

L(u2) = 2uLu−B(u, u) in Bδ(x0).

Proof. We compute

u(x)v(x) − u(y)v(y) = u(x)(v(x) − v(y)) + v(x)(u(x) − u(y)) − (u(x) − u(y))(v(x) − v(y)),

and the result follows.

3.3 Key estimates for the Bernstein technique
In this section we establish the key estimates for smooth functions. For this, we will need the
following result, which allows us to separately consider the singularity at the origin and the
behavior at infinity.

Lemma 3.3.1 (Kernel decomposition). Let s ∈ (0, 1), L ∈ Ls(λ,Λ; 1) and let ε ∈ (0, 1). Then,
there exist K1, K2 : Rn → [0,∞] such that K = K1 +K2 and the following properties hold true:

(i) supp(K1) ⊂ Bε,

(ii) K1 ≡ K in Bε/2,

(iii) K1 ≤ K, K2 ≤ K,

(iv) supp(K2) ⊂ Rn \Bε/2,

(v) |∇K2| ≤ c1ε
−1K,

(vi) c2µK2(Rn) ≤ µK(Rn \Bε/2) ≤ c3µK2(Rn),

where we denote µK = K(y) dy and µK2 = K2(y) dy, and the constants c1, c2, c3 > 0 depend
only on n, s, λ,Λ, but not on ε.

Proof. Let ψ ∈ C∞([0,∞)) be a cutoff function satisfying 0 ≤ ψ ≤ 1, ψ ≡ 0 in B1/2 and ψ ≡ 1
in Rn \B1. Moreover, assume that |ψ′| ≤ 4. We define

K1(y) =
[
1 − ψ

(
|y|
ε

)]
K(y), K2(y) = ψ

(
|y|
ε

)
K(y).

Then, clearly, K = K1 + K2 and properties (i), (ii), (iii), and (iv) follow immediately by
construction. Moreover, note that

|∇K2(y)| ≤ ε−1|ψ′(|y|/ε)|K(y) + ψ(|y|/ε)|∇K(y)| ≤ 4ε−1K(y) + 2Λε−1K(y),

where we used (iv) and (C1). This proves (v). Note that the first estimate in (vi) is a direct
consequence of (iii) and (iv). To show the second inequality in (vi), we compute using (K≍)

µK(Rn \Bε/2) ≤ cε−2s ≤ c

ˆ
B2ε\Bε

K(y) dy = µK2(B2ε \Bε) ≤ cµK2(Rn),

which concludes the proof.
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We also need the following simple observation concerning cutoff functions.

Lemma 3.3.2. Let s ∈ (0, 1) and let K be symmetric, with

K(y) ≤ Λ|y|−n−2s, supp(K) ⊂ Bε

for some Λ > 0 and ε ∈ (0, 1). Let η ∈ C1,1(B1). Then, for any x ∈ B1

L(η2)(x) ≤ c1∥D2η2∥L∞(Bε(x))ε
2−2s,

B(η, η)(x) ≤ c2∥∇η∥2
L∞(Bε(x))ε

2−2s,

where c1, c2 > 0 are constants depending only on n, s,Λ.

Proof. For the first estimate we compute

L(η2)(x) =
ˆ

Bε(x)
(η2(x) − η2(y) + ∇η2(x)(x− y))K(x− y) dy

≤ Λ∥D2η2∥L∞(Bε(x))

ˆ
Bε(x)

|x− y|2−n−2s dy

≤ cΛ∥D2η2∥L∞(Bε(x))ε
2−2s.

Note that we used the even symmetry of K in the first identity. For the second estimate, we
observe

B(η, η)(x) =
ˆ

Bε(x)
|η(x) − η(y)|2K(x− y) dy

≤ Λ∥∇η∥2
L∞(Bε(x))

ˆ
Bε(x)

|x− y|2−n−2s dy

≤ cΛ∥∇η∥2
L∞(Bε(x))ε

2−2s.

With this at hand, we can now start the proof of our key estimates in Theorems 3.1.6 and
3.1.8.

3.3.1 First order estimates
The goal of this section is to establish the key estimate for the Bernstein technique (see Theorem
3.1.6), which will be used in order to prove first derivative estimates.

Before we prove Theorem 3.1.6 let us list two equivalent formulations of (3.8) that will turn
out to be more convenient to prove:
Remark 3.3.3. The following two estimates are equivalent to (3.8):

L(η2)(∂eu)2 −B(η2, (∂eu)2) ≤ η2B(∂eu, ∂eu) + σB(u, u), (3.13)ˆ
Rn

(η2(x) − η2(y))(∂eu(y))2K(x− y) dy ≤ η2(x)B(∂eu, ∂eu)(x) + σB(u, u)(x). (3.14)
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This can be seen as follows: With the help of the nonlocal product rule Lemma 3.2.3 we
compute:

L(η2(∂eu)2 + σu2) = L(η2)(∂eu)2 + 2η2L(∂eu)∂eu− η2B(∂eu, ∂eu) −B(η2, (∂eu)2)
+ 2σL(u)u− σB(u, u).

Therefore, (3.8) is equivalent to (3.13). Moreover, the left hand side in (3.13) can be rewritten
as follows:

L(η2)(∂eu)2 −B(η2, (∂eu)2) =
ˆ
Rn

(η2(x) − η2(y))(∂eu(y))2K(x− y) dy.

This is a simple consequence of the following identity:

(η2(x) − η2(y))(∂eu(x))2 − (η2(x) − η2(y))((∂eu(x))2 − (∂eu(y))2) = (η2(x) − η2(y))(∂eu(y))2.

Thus, (3.8) and (3.13) are both equivalent to (3.14).
Moreover, the following interpolation inequality will turn out to be crucial in the proof of

Theorem 3.1.6.
Lemma 3.3.4. Let s ∈ (0, 1) and δ > 0. Assume that K : Rn → [0,∞] satisfies for some
0 < λ ≤ Λ:

λ|y|−n−2s ≤ K(y) ≤ Λ|y|−n−2s ∀y ∈ Bδ, (3.15)
|∇K(y)| ≤ Λ|y|−1K(y) ∀y ∈ Bδ. (3.16)

Then, for every x ∈ Rn and u ∈ C0,1(Bδ(x)) it holds(
∂eu(x)

)2
≤ δ2sB(∂eu, ∂eu)(x) + cδ2s−2B(u, u)(x),

where c = c(n, s, λ,Λ) > 0 does not depend on δ.

Proof. First, given any δ > 0, we construct an auxiliary kernel Kδ : Rn → [0,∞] satisfying the
following properties:

(1) K2
δ (y) ≤ c1K(y)|y|2 for y ∈ Bδ,

(2) |∇Kδ(y)|2 ≤ c2K(y) for y ∈ Bδ,

(3) supp(Kδ) ⊂ Bδ(0),

(4) c3δ
n
2 −s+1 ≤ µKδ

(Bδ) ≤ c4δ
n
2 −s+1 ,

where we define µKδ
= Kδ(y) dy, and c1, c2, c3, c4 > 0 are constants depending only on n, s, λ,Λ.

To do so, we proceed in the same way as in the proof of Lemma 3.3.1. Indeed, let ψ ∈
C∞([0,∞)) by a cutoff function satisfying ψ ≡ 1 in B1/2, ψ ≡ 0 in Rn \ B1, 0 ≤ ψ ≤ 1 and
|ψ′| ≤ 4. Then, we define

Kδ(y) = ψ

(
|y|
δ

)
K(y)|y|

n
2 +s+1

and observe that the properties (1), (3) and (4) follow immediately from the construction and
(3.15). To prove (2), we compute for y ∈ Bδ, using (3.15) and (3.16)

|∇Kδ(y)|2 ≲

(
|y|
δ

)2 ∣∣∣∣∣ψ′
(

|y|
δ

)∣∣∣∣∣
2

K2(y)|y|n+2s + ψ2
(

|y|
δ

)(
|∇K(y)|2|y|n+2s+2 +K2(y)|y|n+2s

)
≲ K(y).
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Having constructed Kδ, let us turn to proving the desired interpolation estimate.
We compute, using (4), and the notation µKδ

(x, dy) = Kδ(x− y) dy:

∂eu(x) =
 

Bδ(x)
(∂eu(x) − ∂eu(y))µKδ

(x, dy) +
 

Bδ(x)
∂eu(y)µKδ

(x, dy)

= |Bδ(x)|
µKδ

(Bδ(x))

[ 
Bδ(x)

(∂eu(x) − ∂eu(y))Kδ(x− y) dy +
 

Bδ(x)
∂eu(y)Kδ(x− y) dy

]

≲ δ
n
2 +s−1

 
Bδ(x)

(∂eu(x) − ∂eu(y))Kδ(x− y) dy + δ
n
2 +s−1

 
Bδ(x)

∂eu(y)Kδ(x− y) dy.

By Jensen’s inequality, integration by parts, and (1), (2), and (3):

|∂eu(x)|2 ≲ δn+2s−2

 
Bδ(x)

(∂eu(x) − ∂eu(y))2K2
δ (x− y) dy +

( 
Bδ(x)

∂eu(y)Kδ(x− y) dy
)2


≲ δn+2s−2

 
Bδ(x)

(∂eu(x) − ∂eu(y))2K2
δ (x− y) dy +

( 
Bδ(x)

(u(y) − u(x))∂eKδ(x− y) dy
)2


≲ δ2s−2
[ˆ

Bδ(x)
(∂eu(x) − ∂eu(y))2K(x− y)|x− y|2 dy +

ˆ
Bδ(x)

(u(y) − u(x))2 (∂eKδ(x− y))2 dy
]

≲ δ2s

ˆ
Bδ(x)

(∂eu(x) − ∂eu(y))2K(x− y) dy + δ2s−2
ˆ

Bδ(x)
(u(y) − u(x))2K(x− y) dy.

Therefore, we obtain
(
∂eu(x)

)2
≤ c1δ

2sB(∂eu, ∂eu)(x) + c2δ
2s−2B(u, u)(x).

To conclude, we may repeat the computation with c
−1/2s
1 δ instead of δ if c1 > 1.

Remark 3.3.5. Note that if we replace the constants λ,Λ in (3.15) and (3.16) by λ(1−s),Λ(1−s),
where s ∈ (s0, 1), then the constant c > 0 in Lemma 3.3.4 would only depend on n, s0, λ,Λ. To
see this, one redefines Kδ(y) =

√
1 − s ψ(|y|/δ)K(y)|y|n

2 +s+1.

Now, we are in the position to prove the key estimate Theorem 3.1.6.

Proof of Theorem 3.1.6. Throughout the proof, we will denote by c > 0 any constant that only
depends on n, s, λ,Λ and whose value might change from line to line. Note that we can assume
without loss of generality that η(x) > 0, since otherwise the desired estimate (3.14) is trivially
satisfied.

For every x, let us decompose the kernel K into two parts K = K1+K2, taking care separately
of the behavior at zero and at infinity. In order to do so, we choose a parameter

ε := γη(x) > 0,

where γ = γ(∥η∥C1,1(Rn)) ∈ (0, 1) will be determined later (see (3.21)), and choose K1 and K2
as in Lemma 3.3.1 with respect to ε. Consequently K1 and K2 satisfy the properties (i) − (vi).
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Step 1: Let us first explain how to treat the integrals involving K2. To be precise, we will
show that for some constant σ2 = σ2(n, s, λ,Λ) > 0:

ˆ
Rn

(η2(x) − η2(y))(∂eu(y))2K2(x− y) dy

≤ η2(x)
ˆ
Rn

(∂eu(x) − ∂eu(y))2K2(x− y) dy + σ2
η2(x)
ε2 BK(u, u)(x).

(3.17)

Note that the claim (3.17) follows if we manage to prove:

η2(x)
ˆ
Rn

(∂eu(y))2K2(x− y) dy

≤ η2(x)
ˆ
Rn

(∂eu(x) − ∂eu(y))2K2(x− y) dy + σ2
η2(x)
ε2 BK(u, u)(x),

which is equivalent to

2∂eu(x)η2(x)
ˆ
Rn

∂eu(y)K2(x− y) dy

≤ (∂eu(x))2η2(x)
ˆ
Rn

K2(x− y) dy + σ2
η2(x)
ε2 BK(u, u)(x).

(3.18)

Note that the first term on the right hand side in (3.18) is finite, sinceK2 is integrable due to (iii)
and (iv) in Lemma 3.3.1. To prove (3.18), we introduce the measure µK2(x, dy) = K2(x−y) dy
and use the Young’s inequality as follows:

2∂eu(x)η2(x)
ˆ
Rn

∂eu(y)K2(x− y) dy ≤ µK2(x,Rn)(∂eu(x))2η2(x)

+ η2(x)µK2(x,Rn)−1
(ˆ

Rn

∂eu(y)µK2(x, dy)
)2

=: J1 + J2.

For J1 we obtain

J1 = µK2(x,Rn)(∂eu(x))2η2(x) = (∂eu(x))2η2(x)
ˆ
Rn

K2(x− y) dy,

which coincides with the first term on the right hand side of (3.18). In order to estimate J2,
let us recall that by (iv), (v), and (vi) in Lemma 3.3.1, we have

supp(K2(x− ·)) ⊂ Rn \Bε/2(x), |∇K2(x− ·)| ≤ cε−1K(x− ·), µK(x,Rn \Bε/2(x))
µK2(x,Rn) ≤ c.
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Thus, using integration by parts and Jensen’s inequality:

J2 = η2(x)µK2(x,Rn)−1
(ˆ

Rn

(u(y) − u(x))∂eK2(x− y) dy
)2

≤ c
η2(x)
ε2 µK2(x,Rn)−1

ˆ
Rn\Bε/2(x)

|u(y) − u(x)|K(x− y) dy
2

= c
η2(x)
ε2

µK(x,Rn \Bε/2(x))2

µK2(x,Rn)

 
Rn\Bε/2(x)

|u(y) − u(x)|µK(x, dy)
2

≤ c
η2(x)
ε2

ˆ
Rn

(u(x) − u(y))2K(x− y) dy.

Altogether, by combining the estimates for J1 and J2, we have shown (3.18), and therefore
(3.17), as desired.

Step 2: We claim that

LK1(η2)(x)(∂eu(x))2 −BK1(η2, (∂eu)2)(x) ≤ η2(x)BK1(∂eu, ∂eu)(x) + σ1BK(u, u)(x), (3.19)

where σ1 = σ1(n, s, λ,Λ, ∥η∥C1,1(Rn)) > 0 is a constant. Note that by combining (3.19) with
(3.17) and using that ε = γη(x), we obtain that for every x ∈ Rn:

LK(η2)(x)(∂eu(x))2 −BK(η2, (∂eu)2)(x) ≤ η2(x)BK(∂eu, ∂eu)(x) + σBK(u, u)(x), (3.20)

where σ = σ1 + σ2γ
−2 > 0. This proves the desired result.

Let us now prove (3.19). Recall that supp(K1(x − ·)) ⊂ Bε(x) by (i) in Lemma 3.3.1. By
Young’s again, we compute for A = 1

8(∥∇η∥L∞(Rn) + 2)−2 > 0:

−BK1(η2, (∂eu)2)(x) =
ˆ

Bε(x)
(η2(x) − η2(y))[(∂eu(x))2 − (∂eu(y))2]K1(x− y) dy

≤ A

ˆ
Bε(x)

(η(x) + η(y))2(∂eu(x) − ∂eu(y))2K1(x− y) dy

+ 1
4A

ˆ
Bε(x)

(η(x) − η(y))2(∂eu(x) + ∂eu(y))2K1(x− y) dy

=: I1 + I2.

For I1, we use that for y ∈ Bε(x)

|η(x) − η(y)| ≤ ∥∇η∥L∞(Bε(x))|x− y| ≤ ∥∇η∥L∞(Rn)ε = γ∥∇η∥L∞(Rn)η(x),

and therefore

(η(x) + η(y))2 ≤ (2 + γ∥∇η∥L∞(Bε(x)))2η(x)2 ≤ (2 + ∥∇η∥L∞(Bε(x)))2η(x)2.

We obtain

I1 ≤ A(∥∇η∥L∞(Rn) + 2)2η2(x)
ˆ

Bε(x)
(∂eu(x) − ∂eu(y))2K1(x− y) dy ≤ η2(x)

8 BK1(∂eu, ∂eu)(x).
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For I2, we make use of the following algebraic inequality

(a+ b)2 ≤ (a+ b)2 + (3a− b)2 = 8a2 + 2(a− b)2

and apply it to a = ∂eu(x) and b = ∂eu(y). This yields, for some c1 > 0,

I2 ≤ 2A−1(∂eu(x))2
ˆ

Bε(x)
(η(x) − η(y))2K1(x− y) dy

+ 1
2A

ˆ
Bε(x)

(η(x) − η(y))2(∂eu(x) − ∂eu(y))2K1(x− y) dy

≤
[
2c1A

−1γ2−2s∥∇η∥2
L∞(Rn)

]
η2−2s(x)(∂eu(x))2

+
[
(2A)−1∥∇η∥2

L∞(Rn)γ
2
]
η2(x)BK1(∂eu, ∂eu)(x)

= I2,1 + I2,2,

where we applied Lemma 3.3.2. By choosing

γ = (4A−1∥∇η∥2
L∞(Rn))− 1

2 ∧ 1, (3.21)

we estimate

I2,2 ≤ η2(x)
8 BK1(∂eu, ∂eu)(x).

We apply Lemma 3.3.4 to K1 with δ = [8c1A
−1γ2−2s∥∇η∥2

L∞(Rn)]−
1

2sη(x) ∧ γ
2η(x) in order to

estimate I2,1. Note that K1 satisfies the assumptions of Lemma 3.3.4 due to Lemma 3.3.1. This
yields

I2,1 ≤ η2(x)
4 BK1(∂eu, ∂eu)(x) + σ1,1BK1(u, u)(x),

where, for c2 > 0 being the constant in Lemma 3.3.4,

σ1,1 = c2

4
[
8c1A

−1γ2−2s∥∇η∥2
L∞(Rn)

] 1
s ∨ 23−2sc1c2A

−1∥∇η∥2
L∞(Rn) > 0.

By combination of the estimates for I1, I2,1 and I2,2, we obtain

−BK1(η2, (∂eu)2)(x) ≤ 1
2η

2(x)BK1(∂eu, ∂eu)(x) + σ1,1B(u, u)(x). (3.22)

Finally, we observe that for some c3 > 0, by Lemma 3.3.2

LK1(η2)(x) ≤ c3∥D2η2∥L∞(Rn)ε
2−2s =

[
c3∥D2η2∥L∞(Rn)γ

2−2s
]
η2−2s(x),

and apply Lemma 3.3.4 to K1 with δ = [4c3∥D2η2∥L∞(Rn)γ
2−2s]− 1

2sη(x) ∧ γ
2η(x) and obtain

LK1(η2)(x)(∂eu(x))2 ≤ 1
4η

2(x)BK1(∂eu, ∂eu)(x) + σ1,2B(u, u)(x),

where, for c2 > 0 being the constant in Lemma 3.3.4

σ1,2 = c2

4
[
4c3∥D2η2∥L∞(Rn)γ

2−2s
] 1

s ∨ 22−2sc2c3∥D2η2∥L∞(Rn) > 0.

Consequently, we obtain (3.19) with σ1 = σ1,1 + σ1,2, as desired.
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Remark 3.3.6. Note that if we choose L ∈ Ls((1−s)λ, (1−s)Λ; 1) and s ≥ s0 for some s0 ∈ (0, 1),
then the constant σ = σ1 + σ2γ

−2 > 0 in (3.8) will depend only on n, s0, λ,Λ. This is because
the constants in Step 1 will not depend on s, and the constant in Step 2 will be of the form

σ1 = σ1,1 + σ1,2,

with

σ1,1 = c2

4
[
8c1A

−1γ2−2s∥∇η∥2
L∞(Rn)

] 1
s ∨ 23−2sc1c2A

−1∥∇η∥2
L∞(Rn),

σ1,2 = c2

4
[
4c3∥D2η2∥L∞(Rn)γ

2−2s
] 1

s ∨ 22−2sc2c3∥D2η2∥L∞(Rn),

and these expressions remain bounded as s ↗ 1. The constants γ, σ2, c1, c2, c3, A > 0 depend
only on n, s0, λ,Λ.

3.3.2 One-sided second order estimates
In this section, we prove another key estimate, reminiscent of Theorem 3.1.6, which will allow
us to prove one-sided second derivative bounds for solutions to certain PDEs driven by L.
Remark 3.3.7. The following two estimates are equivalent to (3.10):

L(η2)(∂ev)2
+ −B(η2, (∂ev)2

+)
≤ η2B((∂ev)+, (∂ev)+) + 2η2(∂ev)+ [L(∂ev) − L((∂ev)+)] + σB(v, v)
= η2B((∂ev)+, (∂ev)+) − 2η2(∂ev)+L((∂ev)−) + σB(v, v),

(3.23)

ˆ
Rn

(η2(x) − η2(y))((∂ev(y))+)2K(x− y) dy

≤ η2B((∂ev)+, (∂ev)+)(x) − 2η2(∂ev)+L((∂ev)−)(x) + σB(v, v)(x).
(3.24)

The proof goes by the same arguments as for (3.13) and (3.14).
The strategy of our proof is similar to the one of the first key estimate Theorem 3.1.6. We

will again split the kernel into two parts K1 and K2, taking care of the singularity at zero,
and the decay at infinity, respectively. In order to treat K1 we need to prove an interpolation
inequality similar to Lemma 3.3.4:
Lemma 3.3.8. Let δ > 0. Assume that K satisfies (3.15) and (3.16). Then, for every x ∈ Rn

and v ∈ C0,1(Bδ(x)) it holds
(∂ev(x))2

+ ≤ δ2sB((∂ev)+, (∂ev)+)(x) − δ2sL((∂ev)−)(x)(∂ev)+(x) + cδ2s−2B(v, v)(x).
where c = c(n, s, λ) > 0 does not depend on δ.
Proof. Assume that ∂ev(x) > 0, otherwise the estimate is trivial. Let Kδ be as in the proof of
Lemma 3.3.4. By following the proof of Lemma 3.3.4, we obtain

∂ev(x) ≤ cδ
n
2 +s−1

[ 
Bδ(x)

(∂ev(x) − ∂ev(y))Kδ(x− y) dy +
 

Bδ(x)
∂ev(y)Kδ(x− y) dy

]

= cδ
n
2 +s−1

[ 
Bδ(x)

((∂ev(x))+ − (∂ev(y))+)Kδ(x− y) dy +
 

Bδ(x)
(∂ev(y))−Kδ(x− y) dy

]

+ cδ
n
2 +s−1

 
Bδ(x)

∂ev(y)Kδ(x− y) dy.
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By multiplication of the aforementioned estimate with ∂ev(x) on both sides, and applying
Young’s inequality, we obtain

(∂ev(x))2 ≤ c

(
δ

n
2 +s−1

 
Bδ(x)

((∂ev(x))+ − (∂ev(y))+)Kδ(x− y) dy
)2

+ cδ
n
2 +s−1∂ev(x)

 
Bδ(x)

(∂ev(y))−Kδ(x− y) dy

+ c

(
δ

n
2 +s−1

 
Bδ(x)

∂ev(y)Kδ(x− y) dy
)2

+ 1
2(∂ev(x))2.

From here, with the first and third term, we proceed as in the proof of Lemma 3.3.4. The
fourth term can be absorbed to the left hand side. This yields

(∂ev(x))2 ≲ δ2s

ˆ
Bδ(x)

((∂ev(x))+ − (∂ev(y))+)2K(x− y) dy

+ δ
n
2 +s−1∂ev(x)

 
Bδ(x)

(∂ev(y))−Kδ(x− y) dy

+ δ2s−2
ˆ

Bδ(x)
(v(y) − v(x))2K(x− y) dy.

In order to treat the second term on the right hand side, we recall the definition of Kδ and
deduce the following estimate:

δ
n
2 +s−1∂ev(x)

 
Bδ(x)

(∂ev(y))−Kδ(x− y) dy

≤ δ− n
2 +s−1∂ev(x)

ˆ
Bδ(x)

(∂ev(y))−K(x− y)|x− y|
n
2 +s+1 dy

≤ δ2s∂ev(x)
ˆ

Bδ(x)
(∂ev(y))−K(x− y) dy

= −δ2s∂ev(x)
ˆ

Bδ(x)
((∂ev(x))− − (∂ev(y))−)K(x− y) dy

≤ −δ2sL((∂ev)−)(x)∂ev(x).

(3.25)

Altogether, taking δ smaller if necessary as in Lemma 3.3.4 we obtain the desired result.

We are now ready to give the proof of Theorem 3.1.8.

Proof of Theorem 3.1.8. Let ε = γη(x) as in the proof of Theorem 3.1.6. Moreover, define K1
and K2 as in Lemma 3.3.1 with respect to ε.
Step 1: Let us first explain how to treat the integrals involving K2. We show that for some
uniform constant σ2 > 0:

ˆ
Rn

(η2(x) − η2(y))(∂ev(y))2
+K2(x− y) dy ≤ η2(x)BK2((∂ev)+, (∂ev)+)(x)

− 2η2(x)(∂ev)+(x)LK2((∂ev)−)(x) + σ2
η2(x)
ε2 BK(v, v)(x).

(3.26)
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The proof follows by the same idea as in Theorem 3.1.6. Note that because our key estimates
contain positive parts, there appears the additional term −2η2(x)(∂ev)+(x)LK2((∂ev)−)(x) in
(3.26). Since this term is nonnegative, we can compensate the possible smallness of the other
terms on the right hand side due to the consideration of positive parts.

The estimate (3.26) follows if we manage to prove:

η2(x)
ˆ
Rn

(∂ev(y))2
+K2(x− y) dy ≤ η2(x)

ˆ
Rn

((∂ev(x))+ − (∂ev(y))+)2K2(x− y) dy

− 2η2(x)(∂ev(x))+LK2((∂ev)−)(x) + c
η2(x)
ε2 BK(v, v)(x),

which is equivalent to

2(∂ev(x))+η
2(x)

ˆ
Rn

(∂ev(y))+K2(x− y) dy ≤ (∂ev(x))2
+η

2(x)
ˆ
Rn

K2(x− y) dy

+ 2(∂ev(x))+η
2(x)

ˆ
Rn

(∂ev(y))−K2(x− y) dy + c
η2(x)
ε2 BK(v, v)(x).

(3.27)

Here, we used that (∂ev(x))+(∂ev(x))− = 0, and hence

−2η2(x)(∂ev(x))+LK2((∂ev)−)(x) = 2η2(x)(∂ev(x))+

ˆ
Rn

((∂ev(y))− − (∂ev(x))−)K2(x− y) dy

= 2η2(x)(∂ev(x))+

ˆ
Rn

(∂ev(y))−K2(x− y) dy.

To prove (3.27), we introduce the measure µK2(x, dy) = K2(x− y) dy and estimate

2(∂ev(x))+η
2(x)

ˆ
Rn

(∂ev(y))+K2(x− y) dy

= 2(∂ev(x))+η
2(x)

ˆ
Rn

(∂ev(y))−K2(x− y) dy + 2(∂ev(x))+η
2(x)

ˆ
Rn

∂ev(y)K2(x− y) dy

≤ 2(∂ev(x))+η
2(x)

ˆ
Rn

(∂ev(y))−K2(x− y) dy + µK2(x,Rn)((∂ev(x))+)2η2(x)

+ η2(x)µK2(x,Rn)−1
(ˆ

Rn

∂ev(y)µK2(x, dy)
)2

=: J0 + J1 + J2.

Note that J0 already coincides with second term on the right hand side of (3.27). In order to
estimate J1 and J2 we proceed precisely by the same arguments as in the estimation of J1 and
J2 in Step 1 of the proof of Theorem 3.1.6. This proves (3.27), and therefore (3.26), as desired.

Step 2: We claim that

LK1(η2)(x)(∂ev(x))2
+−BK1(η2, (∂ev)2

+)(x) ≤ η2(x)BK1((∂ev)+, (∂ev)+)(x)
− 2η2(x)(∂ev(x))+LK1((∂ev)−)(x) + σ1BK(v, v)(x),

(3.28)

where σ1 > 0 is a constant.
To establish (3.28), the same proof as for (3.19) in Step 2 for Theorem 3.1.6 goes through. One
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only needs to replace ∂eu by (∂ev)+ to deduce (3.22). Hence, we only need to prove

LK1(η2)(x)(∂ev(x))2
+ ≤ 1

2η
2(x)BK1((∂ev)+, (∂ev)+)(x)

− 2η2(x)(∂ev(x))+LK((∂ev)−)(x) + σ1,2B(v, v)(x).

If ∂ev(x) ≤ 0 the estimate is trivial. Otherwise, following the computations in Step 2 using
Lemma 3.3.8 instead of Lemma 3.3.4 gives

LK1(η2)(x)(∂ev(x))2
+ ≤ 1

4η
2(x)BK1((∂ev)+, (∂ev)+)(x)

− 1
4η

2(x)(∂ev(x))+LK((∂ev)−)(x) + σ1,2B(v, v)(x),

so, it suffices to note that LK((∂ev)−)(x) < 0 whenever ∂ev(x) > 0.
Note that by combining (3.28) with (3.26) and using that ε = γη(x), we obtain that for every

x ∈ Rn:

LK(η2)(x)(∂ev(x))2−BK(η2, (∂ev)2)(x) ≤ η2(x)BK(∂ev, ∂ev)(x)
− 2η2(x)(∂ev(x))+LK((∂ev)−)(x) + σBK(v, v)(x),

(3.29)

where σ = σ(n, s,Λ/λ, ∥η∥C1,1(Rn)) > 0. This proves the desired result.

Let us now prove a key estimate involving second derivatives. It is a straightforward corollary
of Theorem 3.1.8.

Corollary 3.3.9. Let s ∈ (0, 1), L ∈ Ls(λ,Λ; 1). Let η ∈ C1,1
c (B1) be such that η ≡ 1 in B1/2

and 0 ≤ η ≤ 1. Moreover, let η̄ ∈ C∞
c (B1/4) be such that η̄ ≡ 1 in B1/8 and 0 ≤ η̄ ≤ 1. Then,

there exists σ0 = σ0(n, s, λ,Λ, ∥η̄∥C1,1(Rn)) > 0 such that for every σ ≥ σ0 and u ∈ C2+2s+ε(B1)
the following estimate holds true for ũ := ηu:

L(η̄2(−∂2
eeũ)2

+ + σ(∂eũ)2) ≤ 2η̄2L(−∂2
eeũ)(−∂2

eeũ)+ + 2σL(∂eũ)∂eũ in Rn. (3.30)

Proof. The result follows by application of Theorem 3.1.8 with −∂eũ.

3.4 Application to fully nonlinear equations
The goal of this section is to establish Theorem 3.1.1. The main tool in our proof is the
Bernstein technique for integro-differential operators, which we develop in this article.

First, let us state a more general version of Theorem 3.1.1. To do so, let us introduce the
class of fully nonlinear operators Js(λ,Λ):

Definition 3.4.1. We define Js(λ,Λ) to be the set of all operators I of the form

Iu = inf
γ∈Γ

{Lγu− cγ} ,

where Γ is an index set and for any γ ∈ Γ it holds Lγ ∈ Ls(λ,Λ; 2), and cγ ∈ C1,1 satisfying

sup
γ∈Γ

∥cγ∥C1,1 ≤ Λ.
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We prove the following.

Theorem 3.4.2. Let s ∈ (0, 1) and I ∈ Js(λ,Λ). Let u ∈ C(B1) ∩ L∞(Rn) be a viscosity
solution to

Iu = 0 in B1. (3.31)

Then,

inf
B1/8

∂2
eeu ≥ −C

(
sup
γ∈Γ

∥cγ∥C1,1(B1) + ∥u∥L∞(Rn)

)
, (3.32)

where C depends only on n, s, λ, Λ.

Proof. We start by proving that for any smooth solution u ∈ C∞(B1) ∩L∞(Rn) of an equation
of the type (3.31) we have

sup
B1/8

−∂2
eeu ≤ C

(
sup
γ∈Γ

∥∇cγ∥L∞(B1) + sup
γ∈Γ

∥D2cγ∥L∞(B1) + ∥∂eu∥L∞(B1) + ∥u∥L∞(Rn)

)
, (3.33)

where C = C(n, s, λ,Λ).
For this, a key observation is that, by the regularity of u, for every x ∈ B1 there exist

Lγ(x) ∈ Ls(λ,Λ; 2) and cγ(x) ∈ C1,1 with ∥cγ(x)∥C1,1 ≤ Λ such that

Lγ(x)u(x) = cγ(x)(x).

To see this, we take minimizing sequences (Ln) and (cn) such that −Lnu(x) + cn(x) ↘ 0.
Note that by Arzelà-Ascoli, the sequence (cn) converges up to a subsequence to cγ(x) with
the aforementioned properties and moreover, the sequence (Ln) weakly convergences up to a
subsequence to Lγ(x) satisfying cγ(x)(x) = limn→∞ cn(x) = limn→∞ Lnu(x) = Lγ(x)u(x).

Step 1: We claim that the following holds true in the classical sense:

Lγ(·)(∂eu) = ∂ecγ(·), Lγ(·)(−∂2
eeu) ≤ −∂2

eecγ(·) in B3/4. (3.34)

In fact, since we have Lγ(·)u ≥ cγ(·) in B1, we find that for every small enough h = te, with
t ∈ R, and any x ∈ B3/4

Lγ(x)(Dhu)(x) = Lγ(x)u(x+ h) − Lγ(x)u(x)
|h|

≥ Dhcγ(x)(x),

Dhcγ(x)(x− h) ≥
Lγ(x)u(x− h) − Lγ(x)u(x)

−|h|
= Lγ(x)(−D−hu)(x),

and

Lγ(x)(DhD−hu)(x) = 2Lγ(x)u(x) − Lγ(x)u(x+ h) − Lγ(x)u(x− h)
|h|2

≤ DhD−hcγ(x)(x).

The aforementioned inequalities hold true in the classical sense since u ∈ C∞(B1). Therefore,
(3.34) follows by taking the limit |h| → 0.
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Step 2: Next, we apply Corollary 3.3.9 to u. Let us take two cutoff functions η ∈ C∞
c (B1)

and η̄ ∈ C∞
c (B1/4) with η, η̄ ≥ 0 and η ≡ 1 in B1/2, η̄ ≡ 1 in B1/8. We derive that the following

estimate holds true in a pointwise sense for any x ∈ B1/4 and ũ = ηu:

Lγ(x)(η̄2(−∂2
eeu)2

+ + σ(∂eũ)2)(x)
≤ 2η̄2Lγ(x)(−∂2

eeũ)(−∂2
eeũ)+(x) + 2σLγ(x)(∂eũ)∂eũ(x).

(3.35)

Note that

Lγ(·)(∂eũ) = Lγ(·)(∂eu) − Lγ(·)(∂e[(1 − η)u]), Lγ(·)(∂2
eeũ) = Lγ(·)(∂2

eeu) − Lγ(·)(∂2
ee[(1 − η)u]),

and that we can estimate for any x ∈ B1/4 using (C1)

|Lγ(x)(∂e[(1 − η)u])(x)| =
∣∣∣∣∣∣
ˆ
Rn\B1/4(x)

∂e[(1 − η)u](y)Kγ(x)(x− y) dy
∣∣∣∣∣∣

=
∣∣∣∣∣∣
ˆ
Rn\B1/4(x)

(1 − η)u(y)∂eKγ(x)(x− y) dy
∣∣∣∣∣∣

≤ C∥u∥L∞(Rn).

An analogous computation, using (C2) instead of (C1) yields

|Lγ(x)(∂2
ee[(1 − η)u])(x)| ≤ C∥u∥L∞(Rn).

By combination of (3.35) with the previous observations and (3.34), we derive

Lγ(x)(η̄2(−∂2
eeũ)2

+ + σ(∂eũ)2)(x)
≤ Cη̄2[Lγ(x)(−∂2

eeu)(x) + ∥u∥L∞(Rn)](−∂2
eeu)+(x) + C[Lγ(x)(∂eu) + ∥u∥L∞(Rn)]|∂eu|(x)

≤ Cη̄2[−∂2
eecγ|γ=γ(x) + ∥u∥L∞(Rn)](−∂2

eeu)+(x) + C[∂ecγ|γ=γ(x) + ∥u∥L∞(Rn)]|∂eu|(x)
=: F (x)

(3.36)

Step 3: Let us set
ϕ := η̄2(−∂2

eeũ)2
+ + σ(∂eũ)2.

By the maximum principle (see for instance [50, 33]),

sup
B1/4

ϕ ≤ C sup
B1/4

F + sup
Rn\B1/4

ϕ.

Note that we can estimate by Young’s inequality

C sup
B1/4

F ≤ 1
2 sup

B1/4

ϕ+ C̃ sup
B1/4

[
η̄2(∂2

eecγ(·))2 + (∂ecγ(·))2 + ∥u∥2
L∞(Rn)

]
.

This yields

sup
B1/4

ϕ ≤ C

sup
γ∈Γ

∥∇cγ∥2
L∞(B1) + sup

γ∈Γ
∥D2cγ∥2

L∞(B1) + ∥u∥2
L∞(Rn) + sup

Rn\B1/4

ϕ

 . (3.37)
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By definition of η̄ and η, we have

sup
B1/8

(−∂2
eeu)2

+ ≤ sup
B1/8

[
(−∂2

eeu)2
+ + σ(∂eu)2

]
= sup

B1/8

ϕ ≤ sup
B1/4

ϕ.

Moreover,

sup
Rn\B1/4

ϕ = sup
Rn\B1/4

[
σ(∂eũ)2

]
≤ σ sup

B1

[
(∂eu)2 + (∂eη)2u2

]
.

By combination of the previous observations with (3.37), we find

sup
B1/8

(−∂2
eeu)2

+ ≤ C

(
sup
γ∈Γ

∥cγ∥2
C1,1(B1/4) + sup

B1

(∂eu)2 + sup
Rn

u2
)
.

This yields the desired estimate (3.33) in case u ∈ C∞(B1) ∩ L∞(Rn).
Step 4: Finally, let us prove that the same estimate holds for any viscosity solution u of

(3.31). Thanks to the results in [92], for any viscosity solution u of (3.31) there exists a sequence
u(k) ∈ C∞(B1) ∩ L∞(Rn) of solutions to the same class of equations converging to u locally
uniformly in B1. Moreover, due to [52], the solutions u(k) satisfy a Lipschitz regularity estimate.
Thanks to this, and since we already proved (3.33) for C∞-solutions, we obtain

sup
B1/8

−∂2
eeu

(k) ≤ C1

(
sup

γ∈Γ(k)
∥cγ∥C1,1(B1) + ∥∂eu

(k)∥L∞(B1) + ∥u(k)∥L∞(Rn)

)

≤ C2

(
sup
γ∈Γ

∥cγ∥C1,1(B1) + ∥u∥L∞(Rn)

)
,

where C1, C2 > 0 do not depend on k. Therefore, we can take the limit k → ∞, and deduce
the desired result.

Remark 3.4.3. The semiconvexity estimate (3.32) is robust with respect to the limit s ↗ 1, i.e.,
if we choose L ∈ Ls((1 − s)λ, (1 − s)Λ; 1) and s ≥ s0 for some s0 ∈ (0, 1), then the constant C
will depend only on n, s0, λ,Λ.
Remark 3.4.4. Instead of (C2), our proof of the semiconvexity estimate remains true under

ˆ
Rn\B1/8

|D2K(y)| dy ≤ Λ. (3.38)

3.5 Key estimates in terms of difference quo-
tients

Recall that the key estimates which were established in the previous section all require some a
priori smoothness assumption on u, such as u ∈ C2+2s+ε

loc in order to make sense of expressions
like L(∂eu) and L(∂2

eeu). This way, the Bernstein technique cannot be used in order to establish
smoothness of solutions, but only to prove estimates for solutions that are already known to
be smooth.
Moreover, in many applications, as for example the obstacle problem, solutions are known not
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to possess the required C2+2s+ε regularity. In order to apply our technique to such situations,
in this section we establish Bernstein key estimates for difference quotients. Let us mention
that this idea was also announced in a version of a preprint of [33] (see Section 3 in [32]).

For h ∈ Rn, and u ∈ C(Rn) let us define

uh(x) :=
ˆ 1

0
u(x+ th) dt.

Moreover, we introduce difference quotients

Dhu(x) := u(x+ h) − u(x)
|h|

= ∂e(uh)(x),

where e = h/|h|. Clearly, by the fundamental theorem of calculus, the following identity holds
once u ∈ C0,1(B1(x)):

Dhu(x) =
ˆ 1

0
∂eu(x+ th) dt = (∂eu)h(x).

Moreover, note that

D−hDhu(x) = 2u(x) − u(x+ h) − u(x− h)
|h|2

.

Remark 3.5.1. Note that we have the following integration by parts identity for difference
quotients, whenever f, g are such that the integrals below are well-defined:ˆ

Rn

Dhf(x)g(x) dx = −
ˆ
Rn

f(x)D−hg(x) dx. (3.39)

3.5.1 Key estimate for non-smooth functions
We claim the following analogues of Theorem 3.1.6 and Theorem 3.1.8 for difference quotients:

Proof of Lemma 3.1.9. The proofs of (3.11) and (3.12) go in the exact same way as the proofs
of Theorem 3.1.6 and Theorem 3.1.8, respectively, upon replacing u and v by uh and vh,
respectively, and ∂eu and ∂ev by Dhu and Dhv, respectively. Moreover, in order to prove
(3.11), we need the following interpolation estimate, reminiscent of Lemma 3.3.4:

(Dhu(x))2 ≤ δ2sB(Dhu,Dhu)(x) + cδ2s−2B(uh, uh)(x). (3.40)

A similar estimate is required for the proof of (3.12).
The proof of the discrete interpolation estimate (3.40) also goes as before, however, the

following computation has to be employed: if we denote e = h/|h| thenˆ
Rn

Dhu(y)Kδ(x− y) dy =
ˆ
Rn

∂e(uh(y) − uh(x))Kδ(x− y) dy

= −
ˆ
Rn

(uh(y) − uh(x))∂eKδ(x− y) dy,
(3.41)

using Dhu = ∂euh and integrating by parts. Having at hand the discrete interpolation estimate
(3.40), the terms involving K1 can be treated exactly as before. For K2, we also proceed as in
Step 1 of the proof of Theorem 3.1.6, employing a similar computation as (3.41) with respect
to K2 instead of Kδ.
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As in the non-discrete case, it is possible to use (3.12) in order to get a key estimate that is
suitable for the application to second order estimates.

Corollary 3.5.2. Let s ∈ (s0, 1), with s0 > 0, and L ∈ Ls(λ,Λ; 1). Let η ∈ C1,1
c (B1) be such

that η ≡ 1 in B1/2 and 0 ≤ η ≤ 1. Moreover, let η̄ ∈ C1,1
c (B1/4) be such that η̄ ≡ 1 in B1/8 and

0 ≤ η̄ ≤ 1. Let |h| ≤ 1/8. Then, there exists σ0 = σ0(n, s0,Λ/λ, ∥η̄∥C1,1(Rn)) > 0 such that for
every σ ≥ σ0 and u ∈ C2s+ε

loc (B1) the following estimate holds true for ũ := ηu

L(η̄2(D−hDhũ)2
+ + σ(Dhũ−h)2)

≤ 2η̄2L(D−hDhũ)(D−hDhũ)+ + 2σL(Dhũ−h)Dhũ−h.
(3.42)

Proof. The proof follows by application of (3.12) with −h and v = Dhũ and using

Dh(u−h) = 1
h

ˆ 1

0
(u(· − th+ h) − u(· − th)) dt = (Dhu)−h.

Finally, we observe that the key estimates (3.11) and (3.12) can also be obtained for Hölder
difference quotients defined as

Dα
hu(x) = u(x+ h) − u(x)

|h|α
, α ∈ (0, 1).

Corollary 3.5.3. Let s ∈ (s0, 1), with s0 > 0, and L ∈ Ls(λ,Λ; 1). Let η ∈ C1,1
c (B1) be

such that η ≡ 1 in B1/2 and 0 ≤ η ≤ 1. Let α ∈ (0, 1) and |h| ≤ 1/8. Then, there exists
σ0 = σ0(n, s0,Λ/λ, ∥η∥C1,1(Rn)) > 0 such that for every σ ≥ σ0 and u, v ∈ C2s+ε

loc (Rn) ∩ L∞(Rn):

L(η2(Dα
hu)2 + σu2

h) ≤ 2η2L(Dα
hu)Dα

hu+ 2σL(uh)uh, (3.43)
L(η2(Dα

hv)2
+ + σv2

h) ≤ 2η2L(Dα
hv)(Dα

hv)+ + 2σL(vh)vh. (3.44)

Proof. We only explain how to prove (3.43), since the proof of (3.44) can be proved in the same
way. We multiply (3.11) on both sides by |h|2−2α. Then, for any σ ≥ σ0

L(η2(Dα
hu)2 + |h|2−2ασu2

h) ≤ 2η2L(Dα
hu)Dα

hu+ 2|h|2−2ασL(uh)uh.

In particular, we obtain (3.43) for any σ ≥ σ0 ≥ σ0|h|2−2α.

3.5.2 Improved key estimate for Lipschitz continuous functions
Moreover, we can prove the following key estimate which produces slightly different averages on
the lower order terms. The price we have to pay is that we need to assume certain smoothness
of u:

Lemma 3.5.4. Let s ∈ (s0, 1), with s0 > 0, and L ∈ Ls(λ,Λ; 1). Let η ∈ C1,1
c (B1) be such that

η ≥ 0. Let |h| ≤ 1/8. Then, there exists σ0 = σ0(n, s0,Λ/λ, ∥η∥C1,1(Rn)) > 0 such that for every
σ ≥ σ0 and u, v ∈ C2s+ε(B1/2)∩C0,1(B1/2)∩L∞(Rn), the following estimate holds true in B1/4:

L(η2(Dhu)2 + σ[u2]h) ≤ 2η2L(Dhu)Dhu+ 2σ[L(u)u]h, (3.45)
L(η2(Dhv)2

+ + σ[v2]h) ≤ 2η2L(Dhv)(Dhv)+ + 2σ[L(v)v]h. (3.46)
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Proof. The proof goes exactly as the proof of Lemma 3.1.9. The only difference is how we
integrate by parts with difference quotients. This is contained in the following identity, which
replaces (3.41). We claim that, denoting e = h/|h|,ˆ

Rn

Dhv(y)J(x− y) dy =
(ˆ

Rn

(v(·) − v(y)) ∂eJ(· − y) dy
)

h

(x), x ∈ B1/4, (3.47)

holds true for J = K2 (as in Theorem 3.1.6) and J = Kδ (as in Lemma 3.3.4), where v is
Lipschitz continuous in B1/2 and bounded. Let us first verify (3.47) for globally Lipschitz
continuous v:ˆ

Rn

Dhv(y)J(x− y) dy =
ˆ
Rn

[ˆ 1

0
∂ev(y + th) dt

]
J(x− y) dy

=
ˆ
Rn

[ˆ 1

0
∂e (v(y + th) − v(x+ th)) dt

]
J(x− y) dy

=
ˆ 1

0

ˆ
Rn

∂e (v(y + th) − v(x+ th)) J(x− y) dy dt

= −
ˆ 1

0

ˆ
Rn

(v(y + th) − v(x+ th)) ∂eJ(x− y) dy dt

= −
ˆ 1

0

ˆ
Rn

(v(y) − v(x+ th)) ∂eJ((x+ th) − y) dy dt

=
(ˆ

Rn

(v(·) − v(y)) ∂eJ(· − y) dy
)

h

(x).

(3.48)

Note that we used Lipschitz continuity of v in the first step. Moreover, we used L([w]h) = [Lw]h,
which is a direct consequence of Fubini’s theorem.

We remark that in case J = Kδ, it suffices to have Lipschitz continuity of v in B1/2 in order
to carry out the computation in (3.48), because supp(Kδ) ⊂ Bδ(0) and δ > 0 can be chosen to
satisfy δ < 1/8 in the application. This yields the following discrete interpolation estimate:

(Dhu(x))2 ≤ δ2sB(Dhu,Dhu)(x) + cδ2s−2[B(u, u)]h(x), (3.49)
which allows us to treat all the terms containing K1.

In order to prove (3.47) with J = K2, we approximate any function v ∈ L∞(Rn) that is
Lipschitz continuous in B1/2 by a sequence of globally Lipschitz continuous functions (vk),
satisfying ∥vk∥L∞(Rn) ≤ 2∥v∥L∞(Rn), vk ≡ v in B1/4, and converging to v almost everywhere, as
k → ∞. Then, by dominated convergence, for almost every x ∈ Rn:ˆ

Rn

Dhv(y)K2(x− y) dy = lim
k→∞

ˆ
Rn

Dhvk(y)K2(x− y) dy

= lim
k→∞

(ˆ
Rn

(vk(y) − vk(·)) ∂eK2(· − y) dy
)

h

(x)

=
(ˆ

Rn

(v(y) − v(·)) ∂eK2(· − y) dy
)

h

(x),

where we used that K2 and |∇K2| are integrable by properties (iv), (v), and (vi) in Lemma
3.3.1, and that Dhvk → Dhv a.e. and vk(y) − vk(x + th) → v(y) − v(x + th) for a.e. y ∈ Rn

and every x ∈ B1/4. This proves (3.47) for J = K2 and allows us to treat all terms involving
K2 in the proof of the key estimate. This concludes the proof.
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Finally, we explain how to obtain second order estimates from (3.46):

Corollary 3.5.5. Let s ∈ (s0, 1), with s0 > 0, and L ∈ Ls(λ,Λ; 1). Let η ∈ C1,1
c (B1) be such

that η ≡ 1 in B1/2 and 0 ≤ η ≤ 1. Moreover, let η̄ ∈ C1,1
c (B1/4) be such that η̄ ≡ 1 in B1/8 and

0 ≤ η̄ ≤ 1. Let |h| ≤ 1/8. Then, there exists σ0 = σ0(n, s0,Λ/λ, ∥η̄∥C1,1(Rn)) > 0 such that for
every σ ≥ σ0 and u ∈ C2s+ε(B1/2) ∩ C0,1(B1/2) ∩ L∞(B1), the following estimate holds true in
B1/4 for ũ := ηu:

L(η̄2(D−hDhũ)2
+ + σ[(Dhũ)2]−h)

≤ 2η̄2L(D−hDhũ)(D−hDhũ)+ + 2σ[L(Dhũ)Dhũ]−h.
(3.50)

Proof. The proof follows by application of (3.46) with −h and v = Dhũ.

As in the previous section, we can also obtain an improved key inequality for Hölder difference
quotients:

Corollary 3.5.6. Let s ∈ (s0, 1), with s0 > 0, and L ∈ Ls(λ,Λ; 1). Let η ∈ C1,1
c (B1) be

such that η ≡ 1 in B1/2 and 0 ≤ η ≤ 1. Let α ∈ (0, 1) and |h| ≤ 1/8. Then, there exists
σ0 = σ0(n, s0,Λ/λ, ∥η∥C1,1(Rn)) > 0 such that for every σ ≥ σ0 and u, v ∈ C2s+ε(B1/2) ∩
C0,1(B1/2) ∩ L∞(Rn), the following estimate holds true in B1/4:

L(η2(Dα
hu)2 + σ[u2]h) ≤ 2η2L(Dα

hu)Dα
hu+ 2σ[L(u)u]h, (3.51)

L(η2(Dα
hv)2

+ + σ[v2]h) ≤ 2η2L(Dα
hv)(Dα

hv)+ + 2σ[L(v)v]h. (3.52)

Proof. The proof goes exactly as the proof of Corollary 3.5.3, but starting with (3.45) and
(3.46).

3.6 Application to the obstacle problem
In this section we apply the Bernstein technique to the obstacle problem (3.3) with L ∈
Ls(λ,Λ; 1) (see Definition 3.2.1) and with ϕ being a sufficiently smooth function.

First, we establish semiconvexity estimates for solutions to (3.3) in Subsection 3.6.1. In
Subsection 3.6.2 we prove that blow-ups are convex (see Theorem 3.1.5). This result is crucial
in the proof of our main results Theorem 3.1.4 and Theorem 3.1.3, which will be carried out in
Subsection 3.6.3.

Let us start our discussion by several remarks.
Remark 3.6.1. It was proved in [39, Theorem 5.1] that any solution u to the obstacle problem
(3.3) belongs to Cβ whenever ϕ ∈ Cβ for some β < max{1 + ε, 2s+ ε}. In particular, if β > 2s,
we may assume that u is a solution to (3.3) in the classical sense.
Remark 3.6.2. Let us also point out that once ϕ ∈ Cβ for some β > 2s, we can rewrite (3.3) as
an obstacle problem with a zero obstacle and an inhomogeneity, as follows

min{Lv − f, v} = 0 in B1. (3.53)

This can be achieved by extending ϕ in a smooth way to Rn and defining f = Lϕ ∈ Cβ−2s and
v = u− ϕ (as long as β − 2s is not an integer). Sometimes it will be more convenient to work
with the formulation (3.53) instead of (3.3).
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3.6.1 Semiconvexity estimates
Using the Bernstein technique for difference quotients (see Section 3.5), we prove the semi-
convexity estimate in Theorem 3.1.2. Note that we will not apply these results in the proof
of optimal regularity for solutions and regularity of the free boundary. However, we consider
both, the result in itself and its proof using Bernstein technique, of independent interest.

In order to apply the Bernstein technique, we need to be able to evaluate Lu and LDhu in
a pointwise sense. We rely on Theorem 5.1 in [39], which states that solutions to the obstacle
problem are classical once the data is smooth enough.

Proof of Theorem 3.1.2. Thanks to Remark 3.6.2, we may assume that u is a solution of (3.53),
with f = Lϕ.
Let us denote ũ = ηu, where η ∈ C∞

c (B1), η ≡ 1 in B1/2 and 0 ≤ η ≤ 1. Let 0 < |h| < 1/16.
Step 1: We estimate the quantity [L(Dhũ)Dhũ]−h in B1/4−|h|. Let us first prove the following

claim: For all x ∈ B1/4,

L(Dhu)(x)Dhu(x) ≤ ∥∇f∥L∞(B1)|Dhu(x)|. (3.54)

To prove (3.54), we first assume that u(x) > 0. We distinguish between two cases:
Case 1: u(x+ h) > 0. Then, L(Dhu)(x) = Dhf(x), and therefore

L(Dhu)(x)Dhu(x) = Dhf(x)Dhu(x) ≤ ∥∇f∥L∞(B1)|Dhu(x)|.

Case 2: u(x+ h) = 0. Then,

Dhu(x) = −u(x)
h

< 0, L(Dhu)(x) = Lu(x+ h) − f(x)
h

≥ Dhf(x).

Thus,

L(Dhu)(x)Dhu(x) ≤ Dhf(x)Dhu(x) ≤ ∥∇f∥L∞(B1)|Dhu(x)|.

On the other hand, let us now assume that u(x) = 0. We distinguish between two cases:
Case 1: u(x+ h) = 0. Then, Dhu(x) = 0, and therefore

L(Dhu)(x)Dhu(x) = 0.

Case 2: u(x+ h) > 0. Then,

Dhu(x) = u(x+ h)
h

> 0, L(Dhu)(x) = f(x+ h) − Lu(x)
h

≤ Dhf(x).

Thus,

L(Dhu)(x)Dhu(x) ≤ Dhf(x)Dhu(x) ≤ ∥∇f∥L∞(B1)|Dhu(x)|.

All in all, we get for any x ∈ B1:

L(Dhu)(x)Dhu(x) ≤ Dhf(x)Dhu(x) ≤ ∥∇f∥L∞(B1)|Dhu(x)|,
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which yields (3.54), as desired.
Now let us turn to estimating [L(Dhũ)Dhũ]−h in B1/4−|h|. For this, we note that for x ∈ B1/4,
using (C1):

|L(Dh[(1 − η)u](x)| =

∣∣∣∣∣∣∣
ˆ
Rn\B 1

4 −|h|(x)
Dh[(1 − η)u](y)K(x− y) dy

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
ˆ
Rn\B 1

4 −|h|(x)
(1 − η)u(y)D−hK(x− y) dy

∣∣∣∣∣∣∣
≤ C∥u∥L∞(Rn).

Therefore, we obtain

L(Dhũ)Dhũ(x) = L(Dhu)Dhu− L(Dh[1 − η]u)Dhu

≤ C
(
∥∇f∥L∞(B1) + ∥u∥L∞(Rn)

)
|Dhu(x)|

Using interior Lipschitz estimates for solutions of (3.53) (see [39, Theorem 5.1]), we obtain the
following estimate in B1/4−|h|:

[L(Dhũ)Dhũ]−h ≤ C
(
∥∇f∥L∞(B1) + ∥u∥L∞(Rn)

)
(∥f∥C0,1(B1) + ∥u∥L∞(Rn))

≤ C(∥f∥2
C0,1(B1) + ∥u∥2

L∞(Rn)).
(3.55)

Step 2: We give an estimate for L(D−hDhũ)(x)(D−hDhũ(x))+ in B1/4: First of all, let us
assume that u(x) > 0. In this case

L(D−hDhu)(x) = 2Lu(x) − Lu(x+ h) − Lu(x− h)
h2

= 2f(x) − Lu(x+ h) − Lu(x− h)
h2 ≤ D−hDhf(x).

Moreover, since in {u = 0}, it holds D−hDhu ≤ 0, we obtain for x ∈ B1:

L(D−hDhu)(x)(D−hDhu(x))+ ≤ ∥D2f∥L∞(B1)(D−hDhu(x))+. (3.56)

Next, note that, by a similar argument as in Step 1, but using (C2) instead of (C1), we obtain
for x ∈ B1/4−2|h|:

|L(D−hDh[(1 − η)u])(x)| ≤ C∥u∥L∞(Rn). (3.57)

Therefore, using (3.56) and (3.57), we have the following estimate:

L(D−hDhũ)(D−hDhũ)+(x)
= L(D−hDhu)(D−hDhu(x))+ − L(D−hDh[(1 − η)u])(D−hDhu(x))+

≤ C
(
∥D2f∥L∞(B1) + ∥u∥L∞(Rn)

)
(D−hDhu(x))+

(3.58)

Step 3: Finally, it remains to apply Corollary 3.5.5 and to combine it with the estimates
(3.55) and (3.58) we obtained in the previous steps. Note that we can apply Corollary 3.5.5,
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since we know that u is Lipschitz continuous in B1/2.
Let η̄ ∈ C∞

c (B1/4) be such that η̄ ≡ 1 in B1/8 and 0 ≤ η̄ ≤ 1. This yields the following estimate
for every x ∈ B1/4, if |h| is small enough:

L(η̄2(D−hDhũ)2
+ + σ[(Dhũ)2]−h)(x)

≤ 2η̄2(x)L(D−hDhũ)(x)(D−hDhũ)+(x) + 2σ[L(Dhũ)Dhũ]−h(x)
≤ Cη̄2(x)

(
∥D2f∥L∞(B1) + ∥u∥L∞(Rn)

)
(D−hDhu(x))+ + C(∥f∥2

C0,1(B1) + ∥u∥2
L∞(Rn)).

Consequently, by the maximum principle (see Corollary 5.2 in [164]), we have

sup
B1/4

(
η̄2(D−hDhu)2

+

)
≤ sup

B1/4

(
η̄2(D−hDhũ)2

+ + σ[(Dhũ)2]−h

)
≤ C sup

B1/4

(
η̄2
(
∥D2f∥L∞(B1) + ∥u∥L∞(Rn)

)
(D−hDhu)+

)
+ C(∥f∥2

C0,1(B1) + ∥u∥2
L∞(Rn))

+ C sup
Rn\B1/4

(
η̄2(D−hDhũ)2

+ + σ[(Dhũ)2]−h

)
≤ 1

2 sup
B1/4

(
η̄2(D−hDhu)2

+

)
+ C(∥f∥2

C1,1(B1) + ∥u∥2
L∞(Rn))

+ C sup
Rn\B1/4

[(Dhũ)2]−h,

(3.59)

where we used Young’s inequality. By absorption of the first term on the right hand side, as
well as

sup
Rn\B1/4

[(Dhũ)2]−h ≤ sup
B1/2

(Dhu)2 ≤ C(∥f∥2
C0,1(B1) + ∥u∥2

L∞(Rn)),

which is again due to the interior Lipschitz estimates in [39, Theorem 5.1], we end up with

sup
B1/8

(
(D−hDhu)2

+

)
≤ sup

B1/4

(
η̄2(D−hDhu)2

+

)
≤ C(∥f∥2

C1,1(B1) + ∥u∥2
L∞(Rn)). (3.60)

Since this estimate is uniform in h, we can pass to the limit h → 0 and deduce

sup
B1/8

(−∂2
eeu)+ ≤ C(∥f∥C1,1(B1) + ∥u∥L∞(Rn)).

This concludes the proof.

Remark 3.6.3. The semiconvexity estimate we just proved is robust with respect to the limit
s ↗ 1, i.e., if we choose L ∈ Ls((1 − s)λ, (1 − s)Λ; 1) and s ≥ s0 for some s0 ∈ (0, 1), then the
constant C will depend only on n, s0, λ,Λ

Remark 3.6.4. Note that our proof of the semiconvexity estimate remains true under (3.38)
instead of (C2).
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3.6.2 Convexity of blow-ups
In this section, we show how to apply the Bernstein technique in order to prove Theorem
3.1.5, which states that blow-ups for the nonlocal obstacle problem are necessarily convex. As
explained before, this result is a central ingredient in our proof of Theorem 3.1.4 and Theorem
3.1.3.

Proof of Theorem 3.1.5. Let us take two cutoff functions η ∈ C∞
c (B2) and η̄ ∈ C∞

c (B1/2) with
η, η̄ ≥ 0 and η ≡ 1 in B1, η̄ ≡ 1 in B1/4. Then, by Corollary 3.5.5 applied with −h, we obtain
for x ∈ B1/2:

L(η̄2(D−hDh(ηu0))2
+ + σ[(Dh(ηu0))2]−h)(x)

≤ 2η̄2L(D−hDh(ηu0))(D−hDh(ηu0))+(x) + 2σ[L(Dh(ηu0))Dh(ηu0)]−h(x).

Since for |h| small enough and x ∈ B1/2

D−hDh(u0)(x) = 2u0(x) − u0(x+ h) − u0(x− h)
h2 =

u0(x)−u0(x+h)
|h| + u0(x)−u0(x−h)

|h|

|h|
,

using (3.6) for x ∈ B1/2 ∩ {u0 > 0}, and D−hDhu0 ≤ 0 in B1/2 ∩ {u0 = 0}, we obtain

L(D−hDhu0)(D−hDhu0)+(x) ≤ 0, x ∈ B1/2.

Moreover, note that after integrating by parts and using (3.5) and (C1), |Dh[(1 − η)u0]| ≤
C(|u0|+ |∇u0|) and DhK(x−y) ≤ c|x−y|−n−1−2s ≤ C|y|−n−1−2s for x ∈ B1/8 and y /∈ B1/4−2|h|.
Hence,

|L(D−hDh[(1 − η)u0])| =
∣∣∣∣∣∣
ˆ
Rn\B1/4−2|h|

−D−hDh[(1 − η)u0](y)K(x− y) dy
∣∣∣∣∣∣

=
∣∣∣∣∣∣
ˆ
Rn\B1/4−2|h|

Dh[(1 − η)u0](y)DhK(x− y) dy
∣∣∣∣∣∣

≤ C

ˆ
Rn\B1/4−2|h|

(∥u0∥L∞(B3) + |y|s+α)|x− y|−n−1−2s dy

≤ C(∥u0∥L∞(B3) + 1).

Therefore, we obtain

L(D−hDh(ηu0))(D−hDh(ηu0))+(x)
= (L(D−hDhu0) − L(D−hDh[(1 − η)u0])) (D−hDh(ηu0))+(x)
≤ C(∥u0∥L∞(B3) + 1)(D−hDh(ηu0)(x))+.

(3.61)

Moreover, we obtain

L(Dhu0)Dhu0(x) ≤ 0 in B3/4

by using the same argument as in Step 1 of the proof of Theorem 3.1.2 together with (3.6).
Indeed, if u0(x), u0(x+ h) > 0, (3.6) applied with x and with x+ h implies that L(Dhu0) = 0,
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and if u0(x) = u0(x + h) = 0, then Dhu0(x) = 0. Moreover, if u0(x) > u0(x + h) = 0, then
L(Dhu0) ≥ 0 and Dhu0 < 0. The case u0(x+h) > u0(x) = 0 follows by changing roles of x and
x+ h.
Therefore, we deduce

L(Dh(ηu0))Dh(ηu0)(x) = (L(Dhu0) − L(Dh[(1 − η)u0]))Dhu0(x)
≤ C(∥u0∥L∞(B3) + 1)|Dhu0(x)|,

(3.62)

where we used (3.5) again as above to estimate −L(Dh[(1 − η)u0]) ≤ C(∥u0∥L∞(B3) + 1).
Altogether, by combining (3.61) and (3.62) we obtain for any x ∈ B1/4

L(η̄2(D−hDh(ηu0))2
+ + σ[(Dh(ηu0))2]−h)(x)

≤ Cη̄2(∥u0∥L∞(B3) + 1)(D−hDh(ηu0)(x))+ + C(∥u0∥L∞(B3) + 1)|Dhu0(x)|.

Consequently, by the maximum principle (see Corollary 5.2 in [164]), the definitions of η, η̄,
and an application of Young’s inequality (as in (3.59)), we obtain

sup
B1/4

(D−hDh(ηu0))2
+ ≤ C

∥u0∥2
L∞(B3) + sup

Rn\B1/2

[(Dh(ηu0))2]−h


≤ C

(
∥u0∥2

L∞(B3) + ∥∇u0∥2
L∞(B3)

)
.

In particular, upon sending h → 0 and using (3.5), we have shown

−D2u0 ≤ C
(
∥u0∥L∞(B3) + ∥∇u0∥L∞(B3)

)
< ∞ in B1/4.

Next, we observe that for any r ≥ 1, the function

u
(r)
0 (x) := u0(rx)

r1+s+α

satisfies all the assumptions of the theorem, and therefore, by application of the same arguments
as before, we obtain for x ∈ B1/4:

−D2u
(r)
0 (x) ≤ C

(
∥u(r)

0 ∥L∞(B3) + ∥∇u(r)
0 ∥L∞(B3)

)
≤ C

∥u0∥L∞(B3r)

rs+α+1 + ∥∇u0∥L∞(B3r)

rs+α
≤ C,

where we used (3.5) and the fact that (3.5) also implies a growth control on u itself:

|u(x)| ≤ crs+α+1 ∀x ∈ Br, ∀r ≥ 1. (3.63)

Consequently, for any x ∈ Rn, by choosing r = 8R|x| for R > 1, where x̃ = x
8R|x| ∈ B1/4:

D2u0(x) = rs+α−1D2u
(r)
0 (x̃) ≤ Crs+α−1 ≤ C|x|s+α−1Rs+α−1 → 0 as R → ∞,

where we used that s+ α < 1. This implies the desired result.
Finally, notice that when K is homogeneous we can then apply the classification of blow-ups

in [46, Theorem 4.1]) to obtain u0(x) = κ(x · ν)1+s
+ for some ν ∈ Sn−1, κ ≥ 0.
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3.6.3 Optimal regularity for solutions
We next turn our attention to proving Theorem 3.1.4 and Theorem 3.1.3, i.e., optimal C1+s

regularity for solutions to the obstacle problem (3.53) and regularity of the free boundary
near regular points. Moreover, we also prove optimal regularity estimates in the presence of
non-smooth obstacles ϕ ∈ Cβ with β < 1 + s. Throughout this subsection, we assume that
L ∈ Ls(λ,Λ; 1) and is homogeneous, i.e., (3.4) holds.

The proofs in this section follow the same overall strategy as the proof of optimal regularity
for the global obstacle problem in [104] (see also [64]). However, as we explained before, we do
not deduce the convexity of the blow-ups from semiconvexity estimates of solutions, but apply
Theorem 3.1.5, where we proved it directly. In the sequel we will sketch the proof of our main
results, following the scheme in [104] and emphasizing the main differences.

As a preparation, we need the following slightly improved version of Theorem 5.1 from [39],
whose proof uses several ideas from Lemma 3.6 in [1]. For the sake of readability, we postpone
it to the Appendix (see Section 3.8).

Lemma 3.6.5. Let s ∈ (0, 1), L ∈ Ls(λ,Λ; 1). Let f ∈ Cβ−2s(B1) for some β ∈ (2s, 1 + s),
and let α ∈ (0, s). Let u be a viscosity solution to the obstacle problem (3.53). Then, u ∈
Cmax{2s+ε,1+ε}(B1/2) and it satisfies the following estimate

∥u∥Cmax{2s+ε,1+ε}(B1/2) ≤ C

[f ]Cβ−2s(B1) +
∥∥∥∥∥ u

(1 + |x|)1+s+α

∥∥∥∥∥
L∞(Rn)

 ,
where C = C(n, s, λ,Λ) > 0 is a uniform constant.

Using this, we can now give the:

Proof of Theorem 3.1.3 for β < 1 + s. First of all, recall that the case β < max{2s+ ε, 1 + ε}
was done in [39, Theorem 5.1]. In particular, we may assume β > max{2s, 1} and that u ∈
C2s+ε(B1) for some small ε > 0, i.e., u is a classical solution. Our goal is to prove that, when
β ∈ (max{2s, 1}, 1 + s), we have

|∇(u− ϕ)(x)| ≤ C(∥ϕ∥Cβ(B1) + ∥u∥L∞(Rn))|x− x0|β−1 (3.64)

for any free boundary point x0 ∈ ∂{u > ϕ}.
Our proof is based on the ideas of the proof of [104, Corollary 2.12]. After a normalization,
we can assume without loss of generality that x0 = 0 and that ∥ϕ∥Cβ(Rn) + ∥u∥L∞(Rn) = 1.
Moreover, let us replace u by w := vη := (u − ϕ)η for some cutoff-function η ∈ C∞

c (B4) with
0 ≤ η ≤ 1 and η ≡ 1 in B3. Clearly, w satisfies

min{Lw − f, w} = 0 in B2,

where f = −Lϕ − L((1 − η)v) ∈ Cβ−2s(B1) satisfies ∥f∥Cβ−2s(B1) ≤ C for a uniform constant
C = C(n, s, λ,Λ, β) > 0. Therefore, by [39, Theorem 5.1] (see also Lemma 3.6.5), it holds that
∇w is globally bounded by a uniform constant. Note that the regularity of f follows since by
ϕ ∈ Cβ(B2), we have that Lϕ ∈ Cβ−2s(B1), and moreover, L((1 − η)v) ∈ C0,1(B1), as one can
see from (C1) and the identity

L(v(1 − η))(x) = −
ˆ
Rn

[v(1 − η)](y)K(x− y) dy. (3.65)
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Let us now begin with the proof of (3.64). We need to show that

|∇w(x)| ≤ C|x|µ, (3.66)

where µ = β − 1 and C depends only on n, s, β, λ, Λ. Let us assume by contradiction that
(3.66) does not hold. Then, we can find sequences wk, Lk, fk with the properties discussed
before such that 0 ∈ ∂{wk > 0} and

sup
k

sup
r>0

∥∇wk∥L∞(Br)

rµ
= ∞. (3.67)

By Lemma 2.12 in [104], there exist sequences rm → 0 and km → 0, as m → ∞, such that

w̃m = wkm(rmx)
rm∥∇wkm∥L∞(Brm )

, ∇w̃m = ∇wkm(rmx)
∥∇wkm∥L∞(Brm )

satisfy

∥∇w̃m∥L∞(B1) = 1, |∇w̃m(x)| ≤ C(1 + |x|µ) ∀x ∈ Rn,

min{Lmw̃m − f̃m, w̃m} = 0 in B2/rm ,

where we write Lm := Lkm and define

f̃m := r2s−1
m

fkm(rmx)
∥∇wkm∥L∞(Brm )

.

Consequently, by the uniform control on ∇w̃m, we have w̃m → w̃0 locally uniformly for some
limiting function w̃0 up to a subsequence. Moreover, observe that

Lm(Dhw̃m) ≥ Dhf̃m in {w̃m > 0} ∩B1/rm , (3.68)
Lm(Dhw̃m) = Dhf̃m in {x : dist(x, {w̃m = 0}) > |h|} ∩B1/rm , (3.69)

and that by the proof of Lemma 2.12 in [104] we also have

r−µ
m ∥∇wkm∥L∞(Brm ) ≥ 1

2 sup
k

sup
r≥rm

r−µ∥∇wk∥L∞(Br).

By (3.67), we can extract a further subsequence (lm) ⊂ (km) such that for every m ∈ N:

∥∇wlm∥L∞(Brlm
) ≥ mrµ

lm
. (3.70)

To simplify the presentation of the proof, let us slightly abuse notation and write again rm and
km instead of rlm and lm. Now, since fkm ∈ Cβ−2s(B1) we have for any |h| > 0 and x ∈ B1/rm :

|Dhf̃m(x)| ≤ m−1r2s−1−µ
m |Dhfkm(rmx)| ≤ cm−1rβ−1−µ

m |h|β−2s−1 → 0, as m → ∞, (3.71)

where we used (3.70) and µ = β − 1. Therefore, using (3.68), (3.71), and the stability of
viscosity solutions, we obtain

L∞(Dhw̃0) ≥ 0 in {w̃0 > 0},
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where L∞ denotes the weak limit of (Lm)m. Moreover, we have w̃m ∈ C2s+ε(B1/rm) and

∥w̃m∥C2s+ε(B1/rm ) ≤ C (3.72)

for a uniform constant C = C(n, s, λ,Λ) > 0. This is a consequence of Lemma 3.6.5, the
gradient control on w̃m and the fact that [f̃m]Cβ−2s(B1/rm ) → 0, as m → ∞, which follows from
the computation

|Dβ−2s
h f̃m(x)| ≤ m−1r2s−1−µ

m |Dβ−2s
h fkm(rmx)| ≤ cm−1rβ−1−µ

m ∀|h| > 0.

By (3.72), we have uniform convergence w̃m → w̃0 ∈ C2s+ε
loc (Rn), and by using also (3.69) and

(3.71), we can conclude

L∞(∇w̃0) = 0 in {w̃0 > 0}.

and also

∥∇w̃0∥L∞(BR) ≤ cRµ, ∀R ≥ 1. (3.73)

Now, we are in the position to apply Theorem 3.1.5. This yields convexity of w̃0, and

w̃0(x) = κ(x · e)1+s
+

for some κ ≥ 0 and e ∈ Sn−1. By convexity of w̃0 and ∥∇w̃m∥L∞(B1) = 1, it holds that
∥∇w̃0∥L∞(B1) ≥ 1. Therefore κ ̸= 0. However, since µ = β − 1 < s, this is a contradiction to
(3.73). Therefore, we have proved (3.66) and (3.64). Note that (3.64) implies the desired result
upon combining it with interior regularity estimates.

As in [104], the proof of the regularity of the free boundary (see Theorem 3.1.4) and the
optimal regularity (see Theorem 3.1.3 in case β > 1+2s) are based on the following quantitative
estimate. Note that in contrast to [104, Theorem 2.2], we do not need to assume semiconvexity
of u.

Lemma 3.6.6. Let s ∈ (0, 1), L ∈ Ls(λ,Λ; 1) satisfying (3.4). Let α ∈ (0, s) ∩ (0, 1 − s). Let
η > 0 and assume that u ∈ C0,1(Rn) satisfies

u ≥ 0 in B1/η, with 0 ∈ ∂{u > 0},
min{Lu− f, u} = 0 in B1/η, with |∇f | ≤ η,

∥∇u∥L∞(BR) ≤ Rs+α, ∀R ≥ 1.

Then, there exist e ∈ Sn−1 and κ ≥ 0 such that

∥u− κ(x · e)1+s
+ ∥C0,1(B1) ≤ ε(η), (3.74)

where ε(η) is a modulus of continuity, depending only on n, s, λ,Λ, α.
Moreover, for any κ0 > 0 there is ε0 > 0 such that if κ ≥ κ0 and ε(η) ≤ ε0, then ∂{u > 0} is a
C1,γ-graph in B1/2 for some γ > 0 depending only on n, s, λ, Λ, α, κ0, and

|u− κ(x · e)1+s
+ | ≤ C|x|1+s+γ, |∇u− ∇κ(x · e)1+s

+ | ≤ C|x|s+γ in B1,

where C > 0 depends only on n, s, λ, Λ, α, κ0.
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Proof. First, we prove (3.74). Let us assume by contradiction that there exists ε > 0 and a
sequence ηk → 0 and a sequence of operators Lk and solutions uk satisfying the assumptions of
Lemma 3.6.6 for which

∥uk − κ(x · e)1+s
+ ∥C0,1(B1) > ε (3.75)

for any e ∈ Sn−1 and κ ≥ 0. Similar to the proof of Theorem 3.1.3 in case β < 1+s, we can show
that ∥uk∥C1+s−ε(B1) is uniformly bounded and that uk converges, up to a subsequence, in the
C1-norm to a limiting function u0 satisfying the assumptions of Theorem 3.1.5. Consequently,
there exist e ∈ Sn−1 and κ ≥ 0 such that u0(x) = κ(x · e)1+s

+ . This contradicts (3.75). Thus, we
have shown (3.74). The remaining assertions follow by the same arguments as in the proof of
[104, Theorem 2.2]. Note that their proof does not require semiconvexity of u.

We are now ready to establish the dichotomy between regular and degenerate free boundary
points, show C1,γ-regularity of the free boundary near regular points (see Theorem 3.1.4), and
establish the optimal C1+s-regularity of solutions (see Theorem 3.1.3 in case β > 1 + 2s).

Proof of Theorem 3.1.4 and of Theorem 3.1.3 in case β > 1 + 2s. The proof follows by the same
arguments as the proof of [104, Corollary 2.16], using Lemma 3.6.6 instead of [104, Theorem
2.2]. The only difference to the proof of [104, Corollary 2.16] is that we need to use the slightly
modified rescaling

wk(x) := η

[Lϕ]C0,1(Rn)

(u− ϕ)(η−12−kx)
(η−12−k)1+s+α

, k ∈ N,

where α ∈ (0, s) ∩ (0, 1 − s) (as in Lemma 3.6.6), to guarantee that wk solves

min{Lwk − fk, wk} = 0 in B1/η, with |∇fk| ≤ η,

as required in the application of Lemma 3.6.6. The rest of the proof follows along the lines of
the proof of [104, Corollary 2.16].

3.7 Extensions of the Bernstein technique
In this section, we present several possible extensions of the Bernstein technique. To be more
precise, in Subsection 3.7.1, we explain how to establish Bernstein key estimates for operators
of the form ∂t+L and explain how to derive a priori estimates for solutions to the corresponding
parabolic equation ∂tu + Lu = f . Moreover, in Subsection 3.7.2, we extend the key estimates
Theorem 3.1.6 and Theorem 3.1.8 to operators with nonsymmetric kernels that possess first
order drift terms.
Remark 3.7.1 (Bernstein technique for convolution operators). We mention that the Bernstein
technique also works for nonlocal operators with integrable kernels of the form

Lu(x) =
ˆ
Rn

(u(x) − u(y))K(x− y) dy = u(x) −
ˆ
Rn

u(y)K(x− y) dy.

In fact, we have the following:
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(i) Assume that K ∈ C0,1(Rn) satisfies for some Λ > 0

|∇K(y)| ≤ ΛK(y),
ˆ
Rn

K(y) dy = 1.

Let L be as before. Let η ∈ C∞
c (B1) be such that η ≡ 1 in B1/2 and 0 ≤ η ≤ 1. Then,

there exists σ0 = σ0(n,Λ) > 0 such that for every σ ≥ σ0 and u ∈ L∞(Rn) the key
estimates for difference quotients (3.11) and (3.12) hold true. Moreover, if u ∈ C1+ε(Rn)
the key estimates (3.8) and (3.10) hold true.

(ii) The proof of (i) follows along the lines of Step 1 in the proof of the key estimate Theorem
3.1.6 (respectively its modifications), replacing K2 by K.

(iii) Using the key estimate for difference quotients, one can prove that solutions u to Lu = f
in Ω with f ∈ C0,1(Ω) satisfy u ∈ C0,1

loc (Ω). In this way, one can argue that the Bernstein
technique also extends to the limiting case s = 0.

3.7.1 Parabolic nonlocal equations
So far, in this work we have restricted ourselves to the study of elliptic problems. In this section,
we explain how the Bernstein technique can be used to study regularity estimates for parabolic
equations governed by nonlocal operators. As an application, we establish semiconvexity esti-
mates for solutions to the parabolic obstacle problem.

Theorem 3.7.2. Let s ∈ (0, 1), LK(t) ∈ Ls(λ,Λ; 1) for any t ∈ [0,∞). Let η2s
1 ∈ C0,1([0, 1])

be such that η1 ≥ 0. Let η2 ∈ C1,1
c (B1) be such that η2 ≥ 0. We define η := η1η2. Then,

there exists σ0 = σ0(n, s, λ,Λ, ∥η2s
1 ∥C0,1([0,1]), ∥η2∥C1,1(B1)) > 0 such that for every σ ≥ σ0 and

u, v ∈ C∞((0,∞) × Rn)

(∂t + LK(t))(η2(∂eu)2 + σu2) ≤ 2η2(∂t + LK(t))(∂eu)∂eu+ 2σ(∂t + LK(t))(u)u, (3.76)
(∂t + LK(t))(η2(∂ev)2

+ + σu2) ≤ 2η2(∂t + LK(t))(∂ev)(∂ev)+ + 2σ(∂t + LK(t))(v)v. (3.77)

Remark 3.7.3. By adapting the proofs in Section 3.5 to the parabolic setting, it is also possible
to establish key estimates in terms of difference quotients for (∂t + LK(t)):

(∂t + LK(t))(η2(Dhu)2 + σu2
h) ≤ 2η2(∂t + LK(t))(Dhu)Dhu+ 2σ(∂t + LK(t))(uh)uh, (3.78)

(∂t + LK(t))(η2(Dhu)2 + σ[u2]h) ≤ 2η2(∂t + LK(t))(Dhu)Dhu+ 2σ[(∂t + LK(t))(u)u]h. (3.79)

Proof of Theorem 3.7.2. (i) First, we prove (3.76). Let us compute

(∂t + LK(t))(η2(∂eu)2 + σu2) = 2(∂tη1)η1η
2
2(∂eu)2

+ 2η2(∂t + LK(t))(∂eu)(∂eu) + 2σ(∂t + LK(t))(u)u
+ LK(t)(η2)(∂eu)2 −BK(t)(η2, (∂eu)2) − η2BK(t)(∂eu, ∂eu) − σBK(t)(u, u).

Therefore, it remains to prove

2(∂tη1)η1η
2
2(∂eu)2 + LK(t)(η2)(∂eu)2 −BK(t)(η2, (∂eu)2) ≤ η2BK(t)(∂eu, ∂eu) + σBK(t)(u, u).
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As in the proof of Theorem 3.1.6, let us choose ε = γη(x), where γ > 0 is as before. Therefore,
by Step 1 of the proof of Theorem 3.1.6, it remains to prove

2(∂tη1)η1η
2
2(∂eu)2 + L

K
(t)
1

(η2)(∂eu)2 −B
K

(t)
1

(η2, (∂eu)2) ≤ η2B
K

(t)
1

(∂eu, ∂eu) + σB
K

(t)
1

(u, u),

where K(t)
1 is defined as in Lemma 3.3.1. Moreover, by carefully tracking Step 2 of the proof of

Theorem 3.1.6, it becomes apparent that

L
K

(t)
1

(η2)(∂eu)2 −B
K

(t)
1

(η2, (∂eu)2) = η2
1

(
L

K
(t)
1

(η2
2)(∂eu)2 −B

K
(t)
1

(η2
2, (∂eu)2)

)
≤ 3

4η
2B

K
(t)
1

(∂eu, ∂eu) + σ1BK
(t)
1

(u, u)

for some σ1 = σ1(n, s, λ,Λ, ∥η2∥C1,1(Rn)). Therefore, it remains to prove

2(∂tη1)η1η
2
2(∂eu)2 ≤ 1

4η
2B

K
(t)
1

(∂eu, ∂eu) + σ2BK
(t)
1

(u, u) (3.80)

for some σ2 = σ2(n, s, λ,Λ, ∥η1∥C0,1([0,1]), ∥η2∥C1,1(Rn)). Note that (3.80) is trivial once ∂tη1(t) ≤

0. Thus, we can assume without loss of generality that ∂tη1(t) > 0 and choose δ =
(

η1(t)
8∂tη1(t)

) 1
2s ∧ ε

2
and apply the interpolation estimate Lemma 3.3.4. Then,

2(∂tη1)η1η
2
2(∂eu)2 ≤ 2(∂tη1)η1η

2
2

(
δ2sB

K
(t)
1

(∂eu, ∂eu) + cδ2s−2B
K

(t)
1

(u, u)
)

≤ 1
4η

2B
K

(t)
1

(∂eu, ∂eu) + c(∂tη1)
1
s η

2− 1
s

1 η2
2BK

(t)
1

(u, u)

≤ 1
4η

2B
K

(t)
1

(∂eu, ∂eu) + cη2
2BK

(t)
1

(u, u).

Note that in the last step we used that (∂tη1)
1
s η

2− 1
s

1 = c(s)(∂t(η2s
1 )) 1

s and η2
2 are bounded. This

establishes (3.80), as desired.

(ii): Now, let us show (3.77). The proof follows by a combination of the arguments in the
proof of (3.76) and Theorem 3.1.8. In fact, it remains to prove

2(∂tη1)η1η
2
2(∂ev)2 ≤ 1

4η
2
[
B

K
(t)
1

((∂ev)+, (∂ev)+) − 2L
K

(t)
1

((∂ev)−)(∂ev)+

]
+ σ2BK

(t)
1

(v, v)
(3.81)

for some σ2 = σ2(n, s, λ,Λ, ∥η1∥C0,1([0,1]), ∥η2∥C1,1(Rn)). This will be achieved by application of
Lemma 3.3.8 with δ = 1

8

(
η1(t)

∂tη1(t)

) 1
2s ∧ ε, where ε > 0 is as in the proof of Theorem 3.1.8. The

rest of the proof goes as in (i).

We also have one-sided key estimates of second order:

Corollary 3.7.4. Let s ∈ (0, 1), LK(t) ∈ Ls(λ,Λ; 1) for any t ∈ [0,∞). Let η1 ∈ C∞([0, 1])
be such that η1 ≡ 1 in [1/4, 1] with η1 = 0 in [0, 1/8] and 0 ≤ η1 ≤ 1, and η2 ∈ C∞

c (B1)
be such that η2 ≡ 1 in B1/2 and 0 ≤ η2 ≤ 1. We define η = η1η2. Moreover, let η̄2s

1 ∈
C0,1 be such that η̄1(0) = 0, η̄1 ≡ 1 in [1/2, 1], and 0 ≤ η̄1 ≤ 1. Let η̄2 ∈ C1,1

c (B1/4) be
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such that η̄2 ≡ 1 in B1/8 and 0 ≤ η̄2 ≤ 1. We define η̄ := η̄1η̄2. Then, there exists σ0 =
σ0(n, s, λ,Λ, ∥η̄2s

1 ∥C0,1([0,1]), ∥η̄2∥C1,1(B1)) > 0 such that for every σ ≥ σ0 and u ∈ C∞((0, 1)×Rn)
the following estimate holds true for ũ := ηu:

(∂t + LK(t))(η̄2(∂2
eeũ)2

+ + σ(∂eũ)2)
≤ 2η̄2(∂t + LK(t))(∂2

eeũ)(∂2
eeũ)+ + 2σ(∂t + LK(t))(∂eũ)∂eũ.

(3.82)

Moreover, the following estimate holds true whenever all expressions are well-defined:

(∂t + LK(t))(η̄2(D−hDhũ)2
+ + σ[(Dhũ)2]−h)

≤ 2η̄2(∂t + LK(t))(D−hDhũ)(D−hDhũ)+ + 2σ[(∂t + LK(t))(Dhũ)Dhũ]−h.
(3.83)

Let us now explain how to apply the parabolic Bernstein key estimate Theorem 3.7.2 in order
to obtain semiconvexity estimates for solutions to the parabolic nonlocal obstacle problem.

By combination of the parabolic key estimate Theorem 3.7.2 and the parabolic maximum
principle, we obtain semiconvexity estimates in space for smooth solutions to the parabolic
nonlocal obstacle problem:

Theorem 3.7.5 (semiconvexity estimate). Let s ∈ (0, 1), LK(t) ∈ Ls(λ,Λ; 2) for any t ∈ (0, 1).
Let f ∈ L∞((0, 1);C1,1(B1)). Let u ∈ C1+s

x ((0, 1) × B1) ∩ C0,1
t ((0, 1) × B1) be a solution to the

parabolic obstacle problem

min{∂tu+ LK(t)u− f, u} = 0 in (0, 1) ×B1. (3.84)

Then, for any e ∈ Sn−1, it holds

inf
(1/2,1)×B1/2

∂2
eeu ≥ −C

(
∥f∥L∞((0,1);C1,1(B1)) + ∥u∥L∞((0,1)×Rn)

)
, (3.85)

where C = C(n, s, λ,Λ) > 0 is a constant.

Proof. We split the proof into two parts.
Step 1: First order estimate:

Let η be as in Theorem 3.7.2. By the same arguments as in the proof of (3.54), we obtain in
(1/2, 1) ×B1/2−|h|:

(∂t + LK(t))(Dhu)Dhu ≤ ∥∇f∥L∞((0,1)×B1)|Dhu|.

Moreover, since u solves (3.84), we have

[(∂t + LK(t))(u)u]h ≤ ∥f∥L∞((0,1)×B1)∥u∥L∞((0,1)×B1).

Using (3.79), we obtain

(∂t + LK(t))(η2(Dhu)2 + σ[u2]h) ≤ 2η2(∂t + LK(t))(Dhu)Dhu+ 2σ[(∂t + LK(t))(u)u]h
≤ 2η2∥∇f∥L∞((0,1)×B1)|Dhu| + ∥f∥L∞((0,1)×B1)∥u∥L∞((0,1)×B1)

and deduce from the parabolic maximum principle:

∥Dhu∥2
L∞((1/2,1)×B1/2−|h|) ≤ C

(
∥f∥2

L∞((0,1);C0,1(B1)) + ∥u∥2
L∞((0,1)×Rn)

)
. (3.86)
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Step 2: Second order estimate:
Let η, η̄ be as in Corollary 3.7.4. By the same arguments as in the proof of (3.54) and (3.56),
we obtain in (1/2, 1) ×B1/4−|h|:

(∂t + LK(t))(Dhu)Dhu ≤ ∥∇f∥L∞((0,1)×B1)|Dhu|,
(∂t + LK(t))(D−hDhu)(D−hDhu)+ ≤ ∥D2f∥L∞((0,1)×B1)(D−hDhu)+.

Moreover, we have (see (3.57))

|(∂t + LK(t))(Dh[(1 − η)u])| ≤ C∥u∥L∞((0,1)×Rn),

|(∂t + LK(t))(D−hDh[(1 − η)u])| ≤ C∥u∥L∞((0,1)×Rn).

Therefore, we obtain from (3.83)

(∂t + LK(t))(η̄2(D−hDhũ)2
+ + σ[(Dhũ)2]−h)

≤ 2η̄2(∂t + LK(t))(D−hDhũ)(D−hDhũ)+ + 2σ[(∂t + LK(t))(Dhũ)Dhũ]−h

≤ C
(
∥f∥L∞((0,1);C1,1(B1)) + ∥u∥L∞((0,1)×Rn)

) (
η̄2(D−hDhu)+ + [|Dhũ|]−h

)
,

and deduce from the parabolic maximum principle:

sup
[1/2,1]×B1/8

(D−hDhu)2
+ ≤ sup

(1/2,1)×B1/4−|h|

[η̄2(D−hDhũ)2
+ + [(Dhũ)2]−h]

≤ C
(
∥f∥2

L∞((0,1);C1,1(B1)) + ∥u∥2
L∞((0,1)×Rn) + ∥Dhu∥2

L∞([1/2,1)×B1/4−|h|)

)
.

A combination of the previous estimate with the Lipschitz estimates (3.86) from Step 1 yields
the desired semiconvexity estimate (3.85) upon taking the limit h → 0. This proves the
claim.

3.7.2 Nonsymmetric operators and drift terms
The goal of this section is to explain how the Bernstein technique developed in this article can
be extended to nonsymmetric nonlocal operators. Our study covers nonlocal operators with
nonsymmetric jumping kernels that might possess a first order drift term.
Recall that so far, we have considered operators of the form

Lu(x) = p.v.
ˆ
Rn

(u(x) − u(y))K(x− y) dy,

where K was a symmetric jumping kernel, i.e., K(y) = K(−y). From now on, we will drop this
assumption. In order for the nonlocal operator to remain well-defined for smooth functions, if
s ≥ 1/2, we need to slightly adjust the definition of L, as follows:

Lu(x) =


´
Rn(u(x) − u(y))K(x− y) dy, if s ∈ (0, 1/2),

p.v.
´
Rn(u(x) − u(y))K(x− y) dy if s = 1/2,´

Rn(u(x) − u(y) − ∇u(x) · (x− y))K(x− y) dy, if s ∈ (1/2, 1).
(3.87)
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For the p.v.-integral in case s = 1/2 to be well-defined, we need to add the following cancellation
condition (see [76], [104]):

ˆ
BR\Br

yK(y) dy = 0 ∀R > r > 0. (3.88)

Moreover, we work under the assumption that K satisfies (K≍) and (C1) for some constants
0 < λ ≤ Λ.
Let us mention the works [54], [128], where C1,ε-regularity for solutions to fully nonlinear
nonlocal equations governed by operators with nonsymmetric jumping kernels has been studied.
Moreover, we refer to [76], where the interior and boundary regularity theory is developed for
nonsymmetric stable operators.

A second way to introduce nonsymmetry to the picture is by considering operators with a
drift, i.e., L+ b · ∇, where b ∈ Rn. The regularity theory for nonlocal operators with drifts has
recently gained some attention, inspired by the works [53], [131], [132] on the critical dissipative
SQG equation (see also [186]). The case s ≤ 1/2 is of particular interest, since the drift term
becomes (super)critical with respect to the scaling of the equation. We refer the interested
reader to [187], [188] for a detailed study of higher regularity properties under the presence of
a critical or supercritical drift.

Under these conditions, we are able to establish Bernstein key estimates reminiscent of (3.8)
and (3.10)

Theorem 3.7.6. Let s ∈ (0, 1), L be as in (3.87), K be as before, and b ∈ Rn with |b| ≤
Λ. Let η ∈ C1,1(Rn) be such that η2s ∈ C0,1(Rn) and η ≥ 0. Then, there exists σ0 =
σ0(n, s, λ,Λ, ∥η∥C1,1(Rn), ∥η2s∥C0,1(Rn)) > 0 such that for every σ ≥ σ0 and u, v ∈ C1+2s+ε

loc (Rn) ∩
L∞(Rn):

(L+ b · ∇)(η2(∂eu)2 + σu2) ≤ 2η2(L+ b · ∇)(∂eu)∂eu+ 2σ(L+ b · ∇)(u)u, (3.89)
(L+ b · ∇)(η2(∂ev)2

+ + σv2) ≤ 2η2(L+ b · ∇)(∂ev)(∂ev)+ + 2σ(L+ b · ∇)(v)v. (3.90)

Remark 3.7.7. (i) By following the same arguments as in Section 3.5, it is also possible to
derive Bernstein key estimates in terms of difference quotients for L+ b · ∇.

(ii) Recently, in [104], the regularity theory for the nonlocal obstacle problem has been ex-
tended to integro-differential operators of the form (3.87) with nonsymmetric kernels
satisfying (K≍). Moreover, we refer to [95], [104] (s = 1/2), [159], [111], [139] (s > 1/2),
for regularity results on the nonlocal obstacle problem under the presence of a drift term.
We expect it to be possible to obtain analogues to Theorem 3.1.3 and Theorem 3.1.4 also
for such generalized problems by combining the ideas in the aforementioned papers with
those in Section 3.6.

Before we provide a proof of Theorem 3.7.6, let us point out that the product rule Lemma 3.2.3
and the interpolation Lemma 3.3.4 remain valid for nonsymmetric kernels and that the bilinear
form B keeps the same shape as in the symmetric case. Moreover, we have a nonsymmetric
counterpart of Lemma 3.3.2, which will be applied exactly as before. However the proof of the
first estimate changes slightly in case s ≤ 1/2. For completeness, we provide the results and a
short proof below:
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Lemma 3.7.8. Let s ∈ (0, 1). Assume

K(y) ≤ Λ|y|−n−2s, supp(K) ⊂ Bε

for some Λ > 0 and ε ∈ (0, 1). Let η ∈ C1,1(B1). Then,

L(η2)(x) ≤

c1∥η2∥C1,1(Bε(x))(ε+ η(x))ε1−2s, if s ≤ 1/2,
c1∥η2∥C1,1(Bε(x))ε

2−2s, if s > 1/2,
B(η, η)(x) ≤ c2∥∇η∥2

L∞(Bε(x))ε
2−2s,

where c1, c2 > 0 are constants depending only on n, s,Λ.

Proof. The proof of the second estimate remains exactly the same as in the symmetric case.
Also the proof of the first estimate does not change if s > 1/2. To prove the first estimate in
case s ≤ 1/2, observe that

L(η2)(x) =
ˆ

Bε(x)
(η2(x) − η2(y) − ∇(η2)(x) · (x− y))K(x− y) dy

+ p.v.
ˆ

Bε(x)
∇(η2)(x) · (x− y)K(x− y) dy

≤ c1∥η2∥C1,1(Bε(x))ε
2−2s + |∇(η2)(x)|

∣∣∣∣∣p.v.
ˆ

Bε

yK(y) dy
∣∣∣∣∣ .

In case s < 1/2, we can estimate the second term using the pointwise upper bound for K by

|∇(η2)(x)|
∣∣∣∣∣p.v.

ˆ
Bε

yK(y) dy
∣∣∣∣∣ ≤ c|∇(η2)(x)|ε1−2s ≤ c∥η∥C0,1(Bε(x))η(x)ε1−2s.

In case s = 1/2, the second term can be estimated by

|∇(η2)(x)|
∣∣∣∣∣p.v.

ˆ
Bε

yK(y) dy
∣∣∣∣∣ ≤ c|∇(η2)(x)| ≤ c∥η∥C0,1(Bε(x))η(x)

due to the cancellation condition (3.88). This proves the desired result.

We are now in the position to prove Theorem 3.7.6:

Proof of Theorem 3.7.6. Let us first explain how to prove (3.89). As in the proof of Theorem
3.1.6, for any x, we split the kernel K = K1 + K2 according to Lemma 3.3.1 with ε = γη(x),
where γ ∈ (0, 1) is chosen as in the proof of Theorem 3.1.6. By carefully tracing the arguments
in Step 1 and Step 2 of the proof of Theorem 3.1.6, it becomes apparent that Lemma 3.7.8 can
be applied exactly in the same way as Lemma 3.3.2 and apart from that no further changes are
necessary due to the lack of symmetry, so that we obtain
ˆ
Rn

(η2(·) − η2(y))(∂eu(y))2K2(· − y) dy ≤ η2
ˆ
Rn

(∂eu(·) − ∂eu(y))2K2(· − y) dy + σ1BK(u, u)

and

LK1(η2)(∂eu)2 −BK1(η2, (∂eu)2) ≤ 3
4η

2BK1(∂eu, ∂eu) + σ2BK(u, u).
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Let us explain how these two results imply the following estimate

L(η2)(∂eu)2 −B(η2, (∂eu)2) ≤ 7
8η

2B(∂eu, ∂eu) + σB(u, u), (3.91)

which in turn implies the key estimate (3.89) with b ≡ 0, namely,

L(η2(∂eu)2 + σu2) ≤ 2η2L(∂eu)∂eu+ 2σL(u)u. (3.92)

In case s ≤ 1/2, we are already done. In case s > 1/2, it remains to estimate

(∂eu(x))2
ˆ
Rn

∇η2(x) · (x− y)K2(x− y) dy

≤ 1
8η

2(x)BK1(∂eu, ∂eu)(x) + σ3BK(u, u)(x),
(3.93)

in order to obtain (3.91). The estimate (3.93) can be proved observing that by property (iv)
of K2 (see Lemma 3.3.1) and (K≍):

ˆ
B1(x)

∇η2(x) · (x− y)K2(x− y) dy ≤ 2∥η∥C0,1(Rn)η(x)
ˆ

B1\Bε

|y|K(y) dy ≤ Cη(x)2−2s.

Next, we apply the interpolation estimate Lemma 3.3.4 with δ =
(

1
8C

) 1
2s η(x) ∧ ε

2 and read off
(3.93), as desired. We have therefore established (3.92) for all s ∈ (0, 1).

Let us finish the proof of (3.89) by explaining how to treat the drift term. To this end, let
us compute

(L+ b∇)(η2(∂eu)2 + σu2) = 2(b∇η)η(∂eu)2

+ 2η2(L+ b∇)(∂eu)(∂eu) + 2σ(L+ b∇)(u)u
+ L(η2)(∂eu)2 −B(η2, (∂eu)2) − η2B(∂eu, ∂eu) − σB(u, u).

Therefore, we need to prove

2(b∇η)η(∂eu)2 + L(η2)(∂eu)2 −B(η2, (∂eu)2) ≤ η2B(∂eu, ∂eu) + σB(u, u).

Since we already know (3.91) it remains to establish

2(b∇η)η(∂eu)2 ≤ 1
8η

2BK1(∂eu, ∂eu) + σ4BK1(u, u). (3.94)

To do so, assume without loss of generality that b∇η ̸= 0, otherwise the inequality is trivial.
Let us apply the interpolation estimate Lemma 3.3.4 with δ =

(
η(x)

16b∇η(x)

) 1
2s ∧ ε

2 and proceed as
in the proof of Theorem 3.7.2:

2(b∇η)η(∂eu)2 ≤ 2(b∇η)η
(
δ2sBK1(∂eu, ∂eu) + cδ2s−2BK1(u, u)

)
≤ 1

8η
2BK1(∂eu, ∂eu) + c(b∇η) 1

s η2− 1
sBK1(u, u)

≤ 1
8η

2BK1(∂eu, ∂eu) + cη2
2BK1(u, u).
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Since (b∇η) 1
s η2− 1

s = c(s)(b∇(η2s)) 1
s is bounded, this yields (3.94), as desired. This concludes

the proof of the Bernstein key estimate (3.89).
Finally, in order to prove (3.90), one makes the same adaptation to the aforementioned proof

as in the derivation of Theorem 3.1.8. Note that the existing of a drift term does not require
any changes. However, in order to deal with the lack of symmetry of K, it is worth pointing
out that in order to adapt Lemma 3.3.8 to the nonsymmetric case for s > 1/2, one has to use
that by the regularity of v it holds ∇(∂ev(x))− = 0, whenever ∂ev(x) > 0, in order to obtain

ˆ
Bδ(x)

(∂ev(y))−K(x− y) dy

= −
ˆ

Bδ(x)

(
(∂ev(x))− − (∂ev(y))− − ∇(∂ev(x))− · (x− y)

)
K(x− y) dy

≤ −L((∂ev)−)(x),

which complements the computation in (3.25).

3.7.3 General Lévy kernels
The goal of this section is to extend the Bernstein technique to nonlocal operators of the form

Lu(x) = p.v.
ˆ
Rn

(u(x) − u(y))K(x− y) dy,

where K is a kernel that satisfies a comparability condition with respect to a general radial
Lévy kernel but is not necessarily comparable to the fractional Laplacian. Instead of (K≍), we
assume that

λ|y|−ng(|y|) ≤ K(y) ≤ Λ|y|−ng(|y|) ∀y ∈ Rn (3.95)

for some strictly decreasing function g : (0,∞) → [0,∞) satisfying

2s1r
−1g(r) ≤ |g′(r)| ≤ 2s2r

−1g(r) ∀r > 0 (3.96)

for some 0 < s1 ≤ s2 < 1. Note that (3.96) implies the following doubling properties for g:

g(λr) ≤ λ−2s2g(r) ∀λ < 1,
g(λr) ≤ λ−2s1g(r) ∀λ > 1.

In particular, we have
ˆ
Rn

min{1, |y|2}|y|−ng(y) dy < ∞, lim
r↘0

g(r) = ∞, (3.97)

which implies that K is a Lévy kernel.
The study of nonlocal operators L satisfying (3.97) whose jumping kernelK is not comparable

to the one of the fractional Laplacian are of general interest since they arise as generators of Lévy
processes and in particular of subordinate Brownian motion. In order to study properties of
harmonic functions with respect to L, it is natural to impose some growth or scaling conditions
such as (3.96) on the kernel, or on the Fourier symbol of L. Let us mention for instance the works
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[141, 113], where gradient estimates for L-harmonic functions and [59, 60, 28, 129, 115, 114],
where estimates for fundamental solutions of the associated Cauchy problem are derived, using
a probabilistic approach.

We claim that the key estimates (3.8) and (3.10) remain true in this general setting:
Theorem 3.7.9. Let 0 < s1 ≤ s2 < 1 and g be such that (3.96) holds true and assume
that K satisfies (3.95) and (C1). Let η ∈ C1,1(Rn) be such that η ≥ 0. Then, there exists
σ0 = σ0(n, s1, s2,Λ/λ, ∥η∥C1,1(Rn)) > 0 such that for every σ ≥ σ0 and every smooth enough
u, v ∈ L∞(Rn)

L
(
η2(∂eu)2 + σu2

)
≤ 2η2L(∂eu)∂eu+ 2σL(u)u in Rn, (3.98)

L
(
η2(∂ev)2

+ + σv2
)

≤ 2η2L(∂ev)(∂ev)+ + 2σL(v)v in Rn. (3.99)

In our setting, the statement of the interpolation estimate reads as follows:
Lemma 3.7.10. Let 0 < s1 ≤ s2 < 1 and δ ∈ (0, 1). Assume that K satisfies for some
0 < λ ≤ Λ:

λ|y|−ng(|y|) ≤ K(y) ≤ Λ|y|−ng(|y|) ∀y ∈ Bδ, (3.100)
|∇K(y)| ≤ Λ|y|−1K(y) ∀y ∈ Bδ, (3.101)

where g satisfies (3.96). Then, for every x ∈ Rn and u ∈ C0,1(Bδ(x)) it holds(
∂eu(x)

)2
≤ g(δ)−1BK(∂eu, ∂eu)(x) + cδ−2g(δ)−1BK(u, u)(x),

(∂ev(x))2
+ ≤

[
g(δ)−1B((∂ev)+, (∂ev)+)(x) − L((∂ev)−)(x)(∂ev)+(x)

]
+ cδ−2g(δ)−1B(v, v)(x),

where c = c(n, s1, s2, λ,Λ) > 0 does not depend on δ.
Proof. We only explain how to construct Kδ. Then, the proof of the estimates goes in the same
way as the proof of Lemma 3.3.4 and Lemma 3.3.8, replacing δ2s by g(δ)−1. We define

Kδ(y) = ψ(|y|/δ)K(y)|y|
n
2 +1g(|y|)− 1

2 .

Note that the properties (1), (2), and (3) from the proof of Lemma 3.3.4 remain true for this
choice of Kδ. To see (2), we compute using (3.96), (3.100), and (3.101):

|∇Kδ(y)|2 ≲ (|y|/δ)2|ψ′(|y|/δ)|K2(y)|y|ng(|y|)−1

+ ψ2(|y|/δ)
[
|∇K(y)|2|y|n+2g(|y|)−1 +K2(y)|y|ng(|y|)−1 +K2(y)|y|n+2|g′(|y|)|2g(|y|)−3

]
≲ K(y).

Let us make the following observation, which follows from (3.96) (resp. its doubling properties):ˆ
B2r\Br

K(y) dy ≍
ˆ 2r

r

t−1g(t) dt ≍ −
ˆ 2r

r

g′(t) dt ≍ g(r) − g(2r) ≍ g(r), ∀r > 0, (3.102)

Therefore, using again the doubling properties of g, as well as that 0 < s1, s2 < 1, we have

µKδ
(Bδ) =

∞∑
k=0

ˆ
B

δ2−k \B
δ2−k−1

Kδ(y) dy ≍
∞∑

k=0
(δ2−k)n

2 +1g(δ2−k)−1/2
ˆ

B
δ2−k \B

δ2−k−1

K(y) dy

≍
∞∑

k=0
(δ2−k)n

2 +1g(δ2−k)1/2 ≍ δ
n
2 +1g(δ)1/2.

The latter estimate can be seen as a counterpart of property (4) in the proof of Lemma 3.3.4.
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Moreover, we have the following replacement of Lemma 3.3.2:

Lemma 3.7.11. Let 0 < s1 ≤ s2 < 1 and K be symmetric, with

K(y) ≤ Λ|y|−ng(y), supp(K) ⊂ Bε (3.103)

for some Λ > 0 and ε ∈ (0, 1), where g satisfies (3.96). Let η ∈ C1,1(B1). Then, for any x ∈ B1

L(η2)(x) ≤ c1∥D2η2∥L∞(Bε(x))ε
2g(ε),

B(η, η)(x) ≤ c2∥∇η∥2
L∞(Bε(x))ε

2g(ε),

where c1, c2 > 0 are constants depending only on n, s1, s2,Λ.

Proof. The proof follows along the lines of the proof of Lemma 3.3.2, using (3.103) and the
doubling properties of g to estimate:

ˆ
Bε

|y|2K(y) dy ≲
∞∑

k=0

ˆ
B

ε2−k \B
ε2−k−1

|y|2−ng(|y|) dy

≲
∞∑

k=0
(ε2−k)2g(ε2−k) ≲ ε2g(ε)

∞∑
k=0

(2−k)2−2s2 ≲ ε2g(ε).

Finally, we can give the:

Proof of Theorem 3.7.9. The proof goes in the exact same way as the proofs of Theorem 3.1.6
and Theorem 3.1.8. We only need to replace the interpolation estimates Lemma 3.3.4 and
Lemma 3.3.8 by Lemma 3.7.10, and the cut-off estimate Lemma 3.3.2 by Lemma 3.7.11. More-
over, note that Lemma 3.3.1 remains true in this generalized setup. We apply the interpolation
estimate and kernel decomposition with a suitable choice of δ and ε, which requires g to be
invertible. Note that it is possible to invert g since it is strictly decreasing and by (3.97), we
have that g(0) = ∞ and g(∞) = 0.

3.8 Appendix
The goal of this section is to give the proof of Lemma 3.6.5. Our proof relies on a modification
of the ideas from [1] and [77].
The main auxiliary result in the proof of Lemma 3.6.5 is the following variant of Lemma 3.6
from [1] for the nonlocal obstacle problem:

Lemma 3.8.1. Let s ∈ (0, 1), L ∈ Ls(λ,Λ; 1), and α ∈ (0, s). Assume that u with u ̸= 0 in
B1/2 is a solution to

min{Lu− f, u} = 0 in B1,

where f ∈ Cβ−2s(B1) for some β ∈ (2s, 1 + s). Then, ũ = u1B2 solves the obstacle problem

min{Lũ− f̃ , ũ} = 0 in B1,
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for some f̃ ∈ Cβ−2s(B1) with

∥f̃∥Cβ−2s(B1) ≤ C

[f ]Cβ−2s(B1) +
∥∥∥∥∥ u

(1 + | · |)1+s+α

∥∥∥∥∥
L∞(Rn)

 , (3.104)

where C = C(n, s, λ,Λ) > 0 is a constant.

Proof of Lemma 3.8.1. We follow the proof of Lemma 3.6 in [1]:
First, we observe that ũ satisfies by assumption:Lũ = f̃ in B1 ∩ {ũ > 0},

Lũ ≥ f̃ in B1 ∩ {ũ = 0}.

where

f̃ = −L(u1Rn\B2) + f.

By following the same arguments as in the proof of Lemma 3.6 in [1], and observing that we can
add and subtract constants to f̃ without affecting the left hand side of the following estimate,
we obtain using (C1):

∥|h|Dhf̃∥L∞(B1−|h|) ≤ C

osc
B1
f + |h|

∥∥∥∥∥ u

(1 + | · |)1+s+α

∥∥∥∥∥
L∞(Rn)

 .
Therefore, we can write

f̃ = g + p,

where p ∈ R and g ∈ L∞(B1) satisfies

∥g∥L∞(B1) ≤ C

osc
B1
f +

∥∥∥∥∥ u

(1 + | · |)1+s+α

∥∥∥∥∥
L∞(Rn)

 . (3.105)

Note that by Lemma 3.8.2, |p| satisfies the same upper estimate as ∥g∥L∞(B1). Moreover, note
that since f ∈ Cβ−2s(B1), we can use analogous arguments as in the proof of (3.105) to deduce

∥g∥Cβ−2s(B1) ≤ C

[f ]Cβ−2s(B1) +
∥∥∥∥∥ u

(1 + | · |)1+s+α

∥∥∥∥∥
L∞(Rn)

 .
Altogether, we obtain the desired result.

Lemma 3.8.2. Let s ∈ (0, 1), L ∈ Ls(λ,Λ). Assume that u with u ̸= 0 in B1/2 is a solution to

min{Lu− g − p, u} = 0 in B1,

u ≡ 0 in Rn \B2,

where g ∈ Cβ−2s(B1) for some β ∈ (2s, 1 + s) and p ∈ R. Then, it holds

|p| ≤ C
(
∥g∥L∞(B1) + ∥u∥L∞(Rn)

)
, (3.106)

where C = C(n, s, λ,Λ) > 0 is a constant.
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Proof. Assume that (3.106) does not hold true. Then there exist sequences (Lk) ⊂ Ls(λ,Λ),
(gk) ⊂ L∞(B1), (pk) ⊂ R, and (uk) ⊂ L∞(Rn) with uk ̸= 0 in B1/2, and uk ≡ 0 in Rn \B2, such
that

min{Lkuk − gk − pk, uk} = 0 in B1, (3.107)
∥uk∥L∞(Rn) → 0,
∥gk∥L∞(B1) → 0,

|pk| → 1.

We can extract subsequences such that Lkm → L weakly (using a similar argument as in [166,
Lemma 3.1]), pkm → p with |p| = 1, gkm → g = 0 in L∞(B1), ukm → u = 0 in L∞(Rn).
Moreover, since by [39, Theorem 5.1] we get that ∥uk∥C2s+ε(B1/2) ≤ C, it holds uk → u in
C2s+ε(B1/2) (up to a subsequence) by Arzelà-Ascoli, and therefore |Lkuk| = |Lkuk − Lu| → 0
locally uniformly in B1.
Consequently,

min{Lu− g − p, u} = 0 in B1.

In particular, min{−p, 0} = 0 in B1. This is a contradiction if p = 1 > 0. If p = −1 < 0, then,
there must be k ∈ N such that pk < −3

4 , ∥gk∥L∞(B1) <
1
8 , and ∥Lkuk∥L∞(B1/2) <

1
8 . However,

since uk ̸= 0 in B1/2 by assumption, this contradicts (3.107). Therefore, (3.106) holds true.

We are now in the position to give the proof of Lemma 3.6.5.

Proof of Lemma 3.6.5. Note that we can assume u ̸= 0 in B1/2 without loss of generality, since
otherwise there is nothing to prove. We define ũ = u1B2 and deduce from Lemma 3.8.1 that ũ
solves

min{Lũ− f̃ , ũ} = 0 in B1.

By application of Theorem 5.1 in [39] together with (3.104) we obtain

∥u∥Cmax{2s+ε,1+ε}(B1/2) = ∥ũ∥Cmax{2s+ε,1+ε}(B1/2)

≤ C

∥f̃∥Cβ−2s(B1) +
∥∥∥∥∥ ũ

(1 + | · |)n+2s

∥∥∥∥∥
L1(Rn)


≤ C

[f ]Cβ−2s(B1) +
∥∥∥∥∥ u

(1 + | · |)1+s+α

∥∥∥∥∥
L∞(Rn)

 .
This proves the desired result.
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Part II

Boundary Harnack inequalities
with right-hand side
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It’s going to take me ten thousand years to understand it.5
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Introduction to Part II

The boundary Harnack is a key estimate that relates the growth of harmonic functions near
zero Dirichlet boundary conditions with the geometry of the domain, in the following sense:

Theorem (Boundary Harnack). Let u and v be harmonic and positive in a regular enough
domain Ω, with 0 ∈ ∂Ω, and assume that they vanish continuously on ∂Ω∩B1. Let p ∈ Ω∩B1,
and assume that u(p) = v(p).

Then,
1
C

≤ u

v
≤ C in Ω ∩B1/2.

Moreover, ∥∥∥∥uv
∥∥∥∥

C0.α(Ω∩B1/2)
≤ C.

Remark. The name Boundary Harnack refers in fact to two estimates of u/v, one in L∞ and one
in C0.α. We will refer to them as L∞ boundary Harnack and C0.α boundary Harnack throughout
this Introduction to Part II. In the literature, the L∞ boundary Harnack is sometimes called
Carleson estimate, which is another very related result. The origin of the confusion is that, in
some usual settings, the Carleson estimate implies the L∞ boundary Harnack, which in turn
implies the C0.α boundary Harnack in a standard way. However, for parabolic equations the
L∞ boundary Harnack does not imply the C0.α boundary Harnack (see [75]).

In a sense, this result is saying that no matter how different u and v are, they are converging to
zero at the same rate. This can be seen as a natural generalization of the Hopf-Oleinik Lemma,
that says that when the boundary of the domain is sufficiently smooth, positive solutions
separate linearly from it.

Theorem (Hopf-Oleinik Lemma). Let Ω be a smooth domain, with 0 ∈ ∂Ω, and let u be a
positive harmonic function in Ω, vanishing on ∂Ω ∩B1. Then,

∂u

∂ν
> 0,

where ν is the unit inner normal vector to ∂Ω.

If, instead, we consider a Lipschitz domain, we obtain that harmonic functions grow as
a power of the distance to the zero Dirichlet boundary conditions, as it can be seen in the
following example:
Example. Let Ω = (0, 1)2. Then, u = xy is harmonic in Ω, vanishing in ∂Ω ∩ B1, and
u(x, x) = x2, that is, u grows quadratically as we approach the origin.
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More generally, let Ω ⊂ Rn be a Lipschitz cone with vertex at the origin, and let Γ = Ω∩Sn−1.
Then, we can look for a positive homogeneous harmonic function in this cone as follows:

Let us consider the ansatz u(r, θ) = rβφ(θ) in spherical coordinates. Then, the fact that u is
harmonic becomes

urr + n− 1
r

ur + 1
r2 ∆Sn−1u = 0 in Ω,

and therefore
(β(β − 1) + (n− 1)β + ∆Sn−1))φ = 0 on Γ,

and then β(β+n− 2) = λ, where λ ≥ 0 is the first eigenvalue of the Laplace-Beltrami operator
on Γ. From here, getting the unique positive solution for β gives a unique (up to a multiplicative
constant) positive homogeneous harmonic function in a cone, and the degree of homogeneity
depends only on the geometry.

After seeing these examples, one would be tempted to write something like the following:

Not a theorem. Let Ω be a Lipschitz domain with 0 ∈ ∂Ω, and let u be a positive harmonic
function in Ω, vanishing on ∂Ω ∩B1. Then, there exists β ≥ 0 such that for every e ∈ Sn−1,

û(e) = lim
r→0

u(re)
rβ

is positive and finite.

In the case of smooth domains, we would have β = 1, and then û would coincide with the
directional derivatives at the boundary.

So far so good. The problem with such a result is that it is false. Indeed, the existence of
such β suggests that the domain looks like a cone with the same aperture at every sufficiently
small scale. But it is not hard to think of (fractal) Lipschitz domains that look like cones with
different apertures as r → 0.

Instead of comparing one solution to a power of the distance, what we can actually do is
say that all solutions have the same rate of growth near zero boundary conditions, and we
can do so in a quantitative sense. Furthermore, we see that the quotient of positive harmonic
functions is not only bounded, but Hölder continuous. In a sense, this means that it is enough
to understand one solution to understand all solutions near the boundary.

The boundary Harnack in Lipschitz domains
There are many versions of the boundary Harnack, in different classes of domains, and with
different assumptions on the operators. Here, we present an elliptic and a parabolic version in
Lipschitz domains.

Let L be a uniformly elliptic operator, either in divergence or non-divergence form, that is,

Lu = Div(A(x)∇u), or Lu = Tr(A(x)D2u),

where λI ≤ A(x) ≤ ΛI for some 0 < λ ≤ Λ < +∞.
We will write x = (x′, xn) ∈ Rn, and B′

1 will be the unit ball of Rn−1. Then, given a Lipschitz
function g : B′

1 → R with g(0) = 0, we define for r ∈ (0, 1]

Cr := {(x′, xn) : x′ ∈ B′
r, g(x′) < xn < g(x′) + r}.
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In this formulation, the L∞ boundary Harnack is the following.

Theorem ([73, Theorem 1.1]). Let u and v be positive solutions to Lu = Lv = 0 in C1,
vanishing continuously on {xn = g(x′)}. Assume that u(en/2) = v(en/2) = 1. Then,

C−1 ≤ u

v
≤ C in C1/2,

with C depending only on the dimension, λ, Λ, and ∥g∥C0,1.

In the elliptic setting, the Hölder continuity of the quotient follows by iterating the previous
result, see [97, Appendix B].

Corollary. Let u and v be positive solutions to Lu = Lv = 0 in C1, vanishing continuously on
{xn = g(x′)}. Assume that u(en/2) = v(en/2) = 1. Then,∥∥∥∥uv

∥∥∥∥
C0,α(C1/2)

≤ C,

where α and C are positive, and depend only on the dimension, λ, Λ, and ∥g∥C0,1.

For parabolic equations, we consider domains as follows. Let g̃ : B′
1 × (−1, 1) → R with

g̃(0, 0) = 0. Then, we define for r ∈ (0, 1]

C̃r := {(x′, xn, t) : x′ ∈ B′
r, t ∈ (−r2, r2), g̃(x′, t) < xn < g̃(x′, t) + r}.

Here we assume that g̃ ∈ C
1, 1

2
x,t , that is,

∥g̃∥
C

1, 1
2

x,t

:= ∥g̃∥L∞ + sup
(x,t)̸=(y,s)

|g̃(x, t) − g̃(y, s)|
|x− y| + |t− s|1/2 < +∞.

Notice that this norm corresponds to a Lipschitz norm for the parabolic distance, so it induces
a natural notion of parabolic Lipschitz domain.

We also define the point in the past and the point in the future as

E :=
(

0, 1
2 + g̃

(
0,−1

2

)
,−1

2

)
, and E :=

(
0, 1

2 + g̃
(

0, 1
2

)
,
1
2

)
.

Then, we have the parabolic L∞ boundary Harnack.

Theorem ([75, Theorem 1.1]). Let u and v be positive solutions to ut − Lu = vt − Lv = 0,
vanishing continuously on C̃1 ∩ {xn = g̃(x′, t)}. Then,

u

v
≤ C

u(E)
v(E) in C̃1/2,

with C depending only on the dimension, λ, Λ, and ∥g̃∥
C

1, 1
2

x,t

.

Applications
Our motivation to study boundary Harnack inequalities stems from their usefulness in proving
regularity of free boundaries in free boundary problems. The boundary Harnack also has
important consequences in potential theory and probability.
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Free boundary problems
The obstacle problem

The use of the boundary Harnack inequality in free boundary problems follows from an original
idea of Athanasopoulos and Caffarelli. In [6], they used it to deduce that sufficiently flat
Lipschitz free boundaries are actually C1,α in the obstacle problem.

The technique works as follows. Consider a solution to the obstacle problem{
∆u = fχ{u>0}
u ≥ 0,

where {u = 0} is the contact set and ∂{u = 0} is the free boundary, which we assume to be a
Lipschitz graph around the origin. Recall that u ∈ C1,1.

Then, let ν be the unit normal vector to the level sets {u = t} for t > 0. Hence, we can write

ν = ∇u
|∇u|

=

(
u1/un, . . . , un−1/un, 1

)
√

1 +
n−1∑
i=1

(ui/un)2

,

where we have chosen the orientation that makes ν point towards u increasing.
Now, if we prove that ui/un ∈ C0,α, we will have that ν ∈ C0,α({u > 0}), and then we will

be able to extend it to the free boundary continuously. Moreover, we deduce that the free
boundary is C1,α.

On the other hand, the derivatives of u satisfy{
∆ui = fi in {u > 0}
ui = 0 on ∂{u > 0},

Then, with this argument, we can reduce the problem of understanding the regularity of the
free boundary to understanding the regularity of the quotients of solutions to the Poisson equa-
tion. This we can do using the boundary Harnack. Indeed, ui/un ∈ C0,α for every coordinate
i, and then ∂{u > 0} is C1,α.

In the original applications, this approach was only available when f was constant, because
the classical boundary Harnack concerns harmonic functions, or, more in general, solutions to
elliptic equations with zero right-hand side. Extending this argument to non-constant f has
been one of the main motivations in the development of boundary Harnack inequalities for
equations with right-hand side [3, 2].

Higher regularity of free boundaries

There is a higher order analogue of the boundary Harnack that can also be used to prove
higher order regularity of free boundaries. In summary, the quotient of two harmonic functions
vanishing on the boundary of a Ck,α domain is Ck,α. For simplicity, we will use the same
definition as before for Lipschitz domains, but now with g ∈ Ck,α.

Theorem (Higher order boundary Harnack, [71, Theorem 1.1]). Let Ω be a Ck,α domain, and
assume that 0 ∈ ∂Ω. Let u > 0 and v be two harmonic functions in Ω ∩ B1 that vanish
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continuously on ∂Ω ∩B1. Assume that u is normalized so that u(en/2) = 1. Then,∥∥∥∥vu
∥∥∥∥

Ck,α(Ω∩B1/2)
≤ C∥v∥L∞(Ω∩B1),

where C depends only on k, α and the dimension.

Note that, by the known boundary Schauder estimates, both u and v are of class Ck,α up to
the boundary. Moreover, since u = v = 0 on the boundary, and ∂nu > 0 in a neighbourhood of
∂Ω by the Hopf-Oleinik lemma and continuity, we would deduce that the quotient belongs to
Ck−1,α.

The extra derivative that we gain with this result allows us to bootstrap the regularity of
the free boundary up to C∞ in the obstacle problem. Let f ≡ 1 for simplicity, and consider a
solution to {

∆u = χ{u>0}
u ≥ 0.

Assume that the free boundary is a C1,α graph around the origin. Then, the derivatives of u
are harmonic in {u > 0}, by the higher order boundary Harnack we have that ui/un ∈ C1,α,
and hence the normal vector

ν =

(
u1/un, . . . , un−1/un, 1

)
√

1 +
n−1∑
i=1

(ui/un)2

also belongs to C1,α, which implies that the free boundary is actually C2,α. Now we can repeat
this procedure, and with each iteration we gain one derivative, so we conclude that the free
boundary is C∞.

Potential theory
In this section we will examine the connection of the boundary Harnack with potential theory.
We start by introducing the notions of Green function and harmonic measure. We refer the
interested reader to the lecture notes [163] for an introduction to the topic.

Definition. Given an open Lipschitz bounded domain Ω, and x ∈ Ω, the Green function with
pole at x is the solution to {

∆g = −δx in Ω
g = 0 on ∂Ω,

where δx is the Dirac delta, and we define the harmonic measure with pole at x as the unique
Radon measure ωx on ∂Ω such that

u(x) =
ˆ

∂Ω
fdωx,

where u is the solution to the Dirichlet problem{
∆u = 0 in Ω
u = f on ∂Ω.
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We intentionally keep the notion of solution imprecise so to explain the ideas without intro-
ducing too much theory.

A fundamental result in the understanding of harmonic measure is the following theorem of
Dahlberg [68].

Theorem. Let Ω be a Lipschitz domain in Rn with Lipschitz constant L, and let σ be the
surface measure on ∂Ω. Assume that the origin belongs to ∂Ω. Let r > 0, and x0 ∈ Ω such that
dist(x0, B2r ∩ ∂Ω) ≥ cr > 0. Then, the following holds:

• The harmonic measure ωx0 and σ are mutually absolutely continuous.

• We have  
∂Ω∩Br

(
dωx0

dσ

)2

dσ
1/2

≤ C

 
∂Ω∩Br

dωx0

dσ dσ = C
ωx0(Br)
σ(Br)

.

The constant C is positive and depends only on L, c, and the dimension.

In the case of smooth domains,
dωx0

dσ = −∂νg,

where g is the Green function with pole at x0, and the fact that the left hand side is positive and
bounded is related to the fact that the Green function grows linearly away from the boundary.

In Lipschitz domains, one cannot do this computation directly and needs to proceed by
approximation; see [163, Chapter 10]. Then, one can interpret Dahlberg’s theorem as the
Green function being linear at the boundary in a certain averaged sense.

To have a more precise understanding of the pointwise behaviour of harmonic functions,
one needs the boundary Harnack. The immediate benefit of the boundary Harnack is that
to understand the local properties of any harmonic function near the boundary, it is enough
to understand the Green function (with any pole far away from the boundary, thanks to the
boundary Harnack again).

Probability
The boundary Harnack inequality has an interpretation in terms of Brownian motions, and has
been proved with probabilistic techniques [21]. In the language of probability, the boundary
Harnack reads as follows.

Corollary. Let Ω be a domain where the boundary Harnack holds, and assume that the origin
belongs to ∂Ω. Let x0 ∈ Ω ∩B1/2, and let E1 and E2 be compact subsets of Ω ∩ ∂B1. Then, for
all x ∈ Ω ∩B1/2,

C−1P(Xx0 ∈ E1)
P(Xx0 ∈ E2)

≤ P(Xx ∈ E1)
P(Xx ∈ E2)

≤ C
P(Xx0 ∈ E1)
P(Xx0 ∈ E2)

,

where Xx is the exit point of a Brownian motion in Ω ∩B1 starting at x.

This comes from the fact that ui(x) = P(Xx ∈ Ei) are positive, harmonic in Ω ∩ B1, and
vanish on ∂Ω ∩B1.

The boundary Harnack also implies that the Martin boundary can be identified with the
topological boundary for Lipschitz domains.
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Background
Boundary Harnack inequalities have been around since the 70s, and there are many examples
of such results. Here we provide a list, by no means exhaustive, focusing on local elliptic and
parabolic equations, and in domains where the Hopf-Oleinik lemma does not hold.

Elliptic boundary Harnack
The first proof of the boundary Harnack for harmonic functions in Lipschitz domains is due to
Kemper [125].

Since then, there have been several extensions of the result. Concerning more general opera-
tors, divergence form equations were studied by Caffarelli, Fabes, Mortola and Salsa, while the
non-divergence case was covered by Fabes, Garofalo, Marin-Malave and Salsa [41, 84].

On the other hand, the boundary Harnack was one of the motivations for Jerison and Kenig to
define NTA domains (non tangentially accessible domains) as the most reasonably general class
where the result holds [122]. Bass and Burdzy also proved a similar result for non-divergence
operators in Hölder domains using techniques from probability theory [22].

Parabolic boundary Harnack
The main difficulty that appears in the parabolic problem with respect to the elliptic case is
the presence of a waiting time in the interior Harnack.

Theorem ([197]). Let L be a non-divergence form operator as in (2), and let u be a solution
to ut − Lu = 0 in Qr, with u ≥ 0.

Then,
sup

Qr/2

(
0,− r2

2

)u ≤ C inf
Qr/2

u,

where C depends only on the dimension and ellipticity constants.

The first proof of the boundary Harnack for parabolic equations was also by Kemper [126].
The extension to divergence form operators (in Lipschitz cylinders) is due to Fabes, Garofalo,
and Salsa [173, 85].

The Hölder continuity of the quotient of positive solutions was shown for the first time by
Athanasopoulos, Caffarelli, and Salsa [10]. Note that, in contrast to the elliptic setting, where
this was an almost automatic consequence of the L∞ boundary Harnack, for parabolic equations
the C0,α boundary Harnack appeared more than two decades later than the boundedness of the
quotient. This result was later extended to non-divergence form equations by Fabes, Safonov
and Yuan [86, 87].

Moreover, more general domains have also been studied. Hölder cylindrical domains were
treated by Bass and Burdzy with probabilistic techniques [21], Hoffman, Lewis, and Nyström
studied unbounded parabolically Reifenberg flat domains [117], and Petrosyan and Shi consid-
ered parabolic slit domains, i.e. domains defined as a cylinder minus a Lipschitz graph in a
hyperplane, that appear naturally in the parabolic thin obstacle problem [161].
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Recent developments
In the last few years, De Silva and Savin have given short and unified analytic proofs of the
boundary Harnack based on scaling arguments and the comparison principle. The results
apply to divergence and non-divergence form equations, and they hold in Lipschitz and Hölder
domains. For elliptic equations, they proved the boundedness and Hölder regularity of the
quotient of positive solutions up to the boundary [73, 74], while in the parabolic case they only
proved the L∞ estimate [75].

Another active area of research concerns higher order boundary Harnack inequalities. The
first version of the result was presented by De Silva and Savin in [71], with an application
to show C∞ regularity of the free boundary in obstacle problems with smooth obstacle. The
parabolic higher order boundary Harnack was first proved in Ck,α domains by Banerjee and
Garofalo [13], and extended to C1 domains by Kukuljan [140].

An alternative approach to higher order boundary Harnack inequalities is based on the fact
that if u and v are solutions to elliptic equations, then u/v solves a degenerate elliptic equation
and one can study its regularity. In this line of research, we find the contributions by Terracini,
Tortone, Vita, Zhang, Jeon and Dong [193, 202, 121, 78].

Finally, there have been important recent advances in boundary Harnack inequalities for
equations with right-hand side. The first result of this kind is due to Allen and Shahgholian [3],
where they considered divergence form operators in Lipschitz domains and the right-hand side
was in a weighted L∞ space. Together with Kriventsov, they extended the result to a very
general class of equations, including fully nonlinear elliptic and p-Laplace type equations [2].
The other main contribution are the results of this Thesis, which we will explain in the following.

Results of the thesis (Part II)
The second part of this Thesis is devoted to the study of boundary Harnack inequalities for
elliptic and parabolic equations with right-hand side.

Chapter 4 deals with elliptic equations in non-divergence and divergence form, and in Chapter
5 we study parabolic equations in non-divergence form.

The boundary Harnack for elliptic equations with right-hand side
In Chapter 4 we prove a boundary Harnack inequality in flat Lipschitz domains for elliptic
equations in non-divergence or divergence form, with a small right-hand side in Lq.
Theorem. Let q > n and L as in (2), or (1) with continuous coefficients. There exist small
constants c0 > 0 and L0 > 0 such that the following holds.

Let Ω be a Lipschitz domain with Lipschitz constant L < L0. Let u and v be positive solutions
of {

Lu = f in Ω ∩B1
u = 0 on ∂Ω ∩B1

and
{

Lv = g in Ω ∩B1
v = 0 on ∂Ω ∩B1,

with
∥f∥Lq(B1) ≤ c0, ∥g∥Lq(B1) ≤ c0.

Additionally, assume that v(en/2) = u(en/2) = 1. Then,

u ≤ Cv in B1/2,
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and ∥∥∥∥uv
∥∥∥∥

C0,α(Ω∩B1/2)
≤ C.

The constants C, c0, L0 and α > 0 depend only on q, the dimension, ellipticity constants, and
the modulus of continuity of the coefficients of L, when applicable.

The result is sharp, in the following sense.

Theorem.

• If the Lipschitz constant of the domain is large, the theorem fails, even for a right-hand
side in L∞ and L = ∆.

• If the right-hand side belongs to Lq with q ≤ n, the theorem fails, regardless of the norm
and the Lipschitz constant of the domain.

• There are examples of divergence form equations with discontinuous coefficients with a
right-hand side in L∞ where the theorem fails, even in a half-space.

The proof is done by comparison and scaling arguments following the strategy of [73], with
the addition of some fine estimates on the growth of L-harmonic functions near zero Dirichlet
conditions, that can be summarized as:

For all ε > 0, there exists a sufficiently small L > 0, such that for all Lipschitz domains with
constant L, any positive harmonic function that vanishes on the boundary is bounded below by
cd1+ε, where d is the distance to the boundary.

This kind of boundary nondegeneracy result acts as the replacement of the Hopf-Oleinik
lemma for flat Lipschitz domains, and it is crucial to be able to absorb the perturbation intro-
duced by the right-hand side.

The main consequence of our new boundary Harnack is the C1,α regularity of free boundaries
in the fully nonlinear obstacle problem.

Corollary. Let u be a solution to{
F (D2u, x) = fχ{u>0}

u ≥ 0

Assume as well:

• F is uniformly elliptic and F (0, x) ≡ 0.

• F is convex and C1 in the first variable, and W 1,q in the second variable for some q > n.

• f ∈ W 1,q for some q > n, and f ≥ τ0 > 0.

Then, if the origin is a regular free boundary point, the free boundary is a C1,α graph in Br

for some small r > 0 and α > 0.

In this result, the notion of regular free boundary point needs to be understood as having a
regular blow-up.

We also prove an analogous result for slit domains, that implies the C1,α regularity of free
boundaries in the fully nonlinear thin obstacle problem.
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The boundary Harnack for parabolic equations with right-hand side
Chapter 5 is dedicated to proving a boundary Harnack inequality in flat Lipschitz domains for
parabolic equations in non-divergence form, with a small right-hand side in Lq.

The main result is very similar to the main result of Chapter 4, but for the parabolic case.
We will state it for the heat equation for ease of read, but it also holds for non-divergence form
parabolic equations with bounded measurable coefficients.
Theorem. Let m ∈ (0, 1] and q > n+ 2. Then, for every γ ∈

(
0, 1 − n+2

q

)
, there exists c0 > 0,

only depending on the dimension, q, and γ, such that the following holds.
Let Ω be a parabolic Lipschitz domain with Lipschitz constant c0. Let u and v be positive

solutions to {
ut − ∆u = f in Ω

u = 0 on ∂Ω and
{
vt − ∆v = g in Ω

v = 0 on ∂Ω,

and assume that u and v are normalized so that ∥u∥L∞(Q1) = ∥v∥L∞(Q1) = 1, v
(

en

2 ,−
3
4

)
≥ m,

∥f∥Lq(Q1) ≤ 1, and ∥g∥Lq(Q1) ≤ c0m. Then,∥∥∥∥uv
∥∥∥∥

C0,γ
p (Ω∩Q1/2)

≤ C,

where C depends only on q, m, γ, and the dimension.

In the parabolic setting, there are analogous applications to prove the C1,α regularity of free
boundaries at regular points in parabolic obstacle problems.

We also prove a similar result for the heat equation in parabolic slit domains, with an
application to the regularity of the free boundary in the parabolic thin obstacle problem.

Another strength of the result is obtaining the optimal Hölder space for the regularity of the
quotient, which is completely new, even for harmonic functions. In this particular case, we get
that, for every ε > 0, there exists L > 0 such that the quotient of harmonic functions is C1−ε up
to the boundary in Lipschitz domains with constant L. This bridges the gap from the known
C0,α regularity with small α for Lipschitz domains with a possibly big Lipschitz constant, and
higher order boundary Harnack results.

Despite the fact that the statement and the consequences are analogous to the elliptic frame-
work, the techniques of the proof are quite different. In the parabolic setting, the Hölder
regularity of the quotient does not follow easily from the L∞ estimate, and then one needs to
prove directly the C0,γ estimate.

The proof uses some ingredients of the elliptic problem, like the scaling and comparison
arguments, and also a two-sided growth estimate that reads as

For all ε > 0, there exists a sufficiently small L > 0, such that for all parabolic Lipschitz
domains with constant L, any positive caloric function u that vanishes on the boundary satisfies

cd1+ε ≤ u ≤ Cd1−ε,
where d is the distance to the boundary.

The key idea, that is new from the parabolic setting, is using a contradiction-compactness
argument (also called blow-up argument) inspired in some proofs of boundary Harnack inequal-
ities for smoother domains [167, 140].
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The argument works as in the proof of Schauder estimates by blow-up. We suppose that
our estimate does not hold, and then we get a sequence of solutions to a PDE with very
specific growth properties. Since they are solutions, we can prove some regularity, and from the
regularity we deduce compactness of a subsequence via Arzelà-Ascoli. Then, the limit of those
solutions solves a limit problem in a simpler domain (in our case, in a half-space), and then we
can classify the possible limits with a Liouville theorem. The contradiction comes from the fact
that none of the possibilities allowed by the Liouville theorem can be a limit of our sequence.

We exploit this contradiction-compactness argument twice. First, to prove that for flat
Lipschitz domains, there exists a special solution that satisfies the growth estimate at all scales
at the same time, that is,

For all ε > 0, there exists a sufficiently small L > 0, such that for all parabolic Lipschitz
domains with constant L, there exists a caloric function φ > 0 such that

c
(
r

R

)1+ε

≤
∥φ∥L∞(Br×(−r2,0))

∥φ∥L∞(BR×(−R2,0))
≤ C

(
r

R

)1−ε

,

for all 0 < r < R < 1.

Then, by another contradiction-compactness argument, we see that

For all ε > 0, there exists a sufficiently small L > 0, such that for all parabolic Lipschitz
domains with constant L, any caloric function u satisfies

∥u− C(r)φ∥L∞(Br×(−r2,0)) ≤ Cr1+α,

where φ is the special solution defined above.

From the expansion, it follows that u/φ ∈ Cα−ε, which in turns implies the boundary Har-
nack. A posteriori, we see that all solutions satisfy the same growth condition as the special
solution.
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Chapter 4
New boundary Harnack inequalities

with right hand side

We prove new boundary Harnack inequalities in Lipschitz domains for equations with a right
hand side. Our main result applies to non-divergence form operators with bounded measurable
coefficients and to divergence form operators with continuous coefficients, whereas the right
hand side is in Lq with q > n. Our approach is based on the scaling and comparison arguments
of [73], and we show that all our assumptions are sharp.

As a consequence of our results, we deduce the C1,α regularity of the free boundary in the
fully nonlinear obstacle problem and the fully nonlinear thin obstacle problem.

4.1 Introduction

4.1.1 Background
The boundary Harnack inequality states that all positive harmonic functions with zero bound-
ary condition are locally comparable as they approach the boundary, under appropriate as-
sumptions on the domain. More precisely, if u and v are positive harmonic functions in Ω that
vanish on ∂Ω, then

C−1 ≤ u

v
≤ C,

with C depending on the dimension and u(p)/v(p) for a fixed interior point p.
Notice that such a result is most relevant in domains that are less regular than C1,Dini, because

otherwise the Hopf lemma combined with the C1(Ω) regularity of the solutions yields the same
conclusion, see for example [147].

The boundary Harnack inequality is known to be true for a broad class of domains and
for solutions of more general elliptic equations. The classical case for harmonic functions was
first proved by Kemper in Lipschitz domains in [125]. Operators in divergence form were first
considered by Caffarelli, Fabes, Mortola and Salsa in [41] in Lipschitz domains, while the case
of operators in non-divergence form was treated in [84] by Fabes, Garofalo, Marin-Malave and
Salsa. Jerison and Kenig extended the same result to NTA domains in the case of divergence
form operators in [122]. On the other hand, the case of non-divergence operators in Hölder
domains with α > 1/2 was treated with probabilistic techniques in [22] by Bass and Burdzy.
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Recently, De Silva and Savin found a simple and unified proof of all these previous results in
[73].

Besides, Allen and Shahgholian recently proved the boundary Harnack for divergence form
equations with right hand side in Lipschitz domains [3], under appropriate assumptions on
the operator, the right hand side and the domain. In particular, in the case of the Laplacian,
their result implies that if the L∞ norm of the right hand side and the Lipschitz constant of
the domain are small enough, then the boundary Harnack inequality still holds. This enables
using the classical proof in [36] due to Caffarelli (see also [160, Section 6.2] or [97, Section 5.4])
of the regularity of the free boundary in the obstacle problem ∆u = χ{u>0} in the more general
case ∆u = fχ{u>0}, with f Lipschitz; see [3, Section 1.4.2].

Here, we extend such boundary Harnack inequality to non-divergence equations with pos-
sibly unbounded right hand side in Lq, with q > n. (This was only known in C1,1 domains
[189, 190].) This allows us to use the classical proof of the free boundary regularity in the
obstacle problem ∆u = fχ{u>0} to the case f ∈ W 1,q, and can also be applied to fully nonlinear
free boundary problems of the form

F (D2u) = fχ{u>0} or


F (D2v) = 0 in {v > φ}
F (D2v) ≤ 0

v ≥ φ.
(4.1)

Moreover, we also establish a boundary Harnack for equations with a right hand side in slit
domains, and use it to establish the C1,α regularity of the free boundary in the fully nonlinear
thin obstacle problem, a question left open in [168].

4.1.2 Setting
In the following, L will denote either a non-divergence form elliptic operator with bounded
measurable coefficients,

Lu = Tr(A(x)D2u), with λI ≤ A(x) ≤ ΛI, (4.2)

with 0 < λ ≤ Λ, or a divergence form elliptic operator with continuous coefficients,

Lu = Div(A(x)∇u), with λI ≤ A(x) ≤ ΛI and A ∈ C0, (4.3)

where A has modulus of continuity σ, and 0 < λ ≤ Λ.
We will consider Lipschitz domains of the following form, where B′

1 is the unit ball of Rn−1.

Definition 4.1.1. We say Ω is a Lipschitz domain with Lipschitz constant L if Ω is the epigraph
of a Lipschitz function g : B′

1 → R, with g(0) = 0:

Ω =
{
(x′, xn) ∈ B′

1 × R such that xn > g(x′)
}
, ∥g∥C0,1 = L.

4.1.3 Main results
We present here our new boundary Harnack inequality.

We emphasize that the following result applies to both non-divergence and divergence form
operators, and that the only regularity assumption on the coefficients is the continuity of A(x)
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in case of divergence-form operators. Throughout the paper, when we say Ln-viscosity or weak
solutions, we refer to Ln-viscosity solutions in the case of non-divergence form operators (4.2),
and to weak solutions in the case of divergence form operators (4.3).

Theorem 4.1.2. Let q > n and L as in (4.2) or (4.3). There exist small constants c0 > 0 and
L0 > 0 such that the following holds.

Let Ω be a Lipschitz domain as in Definition 4.1.1, with Lipschitz constant L < L0. Let u
and v > 0 be solutions of{

Lu = f in Ω ∩B1
u = 0 on ∂Ω ∩B1

and
{

Lv = g in Ω ∩B1
v = 0 on ∂Ω ∩B1,

in the Ln-viscosity or the weak sense, with

∥f∥Lq(B1) ≤ c0, ∥g∥Lq(B1) ≤ c0. (4.4)

Additionally, assume that v(en/2) ≥ 1 and either u > 0 and u(en/2) ≤ 1, or ∥u∥Lp(B1) ≤ 1
for some p > 0.

Then,
u ≤ Cv in B1/2,

and ∥∥∥∥uv
∥∥∥∥

C0,α(Ω∩B1/2)
≤ C.

The constants C, c0, L0 and α > 0 depend only on the dimension, q, λ, Λ, as well as p and σ,
when applicable.

Remark 4.1.3. All the hypotheses of the theorem are optimal in the following sense:

• If the Lipschitz constant L0 of the domain is not small, the theorem fails, even for q = ∞
and for L = ∆.

• If q = n, the theorem fails for any c0 > 0 and any L0 > 0, even for L = ∆.

• The result fails in general for operators in divergence form with bounded measurable
coefficients.

We provide counterexamples to plausible extensions in this sense in Section 4.6.
When the two functions are positive, we recover the standard symmetric formulation of the

boundary Harnack.

Corollary 4.1.4. Let q > n and L as in (4.2) or (4.3). There exist small constants c0 > 0
and L0 > 0 such that the following holds. Let Ω be a Lipschitz domain as in Definition 4.1.1,
with Lipschitz constant L < L0. Let u, v be positive solutions of{

Lu = f in Ω ∩B1
u = 0 on ∂Ω ∩B1

and
{

Lv = g in Ω ∩B1
v = 0 on ∂Ω ∩B1,

in the Ln-viscosity or the weak sense, with f and g satisfying (4.4).
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Assume u, v are normalized in the sense that u(en/2) = v(en/2) = 1. Then,

C−1 ≤ u

v
≤ C in B1/2,

and ∥∥∥∥uv
∥∥∥∥

C0,α(Ω∩B1/2)
≤ C.

The positive constants C, c0, L0 and α depend only on the dimension, q, λ, Λ, as well as σ,
when applicable.

4.1.4 Applications to obstacle problems
The boundary Harnack inequality is the technical tool that allows us to prove C1,α regularity of
the free boundary once we know it is Lipschitz in the classical obstacle problem with constant
right hand side [97, Section 5.6] and in the thin obstacle problem with zero obstacle [91, Section
5].

The functions to which we apply the boundary Harnack are derivatives of the solution to the
free boundary problem. Hence, if the original free boundary problem is the classical obstacle
problem, {

∆u = fχ{u>0}
u ≥ 0, (4.5)

the derivatives of u are solutions of{
∆(∂νu) = ∂νf in {u > 0}

∂νu = 0 on ∂{u > 0},

and we can apply the boundary Harnack of Allen and Shahgholian if f ∈ W 1,∞ (Lipschitz), or
our new Theorem 4.1.2 if f ∈ W 1,q with q > n.

In the fully nonlinear setting (4.1), the derivatives of the solution satisfy a linear equation in
non-divergence form,

L(∂νu) = g in {u > 0},

with bounded measurable coefficients A(x), and then having our new boundary Harnack for
non-divergence operators proves useful to deduce results on the regularity of the free boundary.

It is well known that the free boundary may exhibit singularities. Hence, we need to introduce
the notion of a regular point.

Definition 4.1.5. Let x0 be a free boundary point for the classical obstacle problem, i.e.
x0 ∈ ∂{u > 0} for a solution of (4.5). We say that x0 is a regular free boundary point if there
exists rk ↓ 0 such that

u(rkx)
r2

k

→ γ

2 (x · e)2
+ in C1

loc(Rn)

for some γ > 0 and e ∈ Sn−1.

Our next application was already known by using perturbative arguments with slightly weaker
assumptions [23]. We include this result to illustrate the arguments that we will use in the fully
nonlinear problems in a more easily readable setting.
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Corollary 4.1.6. Let u be a solution of (4.5) with f ≥ c0 > 0 in W 1,q(B1), with q > n, and
assume the origin is a regular free boundary point in the sense of Definition 4.1.5.

Then, the free boundary Γ = ∂{u > 0} is locally a C1,α graph at 0.

The fully nonlinear obstacle problem can be presented in at least two different formulations.
The following one was studied by Lee in [143].

F (D2v) ≤ 0
v ≥ φ

F (D2v) = 0 in {v > φ}.
(4.6)

Here, we impose the following conditions:

• F is uniformly elliptic.

• F (D2φ) ≤ −τ0 < 0.

• φ ∈ C∞.

Then, under these hypotheses, v ∈ C1,1 and the free boundary is C1,α at regular points. For our
purposes, we will say a free boundary point is regular in the sense of Definition 4.1.5, as in the
classical obstacle problem.

More generally, one can study problems of the formF (D2u, x) = fχ{u>0}

u ≥ 0.
(4.7)

This is a generalization of problem (4.6). Indeed, if we define u = v − φ, then

F̃ (D2u, x) := F (D2u+D2φ) − F (D2φ) = −F (D2φ) =: f(x) in {u > 0}.

This fully nonlinear obstacle problem (and more general ones without the sign condition
on u) has been further studied by Lee, Shahgholian, Figalli, and more recently by Indrei and
Minne in [144, 105, 120]. They proved that if F is convex, f is Lipschitz and f ≥ τ0 > 0, the
free boundary ∂Ω is C1 at regular points.

As a consequence of our new boundary Harnack inequality, we extend their result for (4.7)
in two ways. We lower the Lipschitz regularity required for f to W 1,q with q > n, and we prove
C1,α regularity of the free boundary instead of C1.

Corollary 4.1.7. Let u be a solution of (4.7). Assume as well:

(H1) F is uniformly elliptic and F (0, x) = 0 for all x ∈ Ω.

(H2) F is convex and C1 in the first variable, and W 1,q in the second variable for some q > n.

(H3) f ∈ W 1,q for some q > n, and f ≥ τ0 > 0.

Then, if the origin is a regular free boundary point in the sense of Definition 4.1.5, the free
boundary is a C1,α graph in Br for some small r > 0 and α > 0.
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4.1.5 Thin obstacle problems
The thin obstacle problem, also known as the Signorini problem, is a classical free boundary
problem that admits several formulations, see [91] for a nice introduction to the topic. One can
write the problem as the following, given an obstacle φ defined on {xn = 0}:

∆v ≤ 0 in B1
v ≥ φ on B1 ∩ {xn = 0}

∆v = 0 in B1 \ {(x′, 0) : v(x′, 0) = φ(x′)}.
(4.8)

The first results on regularity of the solution v were established in the seventies, in particular
it was proved in [35] that v ∈ C1,α for a small α > 0. Free boundary regularity remained
open for quite some time, until the first free boundary regularity result, [11], establishing that
the free boundary is C1,α at regular points when φ ≡ 0. Further results have been obtained
in [133, 72] among others, proving that the free boundary is real analytic at regular points
provided that φ is analytic.

Consider now the fully nonlinear thin obstacle problem.
F (D2v) ≤ 0 in B1

v ≥ φ on B1 ∩ {xn = 0}
F (D2v) = 0 in B1 \ {(x′, 0) : v(x′, 0) = φ(x′)},

(4.9)

where F is uniformly elliptic, convex and F (0) = 0.
Milakis and Silvestre proved in [152] that solutions u are C1,α in the symmetric case (even

functions with respect to xn). More recently, Fernández-Real extended the result to the non-
symmetric case in [90]. The first result on free boundary regularity is due to the first author
and Serra [168], where they proved the C1 regularity of the free boundary near regular points.
Here, we will prove for the first time that the free boundary is actually C1,α.

To do this, we need to adapt Theorem 4.1.2 to the case of slit domains. We present here a
simplified version, see Section 4.4 for a more general result.
Theorem 4.1.8. Let q > n and let L be as in (4.2). There exists small c0 > 0 such that the
following holds.

Let Ω = B1 \K with K a closed subset of {xn = 0}. Let

Ω+ = Ω ∩ {xn ≥ 0} and Ω− = Ω ∩ {xn ≤ 0}.

Let u and v > 0 be Ln-viscosity solutions of{
Lu = f in B1 \K
u = 0 on K

and
{

Lv = g in B1 \K
v = 0 on K,

with f and g satisfying (4.4). Assume in addition that v(en/2) ≥ 1, v(−en/2) ≥ 1, and either
u > 0 in B1 \K and max{u(en/2), u(−en/2)} ≤ 1, or ∥u∥Lp(B1) ≤ 1 for some p > 0. Then,

u ≤ Cv in B1/2 \K,

and ∥∥∥∥uv
∥∥∥∥

C0,α(Ω±∩B1/2)
≤ C.

The positive constants C, c0, and α depend only on the dimension, q, λ, Λ, as well as p, when
applicable.
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Using this new boundary Harnack, we can prove the following.

Corollary 4.1.9. Assume that 0 is a regular free boundary point for (4.9) in the sense of [168],
with F ∈ C1 and φ ∈ W 3,q for some q > n. Then, there exists ρ > 0 such that the free boundary
is a C1,α graph in Bρ ∩ {xn = 0}.

This is new, even when φ ∈ C∞. The higher regularity of the free boundary remains a
challenging open question.

4.1.6 Plan of the paper
The paper is organized as follows.

In Section 4.2, we recall some classical results and tools, such as the ABP estimate and the
weak Harnack inequality. Then, in Section 4.3 we prove our new boundary Harnack inequality
for elliptic equations with right hand side, Theorem 4.1.2, by scaling and barrier arguments.
Section 4.4 is devoted to adapting the result to slit domains. In Section 4.5, we prove the C1,α

regularity of the free boundary in the fully nonlinear obstacle problem, Corollary 4.1.7, and in
the fully nonlinear thin obstacle problem, Corollary 4.1.9. Finally, in Section 4.6, we present
two counterexamples that show the sharpness of our new boundary Harnack and in Section 4.7
we introduce a Hopf lemma for equations with right hand side.

4.2 Preliminaries
In this section we recall some classical tools and results that will be used throughout the paper.
We will denote

M−(D2u) := inf
λI≤A≤ΛI

Tr(AD2u), M+(D2u) := sup
λI≤A≤ΛI

Tr(AD2u)

the Pucci extremal operators, see [37] or [97] for their properties.

4.2.1 Ln-viscosity and weak solutions
In this work we are considering linear elliptic equations of the form Lu = f , with f ∈ Lq,
with q ≥ n. The most appropriate notion of solutions for a divergence form equation are the
well-known weak solutions.

For the non-divergence form case, one could consider strong (W 2,n
loc , solving the PDE in the

a.e. sense) solutions, but all the arguments of the proof are equally viable for Ln-viscosity
solutions, which are more general. We present the minimal definition for the linear case.

Definition 4.2.1 ([38]). Let u ∈ C(Ω), f ∈ Ln
loc(Ω) and L in non-divergence form. We say u

is a Ln-viscosity subsolution (resp. supersolution) if, for all φ ∈ W 2,n
loc (Ω) such that u − φ has

a local maximum (resp. minimum) at x0,

ess lim inf
x→x0

Lφ− f ≤ 0

(resp. ess lim sup
x→x0

Lφ− f ≥ 0).
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We will say equivalently that u is a solution of Lu ≤ (≥)f . When u is both a subsolution
and a supersolution, we say u is a solution and write Lu = f .

Ln-viscosity solutions coincide with strong, viscosity or even classical solutions when they
have the required regularity, and satisfy the maximum and comparison principles, but are more
flexible, for example, allowing to compute limits under some reasonable hypotheses, and are
thus preferred in some contexts.

Throughout this paper, the Dirichlet boundary conditions must be understood in the point-
wise sense when we are dealing with Ln-viscosity solutions, and in the trace sense when we are
dealing with weak solutions.

4.2.2 Interior estimates
The Alexandroff-Bakelmann-Pucci estimate is one of the main tools in regularity theory for
non-divergence form elliptic equations. We refer to [37, Theorem 3.2] and [38, Proposition 3.3]
for the full details and a proof.

Theorem 4.2.2 (ABP Estimate). Assume that Ω ⊂ Rn is a bounded domain. Let L be a
non-divergence form operator as in (4.2) and let u ∈ C(Ω) satisfy Lu ≥ f in the Ln-viscosity
sense, with f ∈ Ln(Ω). Assume that u is bounded on ∂Ω.

Then,
sup

Ω
u ≤ sup

∂Ω
u+ C diam(Ω)∥f∥Ln(Ω)

with C only depending on the dimension, λ and Λ.

In the case of divergence form equations, the global boundedness of weak solutions is known
in more generality. For our purposes, it is sufficient to consider the case p = n.

Theorem 4.2.3 ([112, Theorem 8.16]). Assume that Ω ⊂ Rn is a bounded domain. Let L be
a divergence form operator as in (4.3) and let u ∈ C(Ω) be a weak solution of Lu ≥ f , with
f ∈ Lp(Ω), p > n/2. Assume that u is bounded on ∂Ω.

Then,
sup

Ω
u ≤ sup

∂Ω
u+ C∥f∥Lp(Ω)

with C only depending on the dimension, |Ω|, p, λ and Λ.

We will need the two estimates that are classically combined to obtain the Krylov-Safonov
Harnack inequality. The first one is the following weak Harnack inequality, valid for Ln-viscosity
solutions of non-divergence form equations. We refer to [194, Theorem 2] and [135, Theorem
4.5].

Theorem 4.2.4 (Weak Harnack inequality). Let L be a non-divergence form operator as in
(4.2). Let u satisfy Lu ≤ 0 in Ω in the Ln-viscosity sense and let BR(y) ⊂ Ω. Then, for all
σ < 1,

∥u∥Lp(BσR) ≤ C inf
BσR

u,

where p and C are positive and depend only on the dimension, σ and Λ/λ.
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Now, combining this theorem with the ABP estimate, applied to the function 1−u, we obtain
the following result. This is also valid for divergence form equations, and sometimes known as
De Giorgi oscillation lemma in that setting. The case with f = 0 is found in [47, Theorem
11.2], and we can extend it easily to the general case using Theorem 4.2.3.
Corollary 4.2.5. Let L be as in (4.2) or (4.3). Let r ∈ (0, 1], u ≤ 1, Lu ≥ f in Br, in the
Ln-viscosity or the weak sense, with f ∈ Ln(Br). Assume |{u ≤ 0}| ≥ η|Br| > 0, and that
∥f∥Ln(Br) ≤ δ(η). Then,

sup
Br/2

u ≤ 1 − γ(η),

where δ(η) > 0 and γ(η) ∈ (0, 1) depend only on the dimension, λ,Λ and η.

The second estimate is the upper bound in Harnack inequality, also valid for Ln-viscosity
solutions of non-divergence form equations [194, Theorem 1], [136] and weak solutions of di-
vergence form equations [70, 146]. In the divergence form case, we can add the right hand side
using Theorem 4.2.3.
Theorem 4.2.6 (L∞ bound for subsolutions). Let p > 0 and let L be as in (4.2) or (4.3). Let
Lu ≥ f in B1, in the Ln-viscosity or the weak sense. Then,

sup
B1/2

u ≤ Cp(∥u∥Lp(B1) + ∥f∥Ln(B1)),

where Cp > 0 depends only on the dimension, p, λ and Λ.

4.3 Proof of Theorem 4.1.2

4.3.1 Nondegeneracy
To study solutions of Lu = f in a Lipschitz domain it is useful to know their behaviour in
a cone. In this first part of the proof we show that, much like solutions of elliptic equations
with zero Dirichlet boundary conditions separate linearly from the boundary of the domain
in domains with the interior ball condition (Hopf lemma), the solutions of elliptic equations
with zero Dirichlet boundary conditions separate as a power of the distance at corners, and the
exponent approaches 1 as the corners become wider.
Lemma 4.3.1. Let L be in non-divergence form as in (4.2). Let β > 1. There exist sufficiently
small c(β) > 0, η > 0, only depending on the dimension, β, λ and Λ, such that the following
holds.

Let u be any solution of 
Lu ≤ c(β) in Cη

u ≥ 1 on {xn = 1} ∩ Cη

u ≥ 0 in ∂Cη,

where Cη is the cone defined as

Cη := {x ∈ Rn : η|x′| < xn < 1} .

Then,
u(ten) ≥ tβ, ∀t ∈ (0, 1).
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Proof. Assume without loss of generality that β ∈ (1, 2), because if the inequality holds for
β > 1, it holds also for all β′ > β. We will use the comparison principle with a subsolution that
has the desired behaviour. Let ε ∈ (0, 1/20) to be chosen later. Notice that

√
1 + ε−

√
ε > 4/5.

Define the subsolution φ as:

φ(x) = xβ
nfε

(
η|x′|
xn

)
, fε(t) =

√
1 + ε−

√
t2 + ε√

1 + ε−
√
ε

.

We can readily check that φ(x) = 0 for x ∈ ∂Cη. It is also clear that φ(x) ≤ 1 in {xn = 1}∩Cη,
and that φ > 0 in Cη. Now, we need some estimates on fε and its derivatives. For t ∈ [0, 1),

fε(t) =
√

1 + ε−
√
t2 + ε√

1 + ε−
√
ε

≥
√

1 + ε− t−
√
ε√

1 + ε−
√
ε

= 1 − t√
1 + ε−

√
ε
> 1 − 5

4t

f ′
ε(t) = − t√

t2 + ε(
√

1 + ε−
√
ε)

≥ −1√
1 + ε−

√
ε
> −5

4

|t−1f ′
ε(t)| ≤ 1

√
ε(

√
1 + ε−

√
ε)
<

5
4ε

−1/2

f ′
ε(t) ≤ −t

(t+
√
ε)(

√
1 + ε−

√
ε)

≤ −t
1 + ε

< −20
21t

|f ′′
ε (t)| =

∣∣∣∣∣ −ε
(t2 + ε)3/2(

√
1 + ε−

√
ε)

∣∣∣∣∣ ≤ 1
√
ε(

√
1 + ε−

√
ε)
<

5
4ε

−1/2

|t2f ′′
ε (t)| =

∣∣∣∣∣ −εt2

(t2 + ε)3/2(
√

1 + ε−
√
ε)

∣∣∣∣∣ ≤
(
ε2/3t4/3

t2 + ε

)3/2 1√
1 + ε−

√
ε

<

(
22/3ε1/3

3

)3/2 5
4 <

1
2ε

1/2.

In the last inequality we used that

ε2/3t4/3 = 22/3ε1/3 3
√
ε(t2/2)(t2/2) ≤ 22/3ε1/3 ε+ t2/2 + t2/2

3 = 22/3ε1/3

3 (t2 + ε).

Then, we will make ε small and then η small in such a way that Lφ ≥ c(β). To make the
computations easier, we will use the Pucci operator M−, and we will denote t = η|x′|/xn. On
the one hand, we can check that

∂2φ

∂x2
n

= xβ−2
n ((β2 − β)fε(t) + (2 − 2β)tf ′

ε(t) + t2f ′′
ε (t))

> xβ−2
n

(
(β2 − β)

(
1 − 5

4t
)

+ (β − 1)40
21t

2 − 1
2ε

1/2
)

> xβ−2
n

(
(β − 1)

(
β − 5β

4 t+ 40
21t

2
)

− 1
2ε

1/2
)
.

Now, we compute the discriminant of the second order polynomial that we found:

Discriminant
(
β − 5β

4 t+ 40
21t

2
)

= 25β2

16 − 160β
21 = β

(
25β
16 − 160

21

)
< 0.
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Hence, the second order polyonmial is always positive and attains a minimum mβ > 0.
Choose ε such that ε1/2 < (β − 1)mβ. Then,

∂2φ

∂x2
n

> xβ−2
n

(
(β − 1)mβ − 1

2ε
1/2
)
> xβ−2

n

(β − 1)mβ

2 =: cβx
β−2
n > 0

Consider now i = 1, . . . , n− 1.∣∣∣∣∣∂2φ

∂x2
i

∣∣∣∣∣ = xβ−2
n

∣∣∣∣∣η2t−1f ′
ε(t)

|x′|2 − x2
i

|x′|2
+ η2f ′′

ε (t) x2
i

|x′|2

∣∣∣∣∣
≤ xβ−2

n (η2|t−1f ′
ε(t)| + η2|f ′′

ε (t)|)

< xβ−2
n η2

(5
4ε

−1/2 + 5
4ε

−1/2
)
< xβ−2

n η2 5ε−1/2

2 .

Now we need to compute the crossed derivatives. We begin with∣∣∣∣∣ ∂2φ

∂xi∂xn

∣∣∣∣∣ = xβ−2
n

∣∣∣∣∣η(β − 1) xi

|x′|
f ′

ε(t) − η2 xi

|x′|
f ′′

ε (t)
∣∣∣∣∣

≤ xβ−2
n (η(β − 1)|f ′

ε(t)| + η2|f ′′
ε (t)|)

< xβ−2
n

(
η

5(β − 1)
4 + η2 5

4ε
−1/2

)
< xβ−2

n (η + η2)5ε−1/2

2 .

And finally, taking i ̸= j in {1, . . . , n− 1},∣∣∣∣∣ ∂2φ

∂xi∂xj

∣∣∣∣∣ = xβ−2
n

∣∣∣∣∣−η2t−1f ′
ε(t)

xixj

|x′|2
+ η2f ′′

ε (t)xixj

|x′|2

∣∣∣∣∣
≤ xβ−2

n (η2|t−1f ′
ε(t)| + η2|f ′′

ε (t)|)

< xβ−2
n η2

(5
4ε

−1/2 + 5
4ε

−1/2
)
< xβ−2

n η2 5ε−1/2

2 .

Define H(x) = D2φ(x), and also H0(x) to be the matrix with ∂2φ/∂x2
n at the lower right

corner and zeros in all other entries. On the one hand, by the definition of M−:

M−(H0) ≥ λxβ−2
n cβ.

Moreover, using that ∥H −H0∥ is bounded by the sum of the coefficients,

M−(H) ≥ M−(H0) − Λ
n∑

i,j=1
|(H −H0)ij| ≥ xβ−2

n F (η),

where
F (η) = λcβ − 5Λ(n− 1)(η + η2)ε−1/2 − 5Λ(n− 1)2

2 η2ε−1/2.

Since ε > 0 is fixed, we choose η small enough such that F (η) ≥ λcβ/2. To end the proof,

M−(D2φ) = M−(H) ≥ xβ−2
n

λcβ

2 ≥ λcβ

2 =: c(β),

where we use that xn ≤ 1 and β − 2 < 0.
By the comparison principle, we conclude that u(ten) ≥ φ(ten) = tβ.
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Remark 4.3.2. The constant L0 in Theorem 4.1.2 is limited, in fact, by the value of η from this
lemma, because the domain must contain wide enough cones, so the Lipschitz constant of the
boundary must be small enough.

To prove the nondegeneracy property for solutions of divergence form equations, we proceed
by approximation. The continuity assumption on the coefficients in (4.3) is necessary, see
Proposition 4.6.3.

The following lemma is a natural approximation property of divergence form equations.

Lemma 4.3.3. Let Ω be a bounded Lipschitz domain and K ⊂ Ω a compact subset. Let L1,L2
be divergence form operators, and let u1, u2 ∈ H1(Ω) be the solutions of the following Dirichlet
problems {

L1u1 = 0 in Ω
u1 = g on ∂Ω, and

{
L2u2 = 0 in Ω
u2 = g on ∂Ω,

with g ∈ H1(Ω) and

L1u1 = Div(A1(x)∇u1), L2u2 = Div(A2(x)∇u2).

Then,
∥u1 − u2∥L∞(K) ≤ C{∥A1 − A2∥L∞(Ω), ∥A1 − A2∥τ

L∞(Ω)},
where C > 0 and τ ∈ (0, 1) depend only on K, Ω, g and the ellipticity constants.

Proof. Since u1 = u2 on ∂Ω, we can use v = u1 − u2 as a test function in H1
0 (Ω), to obtain

ˆ
Ω

∇u⊤
1 A1∇v =

ˆ
Ω

∇u⊤
2 A2∇v = 0,

so
0 =

ˆ
Ω
(∇u⊤

1 A1 − ∇u⊤
2 A2)∇v =

ˆ
Ω

∇v⊤A1∇v + ∇u⊤
2 (A1 − A2)∇v

and thus

λ∥∇v∥2
L2(Ω) ≤

ˆ
Ω

∇v⊤A1∇v = −
ˆ

Ω
∇u⊤

2 (A1 − A2)∇v

≤ ∥A1 − A2∥L∞(Ω)∥∇u2∥L2(Ω)∥∇v∥L2(Ω).

Hence, using that the H1 norm of u2 can be bounded by a constant depending on the domain,
the ellipticity constants and the boundary data,

∥∇v∥L2(Ω) ≤ C1∥A1 − A2∥L∞(Ω).

This, combined with the Poincaré inequality, yields ∥v∥L2(Ω) ≤ C2∥A1 − A2∥L∞(Ω).
On the other hand, let δ = d(K, ∂Ω) and define the enlarged compact set

K ′ = {x ∈ Ω : d(x,K) ≤ δ/2}. By the De Giorgi-Nash-Moser theorem, we have
∥ui∥C0,α(K′) ≤ C3, where α and C3 depend only on the domain, the dimension and the el-
lipticity constants, thus ∥v∥C0,α(K′) ≤ 2C3.

Let p ∈ K such that |v| reaches its maximum, and assume without loss of generality that
v(p) > 0. Then, for all x ∈ Bδ/2, v(p+ x) ≥ v(p) − 2C3|x|α, and we can estimate ∥v∥L2(Ω). The
first observation is that v(p+ x) ≥ v(p)/2 when x is small enough, quantitatively,

v(p+ x) ≥ v(p)/2 ⇐⇒ 2C3|x|α ≤ v(p)/2 ⇐⇒ |x| ≤ C4v(p)1/α,
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so now we can use v(p+ x) ≥ v(p)χE/2, E = BC4v(p)1/α to obtain

∥v∥L2(Ω) ≥

ˆ
Bδ/2(p)

v2

1/2

=
ˆ

Bδ/2

v(p+ x)2

1/2

≥

ˆ
Bδ/2

v(p)2χE/4
1/2

≥ min{|Bδ/2|, |E|}1/2v(p)/2.

This presents us with two cases. When Bδ/2 ⊂ E, v(p) ≤ C5∥v∥L2(Ω). On the other hand, if
E ⊂ Bδ/2, v(p)1+1/α ≤ C6∥v∥L2(Ω). In either case,

v(p) ≤ C7 max{∥v∥L2(Ω), ∥v∥
α

α+1
L2(Ω)} ≤ C max{∥A1 − A2∥L∞(Ω), ∥A1 − A2∥

α
α+1
L∞(Ω)},

and the result follows.

As a consequence, we can prove the analogue of Lemma 4.3.1 for divergence form equations.

Lemma 4.3.4. Let L be in divergence form with continuous coefficients, with modulus of con-
tinuity σ as in (4.3). Let β′ > 1. There exists sufficiently small η′ > 0 such that the following
holds.

Let u be a solution of 
Lu ≤ 0 in C2,η′

u ≥ 1 in {xn > 1} ∩ C2,η′

u ≥ 0 on ∂C2,η′ .

Then,
u(ten) ≥ tβ

′
, ∀t ∈ (0, tσ),

where
C2,η′ := {x ∈ Rn : η′|x′| < xn < 2}.

The constants tσ and η′ are positive and depend only on the dimension, β′, σ, λ and Λ.

Proof. We will assume without loss of generality that β′ ∈ (1, 2) and that Lu = 0 in C2,η′ . Let
β, γ such that β′ > γ > β > 1. Let η > 0 be the one provided by Lemma 4.3.1 with exponent β.
Let η′ < η/8 and k0 ∈ Z+, to be chosen later. We will prove by induction that u(2−ken) ≥ c2−kγ

for all integer k ≥ k0 and some c > 0. Notice that this implies that u(ten) ≥ c′tγ for some
smaller c′ > 0 by a direct application of interior Harnack. To end the proof, notice that if t is
small enough, since β′ > γ,

u(ten) ≥ c′tγ ≥ tβ
′
.

We proceed now with the induction. First, we define the following auxiliary functions.

b(x) = xn

2−k
b̃

(
|x′|
xn

)
, b̃(t) =


1 t < B,

4 − 3t/B B ≤ t < 4B/3,
0 otherwise,

with B = 3/(2η). We also write b1(x′, xn) = b̃(|x′|/xn) for convenience of the notation.
We claim that there exists c > 0 such that, for all integer k ≥ k0, u ≥ c2−kγb1 in the

(n− 1)-dimensional ball B′
22−k/η × {2−k}.
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For the first k0, first observe that u ≥ 0 everywhere by the maximum principle. Then, apply
the interior Harnack inequality to the cylinder B′

22−k/η×[2−k, 3/2], which is compactly contained
in C2,η′ . Since supu = 1 in the cylinder, we have u ≥ m > 0, and using that b1 ≤ 1, u ≥ mb1
in B′

22−k/η × {2−k} and we can choose c accordingly.
Now, for the inductive step, let K = B′

21−k/η × {2−k−1}, which is compactly contained in
C2−k,η′ , and let v and v0 the solutions of the following Dirichlet problems{

Lv = 0 in C2−k,η′

v = 2−kγcb(x) on ∂C2−k,η′ ,
and

{
L0v0 = 0 in C2−k,η′

v0 = 2−kγcb(x) on ∂C2−k,η′ ,

with L0v0 := Div(A0∇v0), A0 = A(0).
Observe that v = v0 = 0 on the lateral boundary of the cone C2−k,η′ . Then, it is clear that

u ≥ v from the boundary conditions. Furthermore, by a rescaling of Lemma 4.3.3,

∥v − v0∥L∞(K) ≤ 2−kγcC max{∥A− A0∥L∞(C2−k,η′ ), ∥A− A0∥τ
L∞(C2−k,η′ )}.

For each p ∈ K, consider the cone C ′ with vertex in (p′, η′|p′|) ∈ ∂C2,η′ and slope η,

C ′ := {(x′, xn) ∈ Rn : η|x′ − p′| + η′|p′| < xn < 2−k}.

Since η′ > η, C ′ ⊂ C2,η′ . Hence, u ≥ 0 in ∂C ′. Moreover, by construction, the top part,
{xn = 2−k} ∩ C ′ is contained in B′

22−k/η × {2−k}. Hence, we can apply a rescaled Lemma 4.3.1
to the normalized 2kγv0, because L0 has constant coefficients and is also a non-divergence form
operator to obtain

2kγv0(p) ≥ c

(
2−k−1 − η′|p′|
2−k − η′|p′|

)β

≥ c

(
2−k−1 − 22−kη′/η

2−k − 22−kη′/η

)β

= c

(
η − 8η′

2η − 8η′

)β

.

Then, passing the information on v0 to v,

v(p) ≥ c

(
η − 8η′

2η − 8η′

)β

− ∥v − v0∥L∞(K)

≥ 2−kγc

( η − 8η′

2η − 8η′

)β

− C max{∥A− A0∥L∞(C2−k,η′ ), ∥A− A0∥τ
L∞(C2−k,η′ )}


≥ 2−kγc(1/2)γ,

where for the last inequality we first choose a small η′ such that
(
η − 8η′

2η − 8η′

)β

≥
(1

2

)γ

+ δ,

with δ > 0, and then take k large and use that A is continuous. Hence, if η′ is small enough
and k0 is large enough in the first place, the inductive step holds.

Now we are ready to prove Theorem 4.1.2. We divide the proof into three parts: an upper
bound, a lower bound, and the proof of the C0,α regularity of the quotient.
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4.3.2 Upper bound
We follow the arguments of [73]; see also [170]. The first lemma is a geometric fact that will
make subsequent computations easier.

Lemma 4.3.5. Let Ω be a Lipschitz domain as in Definition 4.1.1, with Lipschitz constant
L < 1/16. Let

A = {x ∈ Ω ∩B1−δ : d(x, ∂Ω) ≥ δ} = {x ∈ Ω ∩B1 : d(x, ∂(Ω ∩B1)) ≥ δ},

where δ ∈ (0, 1/3). Then A is star-shaped with respect to the point en/2.

Proof. It is easy to check that d(A, ∂(Ω ∩ B1)) = δ, and that en/2 ∈ A (since L < 1/16,
d(en/2, ∂Ω) ≥ 1/(2

√
L2 + 1) > 1/3).

We distinguish the upper and the lower boundaries of A as:

∂uA = {x ∈ ∂A : d(x, ∂Ω) > δ}, ∂lA = {x ∈ ∂A : d(x, ∂Ω) = δ}.

The first step is proving that ∂lA is a Lipschitz graph with the same or lower Lipschitz
constant. For this, consider the set Ωδ = {x ∈ B′

1−δ × R : d(x, ∂Ω) > δ}, which contains the
points above ∂lA. For every vertical line l passing through (x′, 0), with x′ ∈ B′

1−δ, the set l∩Ωδ

is not empty, so we can define h : B′
1−δ → R as

h(x′) = inf{xn : d((x′, xn), ∂Ω) > δ}.

Then, for a given x′ ∈ B′
1−δ, (x′, y) ∈ Ωδ for all y > h(x′). Indeed, for every point z =

(z′, zn) in ∂Ω, either |z′ − x′| > δ, and hence d((x′, y), z) > δ, or |z′ − x′| ≤ δ. In this
case, zn = g(z′) ≤ g(x′) + L|z′ − x′| < g(x′) + δ/16 ≤ h(x′) − δ + δ/16 < h(x′), and then,
d((x′, y), z) > d((x′, xn), z) = δ, because y > h(x′) > zn.

In any case, we have proven that Ωδ = {(x′, xn) ∈ B′
1−δ × R : xn > h(x′)}. Moreover, this

shows that ∂lA is a subset of the graph of h. Now we want to see that h is Lipschitz. Notice
that we can also define h with the complement set,

h(x′) = sup{xn : d((x′, xn), ∂Ω) ≤ δ} = sup{xn : d((x′, xn), ∂Ω) = δ}.

This can be seen as the superior envolvent of a union of spheres of radius δ centered at every
point of ∂Ω, hence

h(x′) = sup{g(x′ + t) +
√
δ2 − |t|2, t ∈ B′

δ}.

Since this is a supremum of equi-Lipschitz functions, h is also Lipschitz with the same or
lower constant, L′ ≤ L < 1/16. From g(0) = 0 we can also derive h(0) ≥ δ, and h(0) ≤
δ
√
L2 + 1 < 1.02δ.

Now we will see that A is star-shaped with center at en/2, constructing a segment from
en/2 to every point in A that lies entirely inside A. Let p ̸= en/2 be a point in A, and let
q = (q′, qn) be the intersection of the line through p and en/2 and ∂A, that lies on the side of
p and is furthest from en/2. We will see later that there is only one intersection at each side,
but considering the furthest is enough for now.

If q lies in ∂lA, qn = h(q′). If q lies in ∂uA, the point is above ∂lA and qn > h(q′). In any
case, we have always qn ≥ h(q′). It is clear that the segment (en/2)q, that can be parametrised
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by {(tq′, (1 − t)/2 + tqn), t ∈ [0, 1]} is contained in B1−δ. We will prove that it lies entirely
above ∂lA (except maybe in the point q), so it has not other intersections with ∂A besides q.
We distinguish two cases:

If qn ≥ 7/16, for any point tq′ inside the segment joining 0 and q′ in B′
1−δ (this means

t ∈ (0, 1)), using that h is Lipschitz,

h(tq′) ≤ h(0) + L|tq′| < 1.02δ + t/16 < 0.34 + t/16.

Moreover, the height of the segment (en/2)q above the point tq′ is

(1 − t)/2 + tqn ≥ 0.5 + (qn − 0.5)t ≥ 0.5 + (h(q′) − 0.5)t ≥ 0.5 − t/16,

and 0.5 − t/16 > 0.34 + t/16 because t/8 < 1/8 < 0.5 − 0.34 = 0.16. Combining the two
inequalities, h(tq′) < (1 − t)/2 + tqn as required.

On the other hand, if qn < 7/16, h(q′) < 7/16 as well. Since h is Lipschitz,

h(tq′) ≤ h(q′) + L|q′ − tq′| < qn + (1 − t)/16 = (qn + 1/16) − (1/16)t.

The height of the segment (en/2)q above the point tq′ is

(1 − t)/2 + tqn = 1/2 − (1/2 − qn)t,

and 1/2 − (1/2 − qn)t > (qn + 1/16) − (1/16)t for t ∈ (0, 1) by a simple calculation.
Hence, in any case the segment joining en/2 and q crosses ∂A at q for the first time, implying

A is star-shaped.

Now, we derive an interior Harnack inequality for domains with the shape we want to consider.

Lemma 4.3.6. Let Ω be a Lipschitz domain as in Definition 4.1.1, with Lipschitz constant
L < 1/16. Let δ ∈ (0, 1/3). Let L be as in (4.2) or (4.3). Let u be a positive solution, in the
Ln-viscosity or the weak sense, of{

Lu = f in Ω ∩B1
u = 0 on ∂Ω ∩B1,

with f ∈ Ln(B1). Let A = {x ∈ Ω ∩B1−δ : d(x, ∂Ω) ≥ δ}. Then,

sup
A
u ≤ C(inf

A
u+ ∥f∥Ln(B1)),

with C depending on the dimension, δ, λ and Λ, but not on the particular shape of Ω.

Proof. Let x ∈ A, and we will denote y = en/2 to simplify the notation. Since A ⊂ B1−δ,
|x− y| < 2. We define

m :=
⌈8
δ

⌉
.

Take x0 = x, . . . , xm = y a uniform partition on the segment xy. It is clear that |xi+1 −xi| <
δ/4. Then, consider the balls Bδ(xi). We apply the interior Harnack inequality to obtain that

sup
Bδ/2(xi)

u ≤ C

(
inf

Bδ/2(xi)
u+ δ∥f∥Ln(Bδ(xi))

)
.
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In particular, u(xi) ≤ C(u(xi+1) + δ∥f∥Ln(Bi)) ≤ C(u(xi+1) + δ∥f∥Ln(B1)), and iterating this,
u(y) ≤ Cm+1u(x) + C ′∥f∥Ln(B1). Taking the points in reverse order yields u(x) ≤ Cm+1u(y) +
C ′∥f∥Ln(B1).

Now take x, z ∈ A, and apply the inequalities between u(x) and u(y) to u(y) and u(z). We
can put them together finally to get

u(x) ≤ C2(m+1)u(z) + C ′′∥f∥Ln(B1), u(z) ≤ C2(m+1)u(x) + C ′′∥f∥Ln(B1).

Finally, notice that C, m and C ′′ do not depend on the shape of Ω.

The next step is the following lemma, that shows that the condition u > 0 and u(en/2) ≤ 1
implies ∥u∥Lp(B1) ≤ cp in Theorem 4.1.2.

Lemma 4.3.7. Let Ω a Lipschitz domain as in Definition 4.1.1, with Lipschitz constant L <
1/16. Let L be as in (4.2) or (4.3). Let u be a positive solution, in the Ln-viscosity or the weak
sense, of {

Lu = f in Ω ∩B1
u = 0 on ∂Ω ∩B1,

such that u(en/2) ≤ 1, with f ∈ Ln(B1). Then, there exist p, Cp > 0 such that

∥u∥Lp(B1) ≤ Cp,

with p and Cp only depending on the dimension, λ, Λ and ∥f∥Ln(B1).

Proof. We will prove that there exist a sequence {ak} and some positive c and b such that
supu ≤ ak ≤ cbk in the sets Ak = {x ∈ Ω ∩B1−2−k : d(x, ∂Ω) > 2−k} for all k ≥ 3. This means
roughly that supu grows at most like d−K for some big K, and then up will be integrable if
p > 0 is small enough.

First, by Lemma 4.3.6 applied with δ = 1/8, together with the fact that u ≤ 1 in at least a
point of A3, sup

A3

≤ C(1 + ∥f∥Ln(B1)) =: a3.
Now, we will show that ak+1 ≤ c1ak + c2, with ci > 0. This easily implies by induction that

ak ≤ cbk for some b, c > 0.
Take x ∈ Ak+1. We will prove that there exists a close y ∈ Ak such that

d(x, y) < 2−k+3. In fact, let z = (z′, zn) be the intersection of ∂Ak with the segment (en/2)x.
Proving d(x, z) < 2−k+3 will suffice, because there are points in Ak arbitrarily close to z.

We can parametrise the segment as ψ(t) = t(en/2)+(1−t)x, with t ∈ (0, 1). Then, z = ψ(t∗),
where we define

t∗ := inf Ik = inf{t ∈ (0, 1) : ψ(t) ∈ Ak}.

Since Ak is star-shaped with rays coming from en/2 by Lemma 4.3.5, and it contains an open
ball around en/2, Ik is an open interval. Looking closely at the definition of Ak, we can write
Ik as the intersection of two conditions:

Ik = (t1, 1) ∩ (t2, 1) := {t ∈ (0, 1) : ψ(t) ∈ B1−2−k} ∩ {t ∈ (0, 1) : d(ψ(t), ∂Ω) > 2−k}.

First, the condition ψ(t) ∈ B1−2−k means |ten/2 + (1 − t)x| < 1 − 2−k, which is automatically
fulfilled when t ≥ 2−k+1, because then

|ten/2 + (1 − t)x| ≤ t/2 + (1 − t)|x| < t/2 + (1 − t) = 1 − t/2.
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Hence t1 ≤ 2−k+1. To finish this argument we need an upper bound on t2 as well. Take an
arbitrary t ∈ [2−k+2, 1], and we will see that d(ψ(t), ∂Ω) > 2−k. To do so, we will prove that
ψn(t) > g(ψ′(t)) + 2−k

√
L2 + 1, with ψ(t) = (ψ′(t), ψn(t)) as usual. Since g is Lipschitz with

constant L < 1/16, |g(x′)| < 1/16, and

g(ψ′(t)) ≤ g(x′) + L|x′ − ψ′(t)| < g(x′) + t/16,

we deduce

ψn(t) = t/2 + (1 − t)xn > t/2 + (1 − t)g(x′) = g(x′) + t(1/2 − g(x′))
> g(x′) + 7t/16,

and

g(ψ′(t)) + 2−k
√
L2 + 1 < g(x′) + t/16 + 2−k

√
L2 + 1 < g(x′) + t/16 + 3 · 2−k−1.

Finally, since 6t/16 ≥ 3 ·2−k−1, ψn(t) > g(ψ′(t))+2−k
√
L2 + 1 as desired and t2 ≤ 2−k+2. Now,

t∗ = max{t1, t2} ≤ 2−k+2, and this implies d(x, z) = t∗d(x, en/2) < 2t∗ ≤ 2−k+3.
Now, for a given x ∈ Ak+1, we have y ∈ Ak such that d(x, y) < 2−k+3. Consider a uniform

partition in 32 pieces of the segment xy, p0 = y, . . . , p31 = x. Since Ak+1 is star-shaped,
xy ⊂ Ak+1, so the balls Bi = B2−k−1(pi) are completely contained in Ω ∩B1. Now, d(pi, pi+1) <
2−k−2, and applying the interior Harnack inequality we get u(pi+1) ≤ C(u(pi) + ∥f∥Ln(Bi)) ≤
C(u(pi) + ∥f∥Ln(B1)). Iterating this inequality, u(y) ≤ c1u(x) + c2, for some constants c1, c2
only depending on the dimension and ∥f∥Ln(B1).

Now we know that supu ≤ cbk in Ak. Let p = logb

√
2, and compute the Lp norm of u:

ˆ
B1

|u|p =
ˆ

A3

|u|p +
∞∑

j=3

ˆ
Aj+1\Aj

|u|p ≤ |A3|cb3p +
∞∑

j=4
|Aj \ Aj−1|c(bp)j

≤ c

2
√

2|A3| +
∞∑

j=3
|Aj+1 \ Aj|2j/2

 ≤ c

2
√

2|B1| +
∞∑

j=3
2−jV (n)2j/2


= c

(
2
√

2|B1| + V (n)(1 +
√

2)/2
)

=: Cp
p ,

where we have used that |Aj+1 \ Aj| ≤ 2−jV (n). We will prove it now.

Aj+1 \ Aj ⊂ (B1 \B1−2−j ) ∪ {x ∈ B1 : d(x, ∂Ω) ≤ 2−j}.

On the one hand, |B1 \ B1−2−j | ≤ 2−j|∂B1|, where |∂B1| is the (n− 1)-dimensional measure
of the boundary of the ball B1. On the other hand, the second set is a subset of the thickening
of ∂Ω in the en direction, with height 2−j

√
L2 + 1 at each side:{

(x′, xn) ∈ B′
1 × R : |xn − g(x′)| ≤ 2−j

√
L2 + 1

}
.

The measure of this second set is 2−j+1√L2 + 1|B′
1| (again using the measure of Rn−1). Hence,

defining V (n) = |∂B1| + 2
√

1/162 + 1|B′
1| serves our purpose.

The previous Lemma 4.3.7 implies that u ∈ Lp(B1). Then, we can use Theorem 4.2.6 to
obtain the following L∞ bound on u:
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Proposition 4.3.8. Let Ω be a Lipschitz domain as in Definition 4.1.1, L as in (4.2) or (4.3)
and r ∈ (0, 1). Let u be a Ln-viscosity or weak solution of{

Lu = f in Ω ∩B1
u = 0 on ∂Ω ∩B1,

with f ∈ Ln(Ω).
Then, for all p > 0, if u ∈ Lp(Ω ∩B1), u is bounded in Br, i.e.

sup
Br

u ≤ K(∥u∥Lp(B1) + ∥f∥Ln(Ω)),

with K = K(n, p, λ,Λ, r).

Proof. Denote v = u+, extending v by zero in B1 \ Ω, and extend f by zero in B1 \ Ω. Then,
it is easy to check that Lv ≥ f in B1. Now use Theorem 4.2.6 and a covering argument to get

sup
Br

v ≤ Cp(r)(∥u∥Lp(B1) + ∥f∥Ln(B1)).

The conclusion trivially follows.

4.3.3 Lower bound
The next step is to construct an iteration to see that solutions of Lu = f that are sufficiently
positive away from the boundary, and not very negative near it, are actually positive everywhere.
As we have a right hand side f ∈ Lq, we need to be careful with the scaling, so we cannot
use directly interior Harnack estimates to prove positivity, and we will need the nondegeneracy
estimates in Lemmas 4.3.1 and 4.3.4.

Lemma 4.3.9. Let q > n, κ > 1, and let L be as in (4.2) or (4.3). There exists L∗ =
L∗(q, n, κ, λ,Λ) such that the following holds.

Let Ω be a Lipschitz domain as in Definition 4.1.1 with constant L < L∗. Let f be such that
∥f∥Lq(B1) ≤ c0. Let u be a Ln-viscosity or weak solution of{

Lu = f in Ω ∩B1
u = 0 on ∂Ω, with

{
u ≥ 1 in Ω ∩ {x ∈ B1 : d(x, ∂Ω) > δ}
u ≥ −ε in Ω ∩B1.

(4.10)

Then, {
u ≥ ρκ in Ω ∩ {x ∈ Bρ : d(x, ∂Ω) > ρδ}
u ≥ −ρκε in Ω ∩Bρ

for some sufficiently small ρ, ε, δ, c0 ∈ (0, 1), with ρ > 2δ, only depending on the dimension, κ,
q, λ, Λ, as well as σ, when applicable.

Proof. Let β ∈ (1, κ). Apply Lemma 4.3.1 in the non-divergence case (respectively, Lemma
4.3.4 in the divergence case) to obtain η > 0 (resp. η′).

Let h > 0 to be chosen later. For x0 = (x′
0, x0n) in {x ∈ Bρ : d(x, ∂Ω) > ρδ}, define the cone

C = (x′
0, g(x′

0)) + hCη = {x ∈ Rn : η|x′ − x′
0| < xn − g(x′

0) < h}.
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Here, we distinguish the upper and the lateral boundaries, respectively,

∂uC = {x ∈ Rn : η|x′ − x′
0| ≤ xn = g(x′

0) + h}
∂lC = {x ∈ Rn : η|x′ − x′

0| = xn < h}.

and the upper half cone
C+ = C ∩ {xn > g(x′

0) + h/2}.

Now, take L∗ = min{η/2, 1/16}. Hence, the slope of ∂Ω will be at most half of the slope
of C, so the cone separates from the boundary. By some geometric computations, we find
d(∂uC, ∂Ω) ≥ h/

√
4 + η2.

Let now ρ ≤ 1/2. The distance of the furthest points of C to (x′
0, g(x0)′) is h

√
1 + 1/η2. Hence,

taking h ≤ 1/(2
√

1 + 1/η2) suffices to have C ⊂ Ω ∩ B1. Furthermore, making h = 4δ
√

4 + η2,
we will have ∂uC ⊂ {x ∈ B1 : d(x, ∂Ω) > δ}, and also C+ ⊂ {x ∈ B1 : d(x, ∂Ω) > δ}. Note that
this forces δ to be small, but we will choose it at the end, so this is not a problem.

Define ũ(x) = u(x′
0, g(x′

0) + hx) + ε. Let ũ = v + w, where{
Lv = 0 in Cη

v = ũ on ∂Cη
and

{
Lw = f in Cη

w = 0 on ∂Cη.

By the ABP estimate, Theorem 4.2.2, in the non-divergence form case, or by Theorem 4.2.3
in the divergence form case, ∥w∥L∞(Cη) ≤ C ′∥f∥Ln(Cη) ≤ C ′c0. On the other hand, v ≥ 0 on
∂Cη, and v ≥ 1 on ∂uCη and C+

η (defining the upper boundary and the upper half anologously).
Hence, we can apply Lemma 4.3.1 or a rescaled Lemma 4.3.4 to v to conclude that v(ten) ≥ tβ,
possibly only for small t < tσ.

Putting all together, ũ(ten) ≥ tβ − C ′c0, which means

u((x′
0, g(x′

0)) + hten) ≥ tβ − C ′c0 − ε,

only when t < tσ for divergence form operators. Therefore,

u(x0) ≥
(
x0n − g(x′

0)
h

)β

− C ′c0 − ε ≥
(
ρδ

h

)β

− (C ′c0 + ε) =
(

ρ

2
√

4 + η2

)β

− C ′c0 − ε.

Finally, since β < κ, we can choose ρ > 0 small enough such that ρβ−κ ≥ 6
√

4 + η2 (and
t < tσ if needed), and then, choosing ε, c0 > 0 small enough,

u(x0) ≥ 3ρκ − C ′c0 − ε ≥ ρκ.

Now, for the second inequality, let x0 ∈ B1−3δ, d(x0, ∂Ω) ≤ δ. Let v = u−/ε in the ball B3δ(x0),
extending u by 0 below ∂Ω. By elementary properties of Ln-viscosity and weak solutions, since
Lu ≤ f , Lv ≥ −f+/ε. Now, v ≥ 0 in the whole ball, v ≤ 1 because u ≥ −ε, and v = 0 below
∂Ω. Let z ∈ ∂Ω be the closest point of the boundary to x0. Let Cz be the downwards cone
with slope L∗ and vertex in z. Then, Cz lies entirely below ∂Ω, and v = 0 in Cz ∩ B3δ(x0).
Since d(x0, z) ≤ δ, |Cz ∩ B3δ(x0)| ≥ c(L∗)|B3δ(x0)|, where c(L∗) is a geometric constant that
only depending on the dimension and L∗.

Applying Theorem 4.2.5, v ≤ 1 − γ in B3δ/2(x0), and in particular v(x0) ≤ 1 − γ. In order to
do it, we need f+/ε to be small enough, to have ∥f+/ε∥Ln(B1) ≤ δ(cL) in the notation of the
theorem.
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We will iterate this reasoning with the functions vj = v/(1 − γ)j, defined in B3δ(x0), with
x0 ∈ B1−3jδ, d(x0, ∂Ω) ≤ δ. The conclusion of each iteration is vj ≤ 1 − γ in B1−3(j+1)δ, i.e.
vj+1 ≤ 1 in B1−3(j+1)δ. This implies v ≤ (1 − γ)j in B1−3jδ, and then u ≥ −(1 − γ)jε in B1−3jδ.

To end the proof we only need to choose j such that (1 − γ)j < ρκ, and then make δ small
until 1 − 3jδ ≥ ρ. Finally, notice that we need ∥f+/((1 − γ)iε)∥Ln(B1) ≤ δ(cL) for i = 1, . . . , j
to be able to apply successively Theorem 4.2.5. This is possible choosing c0 accordingly once
we know j.

Now, we iterate the lemma to obtain the desired result.

Proposition 4.3.10. Let q > n, κ > 1, and let L be as in (4.2) or (4.3). There exist
L∗ = L∗(q, n, κ, λ,Λ) > 0 and ε, δ, c0 ∈ (0, 1), such that the following holds.

Let Ω be a Lipschitz domain as in Definition 4.1.1 with constant L < L∗. Let u be a solution
of (4.10) with f such that ∥f∥Lq(B1) ≤ c0. Then,

u > 0 in Ω ∩B2/3.

Moreover, for all t ∈ (0, 1),
u(ten) ≥ tκ.

The constants L∗, ε, δ and c0 depend only on the dimension, κ, q, λ, Λ, as well as σ, when
applicable.

Proof. We will iterate the previous Lemma 4.3.9. Assume without loss of generality that
κ < 2 − n/q. Let u0 = u, f0 = f , and define the scalings:

uj+1(x) = ρ−κuj(ρx), fj+1(x) = ρ2−κfj(ρx).

Define Ωj to be the rescaled domains of the uj. Observe that the Lipschitz constant of the
domains is the same or smaller, and that Luj = fj. Now we will see that the right hand side
is bounded as we need. Indeed, since ρ2−κ < ρn/q,

∥fj+1∥Lq(B1) <

(ˆ
B1

ρn|fj(ρx)|qdx
)1/q

=
(ˆ

Bρ

|fj(y)|qdy
)1/q

= ∥fj∥Lq(Bρ),

and then ∥fj∥Lq(B1) ≤ c0 for all j.
We will prove by induction that uj satisfies (4.10) for all j as well. Start supposing uj does.

Then, by Lemma 4.3.9, uj ≥ ρκ in Ωj ∩ {x ∈ Bρ : d(x, ∂Ωj) > ρδ}, which is equivalent to
uj+1 ≥ 1 in Ωj+1 ∩ {x ∈ Bρ : d(x, ∂Ωj+1) > ρδ}. Also by the lemma, uj ≥ −ρκε in Bρ, which
is the same as uj+1 ≥ −ε in B1.

All iterates uj satisfy (4.10), thus in particular uj(ten) ≥ 1 for t ∈ (2δ, 1), taking into account
that, since L∗ <

√
3, d(2δen, ∂Ω) > δ. Rescaling back, this translates easily into u(ten) ≥ tκ.

Now, observe that, after a change of variables, choosing smaller ε, δ and c0 if needed, the
function ũ(x) = u(x0 +x/3) is also a solution of (4.10) for any x0 ∈ ∂Ω ∩B2/3. Analogously, we
have ũ(ten) ≥ tκ, thus u(x0 + ten/3) > 0, and since δ < 1/3 this implies u > 0 in Ω ∩B2/3.

As a consequence, we find:
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Corollary 4.3.11. Let q > n, κ > 1, and let L be as in (4.2) or (4.3). There exists L∗ =
L∗(q, n, κ, λ,Λ) such that the following holds.

Let Ω be a Lipschitz domain as in Definition 4.1.1 with constant L < L∗. Let f such that
∥f∥Lq(B1) ≤ c0. Let v be a positive Ln-viscosity or weak solution of Lv = f , with v(en/2) ≥ 1.
Then, for all x ∈ B1/2,

v(x) ≥ c1d(x, ∂Ω)κ,

for some sufficiently small c0, c1 > 0, only depending on the dimension, κ, q, λ, Λ, as well as
σ, when applicable.

Remark 4.3.12. We can also write xn − g(x′) instead of d(x, ∂Ω), since the two quantities are
comparable.

Proof. Assume, after dividing by a constant if necessary, that v(en/2) = 1. Let v′(x) = v(2x)
and Ω′ the corresponding scaled domain. By a version of Lemma 4.3.6, we have that if c0 is
small enough, v′ ≥ c2 > 0 in {x ∈ Ω′ ∩ B3/2 : d(x, ∂Ω′) > δ}, for any δ > 0, some small c2 > 0
that depends only on δ, the dimension, q and the ellipticity constants. Now, apply the previous
Proposition 4.3.10 to v′/c2 in the balls B1(x0) for any x0 ∈ B1 (we may need to ask that c0 is
smaller to do so). Hence, v′(x0 + ten)/c2 ≥ tκ, and this implies v(x0 + (t/2)en) ≥ c2(t/2)κ. To
end the proof, notice that d(x0 + (t/2)en, ∂Ω) ∈ [t/2, t

√
L2 + 1/2], so we can absorb the factor

needed to change t for d(x, ∂Ω) in the constant c1.

4.3.4 Proof of the main result
Now we have all that we need to prove Theorem 4.1.2. Observe that Corollary 4.1.4 is a direct
consequence. We divide the proof in two parts: in the first one we prove the inequality, and in
the second we deduce the C0,α regularity of u/v.

Proof of Theorem 4.1.2. We prove the inequality first. Let

κ = 1 + 1
2

(
1 − n

q

)
> 1,

and choose L0(q, n, λ,Λ) = L∗(q, n, κ, λ,Λ) with the definition of L∗ given by Proposition 4.3.10.
We will still keep κ explicit to simplify some calculations. If we are in the case u > 0, apply
Lemma 4.3.7. In either case, by Proposition 4.3.8, u ≤ K in B3/4.

Then, consider v in the set A = {x ∈ B3/4 : d(x, ∂Ω) ≥ 3δ/4}. A is a subset of {x ∈
B1−3δ/4 : d(x, ∂Ω) ≥ 3δ/4}. Hence, by Lemma 4.3.6, and from v(en/2) ≥ 1, it follows that
v ≥ C−1 − ∥f∥Ln(B1) ≥ C−1 − c0 in the whole set A. Furthermore, choosing m = C−1/2 and
c0 ≤ m yields v ≥ m > 0 in A.

Define now
w := 1 + ε

m
v − ε

K
u,

with ε > 0 to be determined later. We will show that w > 0 in B1/2, and therefore, taking
C = K(1 + ε)/(mε), Cv − u > 0.

By construction, w ≥ v/m ≥ 1 in A, and w ≥ −ε in B3/4. To apply Proposition 4.3.10
(rescaled to the ball B3/4), we need to estimate Lw:

∥Lw∥Lq(B3/4) ≤ 1 + ε

m
∥Lv∥Lq(B1) + ε

K
∥Lu∥Lq(B1) ≤

(1 + ε

m
+ ε

K

)
c0.
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Let w̃(x) = w(3x/4). Then, w̃ ≥ 1 in Ω ∩ {x ∈ B1 : d(x, ∂Ω) ≥ δ} and w̃ ≥ −ε in Ω ∩ B1.
Choosing sufficiently small ε, c0 > 0 to apply Proposition 4.3.10, we get w̃ > 0 in B2/3, thus
w > 0 in B1/2.

Now, for the boundary C0,α regularity of the quotient u/v, we will first prove the regularity
for the boundary points, and then we will extend it to the whole closed domain Ω ∩B1/2,
where u/v is extended by continuity on ∂Ω. These arguments are the standard ones found in
the literature, but we have to be careful with some calculations to take into account the right
hand side of the equations. Additionally, let c∗

0 be the value for c0 found in the first part of the
proof. We will adjust the final value of c0 in terms of this c∗

0.
By a covering argument, the inequality u ≤ C ′v is valid in Ω ∩ B3/4 with an appropriate

constant C ′. Since either u > 0 or we can interchange u by −u and the hypotheses still hold,
we have u ≥ −C ′v as well. Let x0 ∈ ∂Ω ∩B1/2.

First, we will show by induction that there exist sequences {aj}, {bj} such that, for every
integer j ≥ 2,

ajv ≤ u ≤ bjv in Ω ∩B2−j (x0), (bj+1 − aj+1) = (1 − θ)(bj − aj), θ ∈ (0, 1 − 21−κ].

For j = 2 we take aj = −C ′, bj = C ′, with the constant from the covering argument. Now,
to perform the inductive step, we define two new functions:

w1 := u− ajv

bj − aj

, w2 := bjv − u

bj − aj

.

These functions are positive solutions of Lwi = fi in Ω ∩ B2−j (x0), vanish continuously at
∂Ω, and w1 +w2 = v. Therefore, for one of them (the biggest in the point), 2wi(x0 +en/2j+1) ≥
v(x0 + en/2j+1). To apply the boundary Harnack, we define the following rescaled functions,
with c1 > 0 from Corollary 4.3.11 in order to have ṽ(en/2) ≥ 1. Let

ṽ(x) = c−1
1 2jκv(x0 + 2−jx), w̃i(x) = c−1

1 2jκwi(x0 + 2−jx),

f̃1(x) = 2j(κ−2)f(x0 + 2−jx) − ajg(x0 + 2−jx)
c1(bj − aj)

,

f̃2(x) = 2j(κ−2) bjg(x0 + 2−jx) − f(x0 + 2−jx)
c1(bj − aj)

.

Now we must check ∥f̃i∥Lq(B1) ≤ c∗
0. Indeed, choosing c0 appropriately,

∥f̃1∥Lq(B1) ≤
∥2j(κ−2)f(x0 + 2−jx)∥Lq(B1) + aj∥2j(κ−2)g(x0 + 2−jx)∥Lq(B1)

c1(bj − aj)

≤ c0
2j(n/q+κ−2)(1 + |aj|)

c1(bj − aj)
≤ 2j(n/q+κ−2)c0

c1(1 − θ)j−2 ≤ c0(1 − θ)2

c1
≤ c∗

0.

The same works for f2.
Applying a rescaled version of the boundary Harnack inequality to the functions 2wi, v, we

get that wi ≥ v
2C′ in Ω ∩B2−(j+1)(x0). This presents two options: either

u− ajv

bj − aj

≥ v

2C ′ ⇒ u ≥
(
aj + bj − aj

2C ′

)
v =: ãj+1v, b̃j+1 = bj,
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or
bjv − u

bj − aj

≥ v

2C ′ ⇒ u ≤
(
bj − bj − aj

2C ′

)
v =: b̃j+1v, ãj+1 = aj.

Either ãj+1 > aj or b̃j+1 < bj. We cannot choose them yet as aj+1, bj+1, because we need to
ensure 1 − θ ≥ 21−κ. This is done by choosing

aj+1 = min{ãj+1, aj + (1 − 21−κ)(bj − aj)},
bj+1 = max{b̃j+1, bj − (1 − 21−κ)(bj − aj)}.

After this, aj ≤ u/v ≤ bj in Ω ∩B2−j (x0), and then

sup
B2−j (x0)∩Ω

u/v − inf
B2−j (x0)∩Ω

u/v ≤ bj − aj = (2C ′)(1 − θ)j−2. (4.11)

We can extend u/v by continuity at x0 as the limit of the aj (or the bj), and for any
point p ∈ Ω ∩ B2−j (x0), |(u/v)(x0) − (u/v)(p)| ≤ 2C ′(1 − θ)j−2, hence u/v is C0,α at x0 with
α = − log2(1 − θ). Then, for every point x0 on the boundary we have∣∣∣∣uv (x0) − u

v
(p)
∣∣∣∣ ≤ C|x0 − p|α,

for some uniform constant C > 0, for any p ∈ B1/2 ∩ Ω.
Now, for the interior points, let x1, x2 ∈ B1/2, d = |x1 − x2| and δi = d(xi, ∂Ω). There are

three different cases:
Case 1. If d ≥ 1/16, we just use the fact that −C ′v ≤ u ≤ C ′v in Ω ∩ B3/4, hence, for any

α ∈ (0, 1), ∣∣∣∣uv (x1) − u

v
(x2)

∣∣∣∣ ≤ 2C ′ ≤ 32C ′|x1 − x2|α.

Case 2. If the points are far compared with the distance to the boundary, in the sense that
d ≥ δi/4 for at least one of them, let y be a point in the boundary such that d(xi, y) < 8d for
both of them (for example, in the case δ1 ≤ 4d, let y be the closest point in the boundary to
x1, so that d(x2, y) ≤ δ1 + d ≤ 5d). Then,∣∣∣∣uv (x1) − u

v
(x2)

∣∣∣∣ ≤
∣∣∣∣uv (x1) − u

v
(y)
∣∣∣∣+ ∣∣∣∣uv (y) − u

v
(x2)

∣∣∣∣
≤ C(|x1 − y|α + |y − x2|α) ≤ 2C(8d)α ≤ 21+3αC|x1 − x2|α.

Case 3. When the points are close, i.e. d < 1/16 and d < min(δ1, δ2)/4, suppose without loss
of generality 0 < δ1 ≤ δ2. Let

r = d(x2, ∂(B3/4 ∩ Ω)) = min{3/4 − |x2|, δ2} ≥ min{1/4, δ2}.

Now, we introduce an auxiliary function w = u− µv, with µ to be determined later.
∣∣∣∣uv (x1) − u

v
(x2)

∣∣∣∣ ≤ v(x1)|w(x1) − w(x2)| + |w(x2)||v(x1) − v(x2)|
v(x1)v(x2)

.
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Hence, since Lw = f − µg, Lv = g, by interior regularity estimates,

|w(x1) − w(x2)| ≤ C1|x1 − x2|α
′ (
r−α′∥w∥L∞(Br/2(x2)) + r2−n/q−α′∥Lw∥Lq(Br/2(x2))

)
≤ C1|x1 − x2|α

′ (
r−α′∥w∥L∞(Br/2(x2)) + (1 + |µ|)c0r

2−n/q−α′)
,

|v(x1) − v(x2)| ≤ C1|x1 − x2|α
′ (
r−α′∥v∥L∞(Br/2(x2)) + r2−n/q−α′∥g∥Lq(Br/2(x2))

)
≤ C1|x1 − x2|α

′ (
r−α′∥v∥L∞(Br/2(x2)) + c0r

2−n/q−α′)
.

We may assume without loss of generality that α′ ∈ (0, 2 − κ).
Now, by the interior Harnack inequality and Corollary 4.3.11, tweaking the constants, v(xi) ≤

∥v∥L∞(Br/2(x2)) ≤ Cv(xi). Then, combining our estimates,

1
C1

∣∣∣∣uv (x1) − u

v
(x2)

∣∣∣∣ |x1 − x2|−α′ ≤

≤
∥w∥L∞(Br/2(x2)) + (1 + |µ|)c0r

2−n/q

v(x2)rα′ +
|w(x2)|(∥v∥L∞(Br/2(x2)) + c0r

2−n/q)
v(x1)v(x2)rα′

≤
C∥w∥L∞(Br/2(x2))

rα′∥v∥L∞(Br/2(x2))
+ C(1 + |µ|)c0r

2−n/q

rα′∥v∥L∞(Br/2(x2))
+
C2∥w∥L∞(Br/2(x2))

rα′∥v∥L∞(Br/2(x2))
+

+
C2∥w∥L∞(Br/2(x2))c0r

2−n/q

rα′∥v∥2
L∞(Br/2(x2))

.

Now we distinguish two cases: when r = 1/4 we just use the global estimates, and when
r < 1/4 we do some finer computations.

Case 3.1. When r = 1/4, let µ = 0. Hence w = u. Since −C ′v ≤ u ≤ C ′v
in B3/4 ∩ Ω, ∥w∥L∞(Br/2(x2)) ≤ C ′∥v∥L∞(Br/2(x2)), and ∥v∥L∞(Br/2(x2)) ≥ c1r

κ by Corollary 4.3.11,
then the right hand side of the previous inequality is bounded by some constant C2 that only
depends on n, q, λ,Λ. Hence, ∣∣∣∣uv (x1) − u

v
(x2)

∣∣∣∣ ≤ C1C2|x1 − x2|α
′
.

Case 3.2. If r < 1/4, r = δ2. Choose µ = u(x2)/v(x2), so that w(x2) = 0. Let k0
be the maximum positive integer such that δ2 < 2−k0 (hence δ2 ≥ 2−k0−1). Then, k0 ≥ 2,
d < δ2/4, and x1, x2 belong to Ω ∩ B2−k0+1(y), with y ∈ ∂Ω, for instance, the closest point in
∂Ω to x2 (d(y, x1) < δ2 + d < 2δ2 < 2−k0+1 by the triangle inequality). For the same reason,
Br(x2) ⊂ Ω ∩B2−k0+1(y).

By the estimate (4.11), ∥w∥L∞(Br(x2)) ≤ (2C ′)(1 − θ)k0−2∥v∥L∞(Br(x2)), and combining it with
the previous result and the fact that 1 − θ = 1/2α,

1
C1

∣∣∣∣uv (x1) − u

v
(x2)

∣∣∣∣ |x1 − x2|−α′ ≤2C ′(C + C2)(1 − θ)k0−2

rα′ +

+ (C(1 + |µ|) + C2(2C ′(1 − θ)k0−2))c0r
2−n/q−α′

∥v∥L∞(Br/2(x2))
.

We put all the constants (everything that does not depend on r, k0) together, and notice that
|µ| ≤ C ′ and 2−k0−1 ≤ r < 2−k0 . Additionally, we dismiss the term (1 − θ)k0−2 ≤ 1/(1 − θ)2 as
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a constant in the second fraction. Simplifying, we get
∣∣∣∣uv (x1) − u

v
(x2)

∣∣∣∣ ≤ |x1 − x2|α
′
(

2k0(α′−α)C3 + 2k0(n/q+α′−2)C4

∥v∥L∞(Br/2(x2))

)
.

Since ∥v∥L∞(Br/2(x2)) ≥ c1r
κ = c1δ

κ
2 ≥ c12−κ(k0+1),

2k0(n/q+α′−2)C4

∥v∥L∞(Br/2(x2))
≤ 2k0(n/q+α′+κ−2)+1C4/c1 ≤ 2C4/c1.

If α ≥ α′, |x1 − x2|α
′2k0(α′−α) ≤ |x1 − x2|α

′ . If α < α′, take into account that r = |x1 − x2| <
2−k0 , and then

|x1 − x2|α
′2k0(α′−α) =

(
|x1 − x2|

2−k0

)α′

2−k0α ≤
(

|x1 − x2|
2−k0

)α

2−k0α = |x1 − x2|α.

In either case,
|x1 − x2|α

′2k0(α′−α) ≤ |x1 − x2|min{α,α′}.

Hence, ∣∣∣∣uv (x1) − u

v
(x2)

∣∣∣∣ ≤ C5|x1 − x2|min{α,α′}.

Observe that we have proved that |(u/v)(x1) − (u/v)(x2)| ≤ C|x1 − x2|α for various values
of C, α > 0. For the expression to be always valid, take the maximum multiplicative constant
and the minimum exponent.

4.4 The boundary Harnack in slit domains
We also consider our problem in slit domains, as introduced in [72, 73]. We define them in the
unit ball B1 to keep the notation uncluttered.

Definition 4.4.1. We say Ω is a slit domain with Lipschitz constant L if Ω = B1 \K, with K
a closed subset of the graph of a Lipschitz function g : B′

1 → R, with g(0) = 0:

Ω = B1 \K, K ⊂ Γ := {(x′, xn) ∈ B′
1 × R : xn = g(x′)}, ∥g∥C0,1 = L.

Additionally, we define the upper and lower halves of Ω,

Ω+ = Ω ∩ {(x′, xn) ∈ B1 : xn ≥ g(x′)}, Ω− = Ω ∩ {(x′, xn) ∈ B1 : xn ≤ g(x′)}.

We will write Ω± to refer to Ω+ or Ω− indistinctly.

An analogous reasoning to the proof of Theorem 4.1.2 for slit domains yields the following
result.

Theorem 4.4.2. Let q > n and let L be as in (4.2) or (4.3). There exist small constants
c0 > 0 and L0 > 0 such that the following holds.
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Let Ω = B1 \K be a slit domain as in Definition 4.4.1, with Lipschitz constant L < L0. Let
u and v > 0 be Ln-viscosity or weak solutions of{

Lu = f in B1 \K
u = 0 on K

and
{

Lv = g in B1 \K
v = 0 on K,

with f and g satisfying (4.4).
Additionally, assume that v(en/2) ≥ 1, v(−en/2) ≥ 1, and either u > 0 in B1 \ K and

max{u(en/2), u(−en/2)} ≤ 1, or ∥u∥Lp(B1) ≤ 1 for some p > 0. Then,

u ≤ Cv in B1/2 \K,

and ∥∥∥∥uv
∥∥∥∥

C0,α(Ω±∩B1/2)
≤ C.

The positive constants C, c0, L0 and α depend only on the dimension, q, λ, Λ, as well as p
and σ, when applicable.

When both functions are positive, we recover the symmetric version of the boundary Harnack.

Corollary 4.4.3. Let q > n and L as in (4.2) or (4.3). There exist small constants c0 > 0
and L0 = L0(q, n, λ,Λ) > 0 such that the following holds.

Let Ω = B1 \K be a slit domain as in Definition 4.4.1, with Lipschitz constant L < L0. Let
u, v be positive Ln-viscosity or weak solutions of{

Lu = f in B1 \K
u = 0 on K

and
{

Lv = g in B1 \K
v = 0 on K,

with f and g satisfying (4.4).
Assume min{v(en/2), v(−en/2)} ≥ 1 and min{u(en/2), u(−en/2)} ≥ 1. Then,

C−1 min{u(en/2), u(−en/2)}
max{v(en/2), v(−en/2)} ≤ u

v
≤ C

max{u(en/2), u(−en/2)}
min{v(en/2), v(−en/2)} in B1/2 \K,

and ∥∥∥∥uv
∥∥∥∥

C0,α(Ω±∩B1/2)
≤ C.

The positive constants C, c0, L0 and α depend only on the dimension, q, λ, Λ, as well as σ,
when applicable.

Most of the proofs are identical to the one-sided theorem, because we can prove the results
for each side of Γ and then put them together. There are two exceptions: Proposition 4.3.8
and Lemma 4.3.9. The proof of the proposition is even easier, taking v = u+ and extending it
by 0 on K, we are ready to apply Theorem 4.2.6 and see that v is universally bounded.

As for the lemma, we write here an adapted version and the step of the proof that needs to
be changed.
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Lemma 4.4.4. Let q > n, κ > 1, and let L be as in (4.2) or (4.3). There exists L∗ =
L∗(q, n, κ, λ,Λ) such that the following holds.

Let Ω = B1 \ K, with K ⊂ Γ, be a slit domain as in Definition 4.4.1 with constant L < L∗.
Let f such that ∥f∥Lq(B1) ≤ c. Let u be a Ln-viscosity or weak solution of{

Lu = f in B1 \K
u = 0 on K,

with
{
u ≥ 1 in Ω ∩ {x ∈ B1 : d(x,Γ) > δ}
u ≥ −ε in Ω ∩B1.

(4.12)

Then, {
u ≥ ρκ in Ω ∩ {x ∈ Bρ : d(x,Γ) > ρδ}
u ≥ −ρκε in Bρ

for some sufficiently small ρ, ε, δ, c ∈ (0, 1), with ρ > 2δ, only depending on the dimension, κ,
q, λ, Λ, as well as σ, when applicable.

Proof. The proof of the first inequality is completely analogous to the proof of Lemma 4.3.9.
For the second inequality, we do the same reasoning as in the one-sided case, but now,

instead of picking a downwards cone Cz with vertex at ∂Ω, for each x0 such that d(x0,Γ) ≤ δ,
we take z = x0 − 5δ/2en. Since Γ is a Lipschitz graph with Lipschitz constant L < 1/16,
d(z,Γ) ≥ 5δ/(2

√
L2 + 1) − δ > δ, so again z and the analogous downwards cone Cz lie in the

region where u ≥ ρκ. Moreover, |Cz ∩ B3δ(x0)| = cL|B3δ|. The rest of the proof continues
analogously.

4.5 Applications to free boundary problems

4.5.1 C1,α regularity of the free boundary in the obstacle problem
Consider the classical obstacle problem (4.5) in B1, with f ≥ τ0 > 0, f ∈ W 1,q, and assume that
0 is a free boundary point. We will show that we can extend the proof of the C1,α regularity
of the free boundary due to Caffarelli [36] to the case f ∈ W 1,q thanks to our new result. We
generalize the steps of the proof in [97, Section 5.4].

Our starting point will be the existence of a regular blow-up. We will also take for granted
the following nondegeneracy condition: if x0 ∈ {u > 0},

sup
Br(x0)

u ≥ cr2,

which follows easily from the fact f ≥ τ0 > 0; see [97, Proposition 5.9].

Proposition 4.5.1. Let u be a solution of (4.5), with f ∈ W 1,n and f ≥ τ0 > 0. Assume that
0 is a regular free boundary point as in Definition 4.1.5.

Then, for every L0 > 0 there exists r > 0 such that the free boundary is the graph of a
Lipschitz function in Br with Lipschitz constant L < L0.

We will denote
ur(x) := u(rx)

r2 .
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Observe that the blow-up hypothesis implies that for all ε > 0, there exists r0 such that∣∣∣∣ur0 − γ

2 (x · e)2
+

∣∣∣∣ < ε in B1,

and ∣∣∣∂νur0 − γ(x · e)+(x · ν)
∣∣∣ < ε in B1

for all ν ∈ Sn−1.
To prove that the free boundary is Lipschitz, we will use the interior and exterior cone

conditions, and to do this we will prove that ∂νur ≥ 0, with ν a unit vector, when ν · e > c(L),
where c(L) is the positive constant that ensures that the cone {x ∈ Rn : x · e = |x|c(L)} has
Lipschitz constant L. We need a positivity lemma.
Lemma 4.5.2. Let u be a solution of (4.5) with f ∈ W 1,n(B1), r > 0 and Ω = {ur > 0}. Let
w = ∂νur. Then, w is a solution of{

∆w = g in Ω ∩B1
w = 0 on ∂Ω,

with g(x) = r∂νf(rx). Assume that, denoting Nδ = {x ∈ B1 : d(x, ∂Ω) < δ}, we have

w > −ε in Nδ and w > M in Ω \Nδ, (4.13)

with positive ε and M . Then, w ≥ 0 in Ω∩B1/2, provided that ε, r and δ > 0 are small enough.
Proof. First, it is clear that w > 0 in Ω \ Nδ. Suppose there exists x0 ∈ B1/2 ∩ Nδ such that
w(x0) < 0. We will arrive at a contradiction using the maximum princple, combined with the
ABP estimate, with the function

v(x) = w(x) − η

(
ur(x) − f(x0)

2n |x− x0|2
)
.

Consider the set Ω ∩B1/4(x0). On ∂Ω, ur = 0, hence v ≥ 0. On ∂B1/4(x0) ∩Nδ,

v(x) ≥ −ε− ηδ∥ur∥C1 + η

32n.

On ∂B1/4(x0) ∩ (Ω \Nδ),
v(x) ≥ M − η∥ur∥C1 .

Notice that ∥ur∥C1 is uniformly bounded as r → 0. Hence, choosing η small enough, the
second inequality implies v ≥ M/2. For the first inequality, choosing now small enough ε and
δ, we obtain v ≥ η/(64n).

This function satisfies ∆v(x) = g(x) − η(f(x) − f(x0)), hence, by the ABP estimate,

v(x0) ≥ min{M/2, η/(64n)} − C∥g(x) − η(f(rx) − f(rx0))∥Ln(B1/4(x0)).

We estimate g and f − f(x0) separately. Using the scaling of the Ln norm and taking r → 0,

∥g∥Ln(B1/4(x0)) = ∥∂νf∥Ln(Br/4(rx0)) → 0.

On the other hand, by the Poincaré inequality,

∥f(rx) − f(rx0)∥Ln(B1/4(x0)) =
∥f − f(x0)∥Ln(Br/4(rx0))

r
≤ C∥∇f∥Ln(Br/4(rx0)) → 0.

Hence, choosing r small enough, ve can have v(x0) ≥ min{M/2, η/(64n)}/2, which contra-
dicts v(x0) < 0.
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Using the lemma, we prove that there is an arbitrarily wide cone of directions where ∂νur ≥ 0,
for small r > 0.

Proof of Proposition 4.5.1. We only need to check that, for any ν ∈ Sn−1 such that ν · e > c(L),
the hypotheses of the lemma hold. By construction, we only need to check that (4.13) holds
for a small enough r > 0.

Let δ = ε1/8. By the blow-up, there exists r > 0 such that∣∣∣∣ur − γ

2 (x · e)2
+

∣∣∣∣ < ε,

and ∣∣∣∂νur − γ(x · e)+(x · ν)
∣∣∣ < ε.

Hence, if ε > 0 is small enough,

ur >
γ

2 (x · e)2
+ − ε >

γ

2 δ
4 − ε = γ

2ε
1/2 − ε > 0 in {x · e > δ2}.

Moreover,
ur = 0 in {x · e < −δ2},

as we prove by contradiction from the nondegeneracy. Suppose ur(y) > 0 for some y such that
y · e < −δ. Then,

sup
Bδ2 (y)

ur ≥ cδ4 = cε1/2,

but since Bδ2(y) ⊂ {x · e < 0}, ur < ε, which cannot happen if ε is small enough. Hence, the
free boundary is contained in the strip {|x · e| < δ2}.

Now, let a unit ν such that ν · e > c(L). The lower bound for ∂νur in Nδ only takes into
account the convergence of the blow-up,

∂νur > γc(L)(x · e)+ − ε ≥ −ε.

On the other hand, if z ∈ Ω \ Nδ, since the free boundary is at a distance lower than δ2 from
the hyperplane {x · e = 0}, z · e > δ − δ2. Hence,

∂νur(z) > γc(L)(z · e)+ − ε > γc(L)(δ − δ2) − ε = γc(L)(ε1/8 − ε1/4) − ε =: M,

where M > 0 provided that ε is small enough.
Notice that r and ε (thus δ) are uniform in ν. Now, applying the previous Lemma 4.5.2,

for all unit ν such that ν · e > c(L), ∂νur ≥ 0, which is equivalent to ∂νu ≥ 0 in Br. Now, if
x0 ∈ Br is a free boundary point, u(x0) = 0, hence u(x0 − tν) ≤ 0 whenever x0 − tν ∈ Br. Since
u ≥ 0, there is a cone behind x0 where u = 0, i.e.

u = 0 in Br ∩ {(x− x0) · e < −c(L)|x|}.

In the interior of the cone, there are no free boundary points because u is 0 in a neighbourhood
of all points. This is the interior cone. To check the exterior cone condition, suppose there is an-
other free boundary point x1 in the set
Br ∩ {x0 + tν : ν · e > c(L), t ∈ R+}. Then, by applying the interior cone condition to
x1, we get that x0 cannot be a free boundary point, a contradiction. This proves that, in Br,
the free boundary is a Lipschitz graph with constant L in the direction e.

202



Now we can use our new boundary Harnack inequality to prove the C1,α regularity of the
free boundary at regular points à la Caffarelli. To do this, we must ask the right hand side
to belong to W 1,q with q > n, which is slightly more restrictive and implies that f is Hölder
continuous.

Proof of Corollary 4.1.6. As it is customary in this kind of proof, we will use the boundary
Harnack with the derivatives of ur. Let L = L0(q, n, 1, 1)/2 with the L0 defined in Corollary
4.1.4. From Proposition 4.5.1, there exists r > 0 such that the free boundary is a Lipschitz
graph with constant L in Br. Assume without loss of generality that the direction of the graph
is e = en, and that L < 1.

For i = 1, . . . , n− 1, consider the functions

w1 = ∂iur and w2 = ∂nur.

They are both solutions of ∆wj = gj, with g1(x) = r∂if(rx), g2(x) = r∂nf(rx). Moreover,
w2 is positive. To be able to use the boundary Harnack, we need to see that the right hand is
small. Indeed, taking r → 0,

∥gj∥Lq(B1) ≤ ∥r∇f(rx)∥Lq(B1) = 2r1−n/q∥∇f∥Lq(Br) → 0.

Finally, by the blow-up convergence,

wj(en/2) > γ/2 − ε > γ/4, wj(en/2) < γ/2 + ε < γ.

Thus, we can normalize wj dividing by wj(en/2) and the right hand side still converges to 0 in
norm.

Let Ωr = {ur > 0}. By the boundary Harnack with right hand side, Theorem 4.1.2,

w1

w2
∈ C0,α(B1/2 ∩ Ωr) ⇒ ∂iur

∂nur

∈ C0,α(B1/2 ∩ Ωr).

The unit normal vector to any level set {ur = t}, t > 0, is, by components,

n̂i = ∂iur

|∇ur|
= ∂iur/∂nur√

1 +∑n−1
j=1 (∂jur/∂nur)2

∈ C0,α(B1/2 ∩ Ωr).

As this expression is C0,α up to the boundary, this proves the normal vector to the free
boundary is C0,α, and by a simple calculation it follows that the free boundary is C1,α.

4.5.2 C1,α regularity of the free boundary in the fully nonlinear obsta-
cle problem

Consider the fully nonlinear obstacle problem in the general version (4.7), under the assump-
tions in Corollary 4.1.7.

Our starting point will be the existence of a regular blow-up in the sense of Definition 4.1.5,
i.e., there exists rk ↓ 0 such that

u(rkx)
r2

k

→ γ

2 (x · e)2
+ in C1

loc(Rn)
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for some γ > 0 and e ∈ Sn−1. We also need the classical nondegeneracy condition: if x0 ∈
{u > 0},

sup
Br(x0)

u ≥ cr2.

From here, we will extend the proof of [120] to the case where f ∈ W 1,q (and not necessarily
Lipschitz), and we will also prove C1,α regularity of the free boundary.

Our first step is an analogue to [120, Lemma 3.7] for the case f ∈ W 1,n.
Lemma 4.5.3. Let u be a solution of{

F (D2u(x), rx) = f(rx)χ{u>0} a.e. in B1
u ≥ 0 a.e. in B1.

Assume that the conditions (H1), (H2) and (H3) from Corollary 4.1.7 hold. If
C0∂νu− u ≥ −ε in B1,

for any C0 > 0, then
C0∂νu− u ≥ 0 in B1/2,

provided that r, ε > 0 are sufficiently small.
The proof is the same as in our source, except for the final step. We provide it here for the

convenience of the reader.
Remark 4.5.4. For this lemma, the case q = n, i.e., when f ∈ W 1,n and F ∈ W 1,n with respect
to the second variable, is also true.

Proof. Let x ∈ {u > 0} and ∂1F (M,x) denote the subdifferential of F at the point (M,x)
with respect to the first variable. Since F is convex in M , then ∂1F (M,x) ̸= ∅. Consider
a measurable function PM with PM(x) ∈ ∂1F (M,x). Since f ∈ Cα, by interior regularity
estimates u ∈ C2,α

loc ({u > 0}), and thus we can define the measurable coefficients
aij(x) := (PD2u(x)(rx))ij ∈ ∂1F (D2u(x), rx).

Since F is convex in the first variable and F (0, x) ≡ 0, then for any unit vector ν,
n∑

i,j=1
aij(x)∂iju(x+ hν) − ∂iju(x)

h
≤ F (D2u(x+ hν), rx) − F (D2u(x), rx)

h
,

n∑
i,j=1

aij(x)∂iju(x) = F (0, rx) + aij∂iju(x) ≥ F (D2u(x), rx) = f(rx),

provided that x + hν ∈ {u > 0} ∩ B1. Now, since uniform limits of Ln-viscosity solutions are
Ln-viscosity solutions ([38, Theorem 3.8]),

n∑
i,j=1

aij(x)∂ij∂νu(x) ≤ lim sup
h→0

F (D2u(x+ hν), rx) − F (D2u(x), rx)
h

= lim sup
h→0

F (D2u(x+ hν), rx) − f(rx)
h

= lim sup
h→0

F (D2u(x+ hν), rx) − F (D2u(x+ hν), rx+ rhν)
h

+

+ f(rx+ rhν) − f(rx)
h

= r(∂νf)(rx) − r(∂2,νF )(D2u(x), rx)
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in the Ln-viscosity sense.
Suppose there exists y0 ∈ Ω ∩ B1/2 such that C0∂νu(y0) − u(y0) < 0. Then, we consider the

auxiliary function
w(x) = C0∂νu(x) − u(x) + τ0

|x− y0|2

4nΛ .

Then,

aij∂ijw(x) ≤ rC0(∂νf)(rx) − rC0(∂2,νF )(D2u(x), rx) − f(rx) + τ0/2
≤ rC0(∂νf(rx) − ∂2,νF (D2u(x), rx)) − f(rx) + τ0/2
≤ rC0(∂νf(rx) − ∂2,νF (D2u(x), rx)) =: rR(rx).

Hence, by the ABP estimate, since R ∈ Ln(B1),

0 > inf
Ω∩B1/4(y0)

w ≥ inf
∂(Ω∩B1/4(y0))

w − C∥rR(rx)∥Ln(Ω∩B1/4(y0)).

By the scaling of the Ln norm, the second term in the sum is bounded by

C∥R∥Ln(Br/4(ry0)) → 0

as r → 0. On the other hand, w ≡ 0 on ∂Ω, and

w ≥ −ε+ τ0

64nΛ on Ω ∩ ∂B1/4.

Therefore, choosing ε and r small enough we reach w > 0 in Ω∩B1/4(y0), a contradiction.

Now, as we show next, by the C1 convergence of the blow-up we can fulfill the sufficient
conditions in Lemma 4.5.3, and prove that the free boundary is Lipschitz at regular points,
analogously to Proposition 4.5.1. Then, applying the boundary Harnack inequality, we can
improve the regularity up to C1,α.

We denote ur(x) := r−2u(rx) as in Proposition 4.5.1.

Proof of Corollary 4.1.7. Let
u0(x) = γ

2 (x · e)2
+

be the blow-up at 0. Let s ∈ (0, 1). Then,

∂νu0

s
− u0 = γ

(
(x · e)+(e · ν)

s
−

(x · e)2
+

2

)
≥ 0

for any direction ν ∈ Sn−1 such that ν · e ≥ s/2. From the C1 convergence of the blow-up, there
exists rk such that

∂νurk

s
− urk

≥ −ε in B1.

By Lemma 4.5.3, this implies

∂νu2ρ

s
− u2ρ ≥ 0 in B1/2,

for some sufficiently small ρ > 0.
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In particular, this shows that the free boundary fulfills the interior and exterior cone condi-
tions in Bρ and therefore it is Lipschitz, with Lipschitz constant L(s), that satisfies L(s) → 0
as s → 0.

Now, assume without loss of generality e = en. For i = 1, . . . , n− 1, consider the functions

w1 = ∂iuρ and w2 = ∂nuρ.

Notice that w2 ≥ 0. Since F is C1 with respect to D2u and F (D2u, x) ∈ W 1,q, then u ∈ W 3,q

and we can commute the third derivatives as follows,

∂νF (D2uρ(x), ρx) =
n∑

i,j=1
Fij∂ν∂ijuρ + ρ∂2,νF =

n∑
i,j=1

Fij∂ij(∂νuρ) + ρ∂2,νF = ρ∂νf,

L(∂νuρ) = ρ(∂νf − ∂2,νF ).

Here, Lw = Tr(A(x)w), with A(x) = (Fij(D2uρ, ρx))ij. Hence, w1 and w2 are both solutions
of

Lw1 = g1 := ρ(∂if − ∂2,iF )(ρx) and Lw2 = g2 := ρ(∂nf − ∂2,nF )(ρx).

To be able to use the boundary Harnack, we need to show that the right hand is small.
Indeed, taking ρ → 0,

∥gj∥Lq(B1) ≤ ∥ρ(∇f(ρx) + ∇2F (ρx))∥Lq(B1) = ρ1−n/q∥∇f + ∇2F∥Lq(Bρ) → 0.

Finally, by the blow-up convergence,

wj(en/2) > γ/2 − ε > γ/4, wj(en/2) < γ/2 + ε < γ.

Thus, we can normalize wj dividing by wj(en/2) and the right hand side still converges to 0 in
norm.

Let Ωρ = {uρ > 0}. By the boundary Harnack with right hand side, Theorem 4.1.2,

w1

w2
∈ C0,α(Ωρ ∩B1/2) ⇒ ∂iuρ

∂nuρ

∈ C0,α(Ωρ ∩B1/2).

The unit normal vector to any level set {uρ = t}, t > 0, is, by components,

n̂i = ∂iuρ

|∇uρ|
= ∂iuρ/∂nuρ√

1 +∑n−1
j=1 (∂juρ/∂nuρ)2

∈ C0,α(Ωρ ∩B1/2).

As this expression is C0,α up to the boundary, this proves the normal vector to the free
boundary is C0,α, and it follows that the free boundary is C1,α.

4.5.3 C1,α regularity of the free boundary in the fully nonlinear thin
obstacle problem

Recall the fully nonlinear thin obstacle problem (4.9), under the assumptions in Corollary 4.1.9.
We will denote u = v − φ. In this case, we know the following.
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Proposition 4.5.5 ([168]). Assume that 0 is a regular free boundary point for (4.9), where F
is uniformly elliptic, convex and F (0) = 0, and φ ∈ C1,1. Then, there exists e ∈ Sn−1 ∩{xn = 0}
such that for any L > 0 there exists r > 0 for which

∂νu ≥ 0 in Br for all ν · e ≥ L√
L2 + 1

, ν ∈ Sn−1 ∩ {xn = 0}.

In particular, the free boundary is Lipschitz in Br, with Lipschitz constant L.

Now, using our new boundary Harnack in slit domains, Theorem 4.4.2, on top of this propo-
sition, we derive the C1,α regularity of the free boundary at regular points.

Proof of Corollary 4.1.9. Let Ω = B1 \ {(x′, 0) : u(x′, 0) = 0}. The free boundary is a Lipschitz
graph inside Br ∩ {xn = 0}. Suppose without loss of generality that the direction of the graph
is e = en−1. Choosing L and r small enough, for all ν ∈ Sn ∩ {xn = 0} such that ν · en−1 ≥ 1/2,
∂νu ≥ 0 in Br.

For i = 1, . . . , n− 2, consider the functions

w1 = ∂iu, w2 = ∂n−1u.

Since F ∈ C1 and F (D2v) = 0, then v ∈ W 3,p for all p < ∞ and we can commute the third
derivatives as follows,

∂ν(F (D2v)) = 0 in Ω,

∂ν(F (D2v)) =
n∑

i,j=1
Fij∂ν(∂ijv) =

n∑
i,j=1

Fij∂ij(∂νv) = Tr(AD2(∂νv)),

Moreover, w2 is positive. Then, using that v = u+ φ,{
Lw1 = −L(∂iφ) in Ω
w1 = 0 on B1 \ Ω, and

{
Lw2 = −L(∂n−1φ) in Ω
w2 = 0 on B1 \ Ω.

where Lw = Tr(AD2w), A = (Fij◦D2u)ij. Now, we will check that, after a scaling, w2(en/2) ≥ 1
and the right hand side becomes arbitrarily small. Define

w̃2(x) = w2(sx)
s

and φ̃(x) = φ(sx)
s2 .

Now, we check that the right hand side is as small as required. Indeed, letting sk → 0,

∥L(∂n−1φ̃)∥Lq(B1) ≤ Λ∥D3φ̃∥Lq(B1) = Λ∥skφ(skx)∥W 3,q(B1)

= Λs1−n/q
k ∥φ∥W 3,q(Bsk

) → 0.

The right hand side becomes arbitrarily small in the equation for w1 analogously. Then, since
0 is a regular free boundary point, by the convergence of the blow-up,

w̃2(en−1/2) → ∞

for a sequence of values {sk} → 0. Now, by the interior Harnack inequality combined with the
ABP estimate, since w̃2 ≥ 0 in Ω and the distance between the segment joining en−1/2 and
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±en/2 and the contact set is positive and larger than some constant c(L, n) only depending on
the Lipschitz constant of the free boundary and the dimension,

w̃2(±en/2) ≥ c1w̃2(en−1/2) − c2∥L(∂n−1φ̃)∥Ln(B1) ≥ c1w̃2(en−1/2) − c2Λ∥φ∥W 3,n ,

for some positive c1 and c2 only depending on the dimension, L, λ and Λ.
Therefore, letting sk → 0, w̃2(±en/2) ≥ 1. If ∥w̃1∥L1 > 1, we normalize it (notice that this

step can only make the right hand side smaller). Thus, by the boundary Harnack inequality with
right hand side for slit domains, Theorem 4.4.2, w1/w2 ∈ C0,α in Ω ∩ Bs/2. Thus, ∂iu/∂n−1u ∈
C0,α.

Now, the unit normal vector to any level set in the thin space {xn = 0} ∩ {u = t} with t > 0
is, by components,

n̂i = ∂iu√∑n−1
j=1 |∂ju|2

= ∂iu/∂n−1u√
1 +∑n−2

j=1 (∂ju/∂n−1u)2
∈ C0,α

Then, letting t → 0+, we recover that the normal vector to the free boundary is C0,α, and
hence the free boundary is a C1,α graph.

4.6 Sharpness of the results
We construct two examples that show that:

• Without the smallness assumption on the Lipschitz constant of the domain, Theorem
4.1.2 fails.

• For q = n, Theorem 4.1.2 fails.

• For divergence form operators, if the coefficients are only bounded and measurable, The-
orem 4.1.2 fails.

As a first observation, see [3], take for instance Ω = {xn > 0} ⊂ Rn, and let u(x) = xn, v(x) =
x2

n. These functions are normalized in the sense that
u(en) = v(en) = 1, and vanish contiuously on ∂Ω. Even in a flat domain, a function with
a too large Laplacian, |∆v| = 2, will never be comparable to a harmonic function near the
boundary. Hence, the right hand side of the equation must be small, otherwise the result fails.

The following example in two dimensions shows that if we ask ∆v to be small in Lq norm,
for any q > n there is a cone narrow enough such that we can find harmonic functions that are
not comparable with v. Moreover, if we consider a fixed cone, there exists q > n such that the
Lq boundedness of the right hand side is not enough to have a boundary Harnack. If q = n,
such counterexamples are valid for any cone.

Proposition 4.6.1. Let L > 0, q > 0, and assume
π

2 arctan(1/L) + 2
q
> 2. (4.14)

Then, for every δ > 0, there exists a cone Ω ⊂ R2 with Lipschitz constant L, and positive
functions u, v that vanish continuously on ∂Ω such that

u(0, 1) = v(0, 1) = 1, ∆u = 0 and ∥∆v∥Lq(Ω) < δ,
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but
sup

Ω

u

v
= ∞.

In particular, Theorem 4.1.2 fails for q = n.

Proof. Consider the cone Ω = {(x, y) ∈ R2 : y > L|x|} and let

β = π

2 arctan(1/L) and u(x, y) = Re
(
(−ix+ y)β

)
.

Then, u is harmonic, positive in Ω, and vanishes continuously on ∂Ω. Let ψ be a positive
smooth function such that

0 ≤ ψ ≤ u, Suppψ ⊂ B1/3(0, 1) and ψ(0, 1) = u(0, 1) = 1.

Define the scalings ψε(x, y) = εβψ(x/ε, y/ε). Since u is homogeneous of degree β, 0 ≤ ψε ≤ u.
Moreover,

∆ψε(x, y) = εβ−2(∆ψ)(x/ε, y/ε).

Now, we construct v as the following infinite sum, that converges uniformly.

v := u−
∞∑

k=k0

(1 − 2−k)ψ2−k .

Since the supports of ψ2−k are disjoint, v ≥ 0. On the other hand,

∥∆v∥Lq(Ω) ≤
∞∑

k=k0

∥∆ψ2−k∥Lq(Ω) =
∞∑

k=k0

2−k(β−2+2/q)∥∆ψ∥Lq(Ω) → 0

as k0 → ∞, since β + 2/q > 2 by hypothesis. Hence, we can choose k0 big enough so that
∥∆v∥Lq(Ω) < δ.

To end, for k ≥ k0,
u(2−k, 0)
v(2−k, 0) = 2k → ∞,

as wanted.

Remark 4.6.2. Since arctan(1/L) ∈ (0, π/2), the first term in the condition (4.14) is always
greater than 1, hence, if q ≤ 2 there are always counterexamples to the boundary Harnack with
right hand side bounded in Lq.

On the other hand, if L > 1, arctan(1/L) < π/4, and the condition is fulfilled for all q > 0
and q = ∞.

The limiting case L = 0, q = 2 (or q = n in higher dimensions) corresponds to domains that
are locally a half-space. We have not considered this particular case in our setting.

The existence of such example shows that, to have a boundary Harnack inequality for equa-
tions with a right hand side, we need the Lipschitz constant of the boundary to be sufficiently
small, and also the right hand side to be small compared to the values of the function. It also
shows a trade-off between the maximum possible slope of the boundary and the exponent of
the Lq boundedness of the right hand side.
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On the other hand, it is impossible to have a boundary Harnack for equations with right hand
side in Lipschitz domains with narrow corners, even less in Hölder domains or more general
domains, under the reasonable hypothesis ∆u = f ∈ L∞, with ∥f∥L∞ small.

However, the boundary Harnack holds for divergence form operators in Lipschitz domains
with big Lipschitz constants when the right hand side vanishes as a big enough power of the
distance [3]. It is likely that we could prove the same for non-divergence form operators, but
we will not pursue this because it cannot be used in the context of free boundary problems.

The following example is based in a counterexample to the Hopf lemma for divergence oper-
ators with discontinuous coefficients [155], and shows that the boundary Harnack for equations
with a right hand side fails in this setting.
Proposition 4.6.3. There exists L in divergence form with discontinuous coefficients and
positive functions u, v in {y > 0} ⊂ R2 that vanish continuously at {y = 0} such that

u(1, 1) = v(1, 1) = 1, Lu = 0 in {y > 0} and ∥Lv∥L∞(B+
1 ) < δ,

for any given δ > 0, but
sup
B+

1/2

u

v
= ∞.

In particular, Theorem 4.1.2 fails if the divergence form operator has discontinuous coefficients.
Proof. Let Lu = Div(A(x, y)∇u), with

A(x, y) =
(

1 −6 sgn(x)
−6 sgn(x) 48

)
.

It is easy to check that L is uniformly elliptic and that

u(x, y) = y3 + 18|x|y2 + 72x2y

91
is a solution of Lu = 0. Now we will define v as a perturbation of u, in a similar way as in
Proposition 4.6.1. We will use that the coefficients A(x, y) are constant in the positive quadrant.

Let ψ be a positive smooth function such that
0 ≤ ψ ≤ u, Suppψ ⊂ B1/3(1, 1) and ψ(1, 1) = u(1, 1) = 1.

Define the scalings ψε(x, y) = ε3ψ(x/ε, y/ε). Since u is homogeneous of degree 3, 0 ≤ ψε ≤ u.
Moreover,

Lψε(x, y) = ε(Lψ)
(
x

ε
,
y

ε

)
.

Now, we construct v as the following infinite sum, that converges uniformly.

v := u−
∞∑

k=k0

(1 − 2−k)ψ2−k .

Since the supports of ψ2−k are disjoint, v ≥ 0. On the other hand,

∥Lv∥L∞(B+
1 ) ≤

∞∑
k=k0

∥Lψ2−k∥L∞(B+
1 ) =

∞∑
k=k0

2−k∥Lψ∥L∞(B+
1 ) → 0

as k0 → ∞. Hence, we can choose k0 big enough so that ∥Lv∥L∞(B+
1 ) < δ.

To end, for k ≥ k0,
u(2−k, 2−k)
v(2−k, 2−k) = 2k → ∞,

as wanted.
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4.7 Hopf lemma for non-divergence equations
with right hand side

We now recall the classical Hopf lemma in a very general version for non-divergence elliptic
equations [147].

Theorem 4.7.1. Suppose that Ω satisfies the interior C1,Dini condition at 0 ∈ ∂Ω and u ∈
C(Ω ∩B1) satisfies

M−(D2u) ≤ 0 in Ω ∩B1

in the Ln-viscosity sense with u(0) = 0 and u ≥ 0 in Ω ∩B1.
Then for any l = (l1, . . . , ln) ∈ Rn with |l| = 1 and ln > 0,

u(rl) ≥ clnu(en/2)r, r ∈ (0, δ),

where c > 0 and δ depend only on the dimension, λ, Λ and the modulus of continuity of the
domain.

We can use this result to prove a generalized Hopf lemma for the solutions of non-divergence
equations with small right hand side.

Corollary 4.7.2. Let q > n and L in non-divergence form as in (4.2). There exist small c0 > 0
and L0 > 0 such that the following holds.

Let Ω be a Lipschitz domain as in Definition 4.1.1, with Lipschitz constant L < L0. Suppose
further that ∂Ω is a C1,Dini graph. Let v be a solution of{

Lv = f in Ω ∩B1
v = 0 on ∂Ω ∩B1

in the Ln-viscosity, with v > 0 in Ω ∩B1 and

∥f∥Lq(B1) ≤ c0v(en/2).

Then, for any l = (l1, . . . , ln) ∈ Rn with |l| = 1 and ln > 0,

v(rl) ≥ clnv(en/2)r, r ∈ (0, δ),

where c, c0 and δ are positive and depend only on the dimension, λ, Λ and the modulus of
continuity of the domain.

Proof. Assume v(en/2) = 1 without loss of generality. Let u be a positive solution of the
Dirichlet problem {

Lu = 0 in Ω ∩B1
u = 0 on ∂Ω ∩B1.

After dividing by a constant, u(en/2) ≤ 1.
Now, by Theorem 4.1.2, we have u ≤ Cv in B1/2, hence the estimate of Theorem 4.7.1 for u

is also valid for Cv, and the result follows.
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Chapter 5
Parabolic boundary Harnack inequalities

with right-hand side

We prove the parabolic boundary Harnack inequality in parabolic flat Lipschitz domains by
blow-up techniques, allowing for the first time a non-zero right-hand side. Our method allows
us to treat solutions to equations driven by non-divergence form operators with bounded mea-
surable coefficients, and a right-hand side f ∈ Lq for q > n+2. In the case of the heat equation,
we also show the optimal C1−ε regularity of the quotient.

As a corollary, we obtain a new way to prove that flat Lipschitz free boundaries are C1,α in
the parabolic obstacle problem and in the parabolic Signorini problem.

5.1 Introduction
The well known elliptic boundary Harnack inequality asserts that the rate at which positive
harmonic functions approach zero Dirichlet boundary conditions depends only on the geometry
of the domain. Quantitatively, if u and v are positive harmonic functions in Ω that vanish on
∂Ω, then the quotient u/v is bounded near the boundary. This is also known as the Carleson
estimate.

An important corollary of the boundary Harnack is that u/v is not only bounded, but also
Hölder continuous. In the elliptic case, the C0,α regularity of the quotient follows from the
Carleson estimate by a standard iteration technique (see [47]). However, in the parabolic
setting, the question is much more delicate due to the time delay in the interior Harnack
inequality. The first proof of the Hölder regularity of the quotient for solutions to the heat
equation appeared in [10], two decades after the first proof of the Carleson estimate for caloric
functions [126].

When the domains are C1,Dini or smoother, a combination of the Hopf lemma and the Lips-
chitz regularity of solutions implies that all solutions to elliptic and parabolic equations decay
linearly as they approach zero Dirichlet boundary conditions. However, in less regular domains
where the Hopf lemma and Lipschitz continuity do not hold, the fact that the quotient of
solutions is bounded is far from trivial and needs to be studied separately.

In this work, we provide a new approach to boundary Harnack inequalities with right-hand
side, extending the previous results of Allen and Shahgholian [3], and Ros-Oton and the author
[169] to the parabolic setting. Our proof relies on comparison and scaling arguments, as in
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[169], as well as a blow-up argument inspired by [167]. We will also consider the applications of
our result to free boundary problems, such as the parabolic obstacle problem and the parabolic
Signorini problem. Using the boundary Harnack, we can prove C1,α regularity of free boundaries
when we know they are flat Lipschitz.
Remark 5.1.1. In flat Lipschitz and C1 domains, the boundary Harnack and the boundary
regularity of solutions do not follow from each other. Nevertheless, they are intimately related,
and both can be proved by a contradiction-compactness argument where the Hölder exponent
is determined by a Liouville theorem in the half-space.

In this regard, we will prove that, if u and v are positive harmonic functions with zero
Dirichlet boundary conditions, u/v ∈ C1−ε if the boundary is sufficiently flat, matching the
known regularity up to the boundary of u and v, and the fact that the only harmonic function
with sublinear growth in a half-space and zero Dirichlet boundary conditions is zero.

5.1.1 Main results
In the following, L will denote a non-divergence form elliptic operator with bounded measurable
coefficients,

Lu =
n∑

i,j=1
aij(x)∂2

iju, with λI ≤ A(x) ≤ ΛI, (5.1)

with 0 < λ ≤ Λ.
We denote by α0(λ,Λ) ∈ (0, 1) a universal constant (only dependent on the dimension and

the ellipticity constants), which is defined as the minimum of the following:

• The C1,α0 boundary regularity estimate in [198, Theorem 2.1].

• The interior C0,α0 regularity estimate in [67, Lemma 5.1].

We will define α0(1, 1) := 1 instead if the operator is the Laplacian.
Our main result is the following boundary Harnack inequality, which extends the main result

in [10] to general non-divergence form operators and equations with right-hand side. Here, C0,γ
p

is the parabolic Hölder space defined in Section 5.2.

Theorem 5.1.2. Let q > n + 2, 0 < γ < min{α0, 1 − n+2
q

}, m ∈ (0, 1], and let L be a non-
divergence form operator as in (5.1). There exists c0 ∈ (0, 1), only depending on q, γ, the
dimension and the ellipticity constants, such that the following holds.

Let Ω ⊂ Rn+1 be a parabolic Lipschitz domain in Q1 in the sense of Definition 5.2.2 with
Lipschitz constant L ≤ c0. Let u and v be solutions to{

ut − Lu = f1 in Ω
u = 0 on ∂ΓΩ and

{
vt − Lv = f2 in Ω

v = 0 on ∂ΓΩ,

and assume that ∥u∥L∞(Q1) ≤ 1, ∥v∥L∞(Q1) = 1, v > 0, v
(

en

2 ,−
3
4

)
≥ m, ∥f1∥Lq(Q1) ≤ 1 and

∥f2∥Lq(Q1) ≤ c0m.
Then, ∥∥∥∥uv

∥∥∥∥
C0,γ

p (Ω∩Q1/2)
≤ C,

where C depends only on q, m, γ, the dimension and the ellipticity constants.
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Remark 5.1.3. We will actually prove Theorem 5.1.2 under the more general assumption that
fi = gi + hi with

∥d1−αg1∥L∞(Q1) + ∥d−1/(n+1)−αh1∥Ln+1(Q1) ≤ 1

and
∥d1−αg2∥L∞(Q1) + ∥d−1/(n+1)−αh2∥Ln+1(Q1) ≤ c0m,

where d(x′, xn, t) = xn − Γ(x′, t), and α ∈ (γ,min{α0, 1 − n+2
q

}) (see Proposition 5.10.2). In
this case, C depends also on α.
Remark 5.1.4. The result is sharp in the following sense:

• If the domain is C1, L = ∆ and q = ∞, we may take γ → 1.

• If the Lipschitz constant is not small, the result fails, even for L = ∆ and q = ∞.

• If the norm of the right-hand side is big, the result fails.

• If q = n+ 2, the result fails for any c0 > 0, even for L = ∆.

Counterexamples can be constructed by a straightforward adaptation of [169, Section 6] to the
parabolic setting. See also [3].

Assuming that both solutions are positive and the right-hand sides of the equations are small,
we can use symmetry to deduce the Carleson estimate.

Corollary 5.1.5. Let q > n+ 2, m ∈ (0, 1], and let L be a non-divergence form operator as in
(5.1). There exists c0 ∈ (0, 1), only depending on q, the dimension and the ellipticity constants,
such that the following holds.

Let Ω ⊂ Rn+1 be a parabolic Lipschitz domain in Q1 in the sense of Definition 5.2.2 with
Lipschitz constant L ≤ c0. Let u and v be positive solutions to{

ut − Lu = f1 in Ω
u = 0 on ∂ΓΩ and

{
vt − Lv = f2 in Ω

v = 0 on ∂ΓΩ,

and assume that ∥u∥L∞(Q1) = ∥v∥L∞(Q1) = 1, v
(

en

2 ,−
3
4

)
≥ m, u

(
en

2 ,−
3
4

)
≥ m and ∥fi∥Lq(Q1) ≤

c0m.
Then,

1
C

≤ u

v
≤ C in Ω ∩Q1/2,

where C depends only on q, m, the dimension and the ellipticity constants.

We will also deal with solutions to the heat equation in slit domains, that appear naturally
when studying the parabolic Signorini problem. Our result gives an alternative proof to the
boundary Harnack in [161] when the Lipschitz constant of the domain is small, relaxing the
condition on the right-hand side from L∞ to Lq, and providing the optimal Hölder regularity
of the quotient.

Theorem 5.1.6. Let q > n + 2, 0 < γ < min{1, 3
2 − n+3

q
}, and m ∈ (0, 1]. There exists

c0 ∈ (0, 1
8), only depending on q, γ and the dimension such that the following holds.
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Let Ω ⊂ Rn+2 be a parabolic slit domain in Q1 in the sense of Definition 5.6.1 with Lipschitz
constant L ≤ c0. Let u and v be solutions to{

ut − ∆u = f1 in Ω
u = 0 on ∂ΓΩ and

{
vt − ∆v = f2 in Ω

v = 0 on ∂ΓΩ,

and assume that u and v are even in xn+1, ∥u∥L∞(Q1) ≤ 1, ∥v∥L∞(Q1) = 1, v > 0, v
(

en

2 ,−
3
4

)
≥

m, and that ∥f1∥Lq(Q1) ≤ 1 and ∥f2∥Lq(Q1) ≤ c0m.
Then, ∥∥∥∥uv

∥∥∥∥
C0,γ

p (Ω∩Q1/2)
≤ C,

where C depends only on m, q, γ and the dimension.

Remark 5.1.7. Our method for studying non-divergence form operators relies on constructing
homogeneous barriers. While we can create sub- and supersolutions with near-linear homo-
geneity in almost-flat parabolic Lipschitz domains, this method fails in the case of slit domains
when the operator is not the Laplacian. Specifically, there is a gap between the homogeneity
of sub- and supersolutions, which is expected when the equation is driven by an operator with
coefficients [168, 64]. However, in the case of the Laplacian, we can still construct barriers with
homogeneity close to 1

2 , as shown in Proposition 5.6.3.

5.1.2 Known results
The boundary Harnack is a fundamental tool in the realm of analysis and partial differential
equations that has had significant impact over the past 50 years. While there is a vast array
of literature on this topic and its applications, we have compiled a representative sample of
the most noteworthy advancements, exclusively focusing on elliptic and parabolic equations in
domains less regular than C1,Dini.

Elliptic boundary Harnack

The first proof of the classical case for harmonic functions in Lipschitz domains was given by
Kemper in [125]. Caffarelli, Fabes, Mortola and Salsa considered operators in divergence form
in Lipschitz domains, while the case of operators in non-divergence form was treated by Fabes,
Garofalo, Marin-Malave and Salsa [41, 84]. Jerison and Kenig extended the same result to
NTA domains for divergence form operators [122], and the case of non-divergence operators in
Hölder domains with α > 1/2 was treated with probabilistic techniques in [22] by Bass and
Burdzy. A simple and unified proof of these previous results was recently presented by De Silva
and Savin [73, 74].

The boundary Harnack inequality also holds for solutions to elliptic equations with right-hand
side. Allen and Shahgholian investigated operators in divergence form in Lipschitz domains
with a right-hand side in a weighted L∞ space [3]. In a subsequent work with Kriventsov,
they developed a general theory to derive boundary Harnack inequalities for equations with
right-hand side based on the boundary Harnack for homogeneous equations [2]. Ros-Oton and
the author studied non-divergence and divergence form operators in Lipschitz domains with
small Lipschitz constant and small right-hand side in Lq with q > n [169].
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Parabolic boundary Harnack

The presence of a waiting time in the parabolic interior Harnack inequality exacerbates the
complexity of the parabolic problem, as it renders several approaches to the elliptic setting
inapplicable.

Kemper first established the parabolic boundary Harnack inequality for the heat equation
[126]. Fabes, Garofalo, and Salsa extended it to equations in divergence form in Lipschitz
cylinders [173, 85]. Athanasopoulos, Caffarelli, and Salsa proved the Hölder continuity of
quotients of positive solutions for divergence form operators [10], and Fabes, Safonov, and
Yuan extended this result to non-divergence form equations [86, 87]. Bass and Burdzy used
probabilistic techniques to handle Hölder cylindrical domains [21], while Hoffman, Lewis, and
Nyström treated unbounded parabolically Reifenberg flat domains [117], and Petrosyan and
Shi dealt with Lipschitz slit domains, where they allowed for a L∞ right-hand side in the
equation [161]. Recently, De Silva and Savin developed a unified and simplified approach to
prove the Carleson estimate (but not the C0,α regularity of the quotient) for both divergence
and non-divergence equations in various settings [75].

5.1.3 Parabolic obstacle problems
Boundary Harnack inequalities are a key tool in regularity theory for obstacle problems. They
are used to establish C1,α regularity of free boundaries from Lipschitz regularity, following from
an original idea of Athanasopoulos and Caffarelli [6]. For an introduction to this strategy, see
also [160, Section 6.2] and [97, Section 5.6].

Let us briefly sketch how the technique works. In the elliptic setting, if u is a solution to the
obstacle problem {

∆u = fχ{u>0}
u ≥ 0,

then we call {u = 0} the contact set and ∂{u > 0} the free boundary. The derivatives of u are
solutions of {

∆(∂eu) = ∂ef in {u > 0}
∂eu = 0 on ∂{u > 0},

where e is an unit vector. Then, applying the boundary Harnack to the derivatives of u yields
ui/un ∈ C0,α for every coordinate i, implying that the normal vector to ∂{u > 0} is C0,α and
hence ∂{u > 0} is C1,α.

Previously, this approach was restricted to the case where f was constant because the known
boundary Harnack inequalities applied only to equations without a right-hand side. Conse-
quently, alternative methods such as those found in [23, 4, 12] were used to establish C1 or C1,α

regularity of free boundaries where the direct application of boundary Harnack was not feasible.
However, new boundary inequalities that accommodate a right-hand side have been developed,
enabling simpler proofs and reduced regularity assumptions on the obstacle [3, 169, 2].

In the parabolic obstacle problem with a smooth obstacle, it is well known that the free
boundary is C1,α at the points where it is flat Lipschitz [34, 12]. Consider the parabolic
obstacle problem {

∂tu− ∆u = fχ{u>0}
u ≥ 0. (5.2)
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Then, we have the following improvement of flatness result for the free boundary. We will
state the hypotheses that are typically assumed in regular points as part of the full program to
prove free boundary regularity, but we will present a standalone result that is simpler to state
and prove.

Corollary 5.1.8. There exists a dimensional constant L(n) such that the following holds. Let
u ∈ C1,1

x ∩ C1
t (Q1) be a solution to the parabolic obstacle problem (5.2) with f ∈ W 1,q, where

q > n + 2. Assume that (0, 0) ∈ ∂{u > 0} and that {u > 0} is a parabolic Lipschitz domain
in Q1 in the sense of Definition 5.2.2 with Lipschitz constant L(n). Additionally, assume that
∂nu ≥ cd in {u > 0}, where c > 0 and d is the distance to ∂{u > 0}.

Then, ∂{u > 0} is a C1,α graph in a neighbourhood of (0, 0) for some α > 0.

We will now examine the no-sign parabolic obstacle problem, expressed as:{
∂tu− ∆u = fχ{u̸=0}

u ≥ 0, (5.3)

This problem was first studied in [44] for f ≡ 1. In [4], it was established that f must belong
to CDini to guarantee free boundary regularity, and that the free boundary is C1 with respect
to the parabolic metric at regular points. Furthermore, assuming f ∈ W 1,q with q > n + 2,
we can derive C1,α regularity of the free boundary in space and time at those points using a
similar technique to the proof of Corollary 5.1.8.

Our next example is the fully nonlinear parabolic obstacle problem, which has been studied
in [12]. The problem is expressed as follows:{

∂tu− F (D2u, x) = f(x)χ{u>0} in Q1
u ≥ 0, ut ≥ 0 in Q1,

(5.4)

where we assume that F satisfies the following conditions:

(H1) F is uniformly elliptic and F (0, ·) ≡ 0.

(H2) F is convex and C1 in the first variable.

(H3) F is W 1,q in the second variable for some q > n+ 2.

In [12], it is shown that the free boundary is C∞ at regular points under the assumption that
F and f are smooth. Prior studies of the fully nonlinear parabolic obstacle problem in various
settings have established the C1

p regularity of the free boundary at regular points [106, 120].
We believe that the technique used in [169, Corollary 1.7] for the elliptic case can be adapted
to the parabolic problem to derive C1,α regularity of the free boundary when f ∈ W 1,q with
q > n+ 2.

5.1.4 The parabolic Signorini problem
The parabolic thin obstacle problem, also known as the parabolic Signorini problem, has been
extensively studied in [69]. In Rn+2, it can be formulated as follows, withQ+

1 := Q1∩{xn+1 > 0}:{
∂tu− ∆u = f in Q+

1
u ≥ 0, −∂n+1u ≥ 0, u∂n+1u = 0 on {xn+1 = 0} (5.5)
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After an even extension in the xn+1 variable, solutions to (5.5) also satisfy{
∂tu− ∆u = f in Q1 \ Λ(u)

u = 0 on Λ(u), (5.6)

where Λ(u) ⊂ xn+1 = 0 and u(x′, xn, xn+1, t) = u(x′, xn,−xn+1, t).
Smoothness of the free boundary near regular points has been established in the case where

f is smooth [14]. For obstacles with lower regularity, it has been proven in [162] that ut is
continuous at regular free boundary points, implying that the free boundary is locally a C1,α

graph in both space and time near regular points, under the assumption that f ∈ C2
p .

If f is independent of time, corresponding to a stationary obstacle, the arguments presented
in [162] hold. In this case, it is expected that the condition for the parabolic Lipschitz regularity
of the free boundary, currently established with the assumption that f ∈ C3/2

p in [69], can be
relaxed. On the other hand, once the free boundary is known to be Lipschitz, the weaker
assumption that f ∈ W 1,q for some q > n + 2 is sufficient to deduce that it is C1,α, thanks to
Theorem 5.1.6. In the following result, we assume the nondegeneracy condition that is expected
to hold at regular points, similar to Corollary 5.1.8.

Corollary 5.1.9. There exists a dimensional constant L(n) such that the following holds. Let
u ∈ C3/2

x ∩ C1
t (Q1) be a solution to (5.6) with f ∈ W 1,q, where q > n + 3. Assume that

(0, 0) ∈ ∂{u > 0} and that {u > 0} is a parabolic Lipschitz slit domain in Q1 in the sense
of Definition 5.6.1 with Lipschitz constant L(n). Additionally, assume that ∂nu ≥ cd1/2 in
{u > 0} ∩ {xn+1 = 0}, where c > 0 and d is the distance to ∂{u > 0}.

Then, ∂{u > 0} is a C1,α graph in a neighbourhood of (0, 0) for some α > 0 (in the relative
topology of {xn+1 = 0}).

Determining the optimal regularity for the obstacle to ensure that the free boundary is C1,α

at regular points remains an open problem.

5.1.5 Optimal boundary regularity for the quotient of harmonic func-
tions

We begin by recalling the results for the regularity of harmonic functions in different types of
domains (see [97, Section 2.6] and the references therein). If ∆u = 0 in Ω, then the regularity
of u depends on the regularity of Ω as follows:

• If Ω is a C1,α domain, u ∈ C1,α(Ω).

• If Ω is a C1 domain, u ∈ C1−ε(Ω) for all ε > 0.

• If Ω is a Lipschitz domain with constant L, u ∈ C0,γ(Ω), with γ depending only on the
dimension and L. Moreover, γ ↗ 1 as L ↘ 0.

After flattening the boundary with a change of variables, we obtain another angle to see the
same phenomenon. If Lu = 0 in a half space, where Lu := Div(A(x)∇u) is an elliptic operator
in divergence form,

• If A(x) ∈ C0,α, then u ∈ C1,α by Schauder theory.
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• If A(x) ∈ C0, then u ∈ C1−ε for all ε > 0 by Cordes-Nirenberg.

• If A(x) ∈ L∞, then u ∈ C0,γ for a small γ by De Giorgi. Moreover, γ ↗ 1 as A(x) → I
by Cordes-Nirenberg.

On the other hand, the regularity of the quotient of two harmonic functions with zero Dirichlet
boundary data goes as follows. If ∆u = ∆v = 0 in Ω and u = v = 0 on ∂Ω, then

• If Ω is a C1,α domain, u/v ∈ C1,α(Ω), [71].

• If Ω is a C1 domain, u/v ∈ C1−ε(Ω) for all ε > 0, [140].

• If Ω is a Lipschitz domain with constant L, u/v ∈ C0,γ.

The Hölder exponent in Boundary Harnack inequalities for Lipschitz domains is often sub-
optimal due to its dependence on an iteration scheme. However, our Theorem 5.1.2 provides
a way to bridge the gap between Lipschitz and C1 domains by showing that as the Lipschitz
constant L approaches zero, the exponent γ can approach 1.

Corollary 5.1.10. Let ε > 0. There exists L0 > 0, only depending on the dimension and ε,
such that the following holds.

Let Ω be a Lipschitz domain in B1 in the sense of Definition 5.8.1 with Lipschitz constant
L0. Let u and v be solutions to{

∆u = 0 in Ω
u = 0 on ∂ΓΩ, and

{
∆v = 0 in Ω
v = 0 on ∂ΓΩ.

Then, u/v ∈ C1−ε(B1/2 ∩ Ω).

The proof follows immediately from Theorem 5.1.2.

5.1.6 A general Hopf lemma for parabolic equations with right-hand
side

In this section, we present a Hopf lemma for parabolic equations in parabolic C1,Dini domains.
As far as we know, this is the first result of this kind in the parabolic setting that allows for
equations with right-hand side. While this is a relatively unexplored area in the literature,
similar results have been established previously in the elliptic case [30, 169].

Corollary 5.1.11. Let α ∈ (0, α0), and let L be a non-divergence form operator as in (5.1).
There exists c0 > 0, only depending on α, the dimension, and the ellipticity constants, such
that the following holds.

Let Ω be a parabolic Lipschitz domain in Q1 in the sense of Definition 5.2.2 with Lipschitz
constant L ≤ c0, and assume that it satisfies the interior C1,Dini condition at 0 in the sense of
Definition 5.9.2. Let u be a positive solution to{

ut − Lu = f in Ω
u = 0 on ∂ΓΩ,
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and assume that f = g + h , with

∥d1−αg∥L∞(Q1) + ∥d−1/(n+1)−αh∥Ln+1(Q1) ≤ c0u
(
en

2 ,−
1
2

)
,

where d(x′, xn, t) = xn − Γ(x′, t). Then, for all r ∈ (0, δ),

u(ren, 0) ≥ cr,

for some small c, δ > 0.

Remark 5.1.12. If the boundary of Ω is a C1 graph, one can obtain a Lipschitz constant as
small as necessary by scaling.

5.1.7 Plan of the paper
The paper is organized as follows.

We begin in Section 5.2 by recalling some classical tools that we will use throughout the
paper, such as interior regularity estimates and a Liouville theorem.

In Section 5.3, we derive precise growth estimates near the boundary for solutions of parabolic
equations. This allows us to construct a special solution in Section 5.4 that is almost propor-
tional to the distance to the boundary. Using this special solution, we prove our main result,
Theorem 5.1.2, in Section 5.5. Our proof relies crucially on the growth properties of the special
solution.

In Section 5.6, we apply the same strategy used in Sections 5.3-5.4-5.5 to slit domains and
prove Theorem 5.1.6. Furthermore, in Section 5.7, we prove our free boundary regularity results,
Corollaries 5.1.8 and 5.1.9.

In Section 5.8, we explain how to apply the ideas of the paper to elliptic equations, leading
to the elliptic version of our main theorem, Theorem 5.8.4. Finally, in Section 5.9, we prove
Corollary 5.1.11.

5.2 Preliminaries

5.2.1 Setting
Throughout the paper, given x ∈ Rn, we will denote x′ = (x1, . . . , xn−1). Br(x) will denote the
ball of radius r of Rn, centered at x, and B′

r(x′) will be the one of Rn−1, with center at x′. We
also introduce the parabolic cylinders

Qr(x, t) := B′
r(x′) × (xn − r, xn + r) × (t− r2, t) ⊂ Rn+1,

and we will write Qr := Qr(0, 0).
We define the parabolic Lipschitz (α = 1) and Hölder (α ∈ (0, 1)) seminorms of a function

g : Ω ⊂ Rn × R → R as follows:

[g]C0,α
p (Ω) = sup |g(x, t) − g(y, s)|

(|x− y| + |t− s|1/2)α
,
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where the supremum is taken over all pairs of different points (x, t) ̸= (y, s) in Ω, and we define
correspondingly the parabolic Lipschitz and Hölder norms

∥g∥C0,α
p (Ω) := ∥g∥L∞(Ω) + [g]C0,α

p (Ω).

We will omit the domain where there is no case for confusion.
We will denote by

M−(D2u) := inf
λI≤A≤ΛI

Tr(AD2u), M+(D2u) := sup
λI≤A≤ΛI

Tr(AD2u)

the Pucci extremal operators; see [37] or [97] for their properties.
In our work, we will consider the following notion of solutions.

Definition 5.2.1. Let f ∈ Ln+1
loc . We say u ∈ C0 ∩ Ln+1

loc is a strong solution to

ut − Lu = f

if D2
xu, ∂tu ∈ Ln+1

loc , and the equation holds almost everywhere. The condition u ∈ C0 is
redundant, but we write it to fix ideas, see [24, Theorem 10.4].

We will consider parabolic Lipschitz domains of the following form.

Definition 5.2.2. We say Ω is a parabolic Lipschitz domain in QR with Lipschitz constant L
if Ω is the epigraph of a parabolic Lipschitz function Γ : B′

R × [−R2, 0] → R, with Γ(0, 0) = 0:

Ω =
{
(x, t) ∈ QR | xn > Γ(x′, t)

}
, ∥Γ∥C0,1

p
≤ L.

In this context, we will denote the lateral boundary

∂ΓΩ :=
{
(x, t) ∈ QR | xn = Γ(x′, t)

}
,

and the parabolic boundary

∂pΩ := ∂ΓΩ ∪
(
Ω ∩ ∂QR ∩ {t < 0}

)
.

5.2.2 Technical tools
Let us start with the parabolic interior Harnack.

Theorem 5.2.3 ([197, Theorem 4.18]). Let L be a non-divergence form operator as in (5.1),
and let u be a strong solution to ut − Lu = 0 in Qr, with u ≥ 0.

Then,
sup

Qr/2(0,− r
2)
u ≤ C inf

Qr/2
u,

where C depends only on the dimension and the ellipticity constants.

Then, we recall the Alexandrov-Bakelman-Pucci-Krylov-Tso estimate; see [138, 195].
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Theorem 5.2.4. Let L be a non-divergence form operator as in (5.1) and let u be a strong
solution to ut − Lu = f in Qr, with f ∈ Ln+1(Qr).

Then,
sup
Qr

u ≤ sup
∂pQr

u+ + Crn/(n+1)∥f∥Ln+1(Qr),

where C depends only on the dimension and the ellipticity constants.

We will state together the interior regularity estimates for the heat equation and for equations
with bounded measurable coefficients.
Theorem 5.2.5. Let L be a non-divergence form operator as in (5.1), let α ∈ (0, α0), and let
u be a strong solution to ut − Lu = f in Qr, with f ∈ Ln+1(Qr).

Then,
[u]C0,α

p (Qr/2) ≤ C(r−α∥u∥L∞(Qr) + rn/(n+1)−α∥f∥Ln+1(Qr)),
where C depends only on α, the dimension and the ellipticity constants.

Proof. Let us write the proof for r = 1, as the dependence on r follows by scaling.
First, when L is the Laplacian, we apply the Calderón-Zygmund estimates in [199, Theorem

6] to obtain:

∥D2u∥Ln+1(Q1/2) + ∥ut∥Ln+1(Q1/2) ≤ C(∥u∥L∞(Q1) + ∥f∥Ln+1(Q1)).

The conclusion follows via the parabolic Sobolev embedding in [201, Theorem 1.4.1 (ii)].
In the case of operators with coefficients, this result is [67, Lemma 5.1].1

We also need the following covering result (cf. [140, Lemma B.2]).
Lemma 5.2.6. Let α ∈ (0, 1), and let Ω be a parabolic Lipschitz domain in Q1 with Lipschitz
constant 1

8 , in the sense of Definition 5.2.2.
Assume that u : Ω ∩Q1 → R satisfies

[u]C0,α
p (Qr(x0,t0)) ≤ C0

whenever Q2r(x0, t0) ⊂ Ω ∩Q1. Then, for any 0 < σ < 1,

[u]C0,α
p (Ω∩Qσ) ≤ CC0.

The constant C depends only on α and σ.

The proof follows by a standard covering argument (see [97, Appendix A]). In addition,
the following convergence result for limits of solutions will be useful to make contradiction-
compactness arguments.
Proposition 5.2.7 ([67, Theorem 6.1]). Let fk ∈ Ln+1(Ω) and let uk be solutions to

(∂t − M+)uk ≤ fk ≤ (∂t − M−)uk in Ω,

such that uk → u0 locally uniformly, and that for every K ⊂⊂ Ω, ∥fk∥Ln+1(K) → 0.
Then,

(∂t − M+)u0 ≤ 0 ≤ (∂t − M−)u0

in the viscosity sense.
1The result is actually stated for Lp-viscosity solutions, but it automatically extends to strong solutions. See

the introduction of [67].
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Finally, a key step in our proofs is to classify certain solutions in special domains. We will do
so with the following Liouville theorem for the half-space, that follows from standard arguments
from the boundary regularity estimate [198, Theorem 2.1].

Theorem 5.2.8. Let L be a non-divergence form operator as in (5.1), let α ∈ (0, α0) and let
u be a solution to {

(∂t − M+)u ≤ 0 ≤ (∂t − M−)u in {xn > 0}
u = 0 in {xn ≤ 0}

with the growth condition

∥u∥L∞(QR) ≤ C(1 +R1+α), ∀R ≥ 1.

Then, u = k(xn)+ for some k ∈ R.

Proof. First, observe that, for every r ≥ 1,

ur(x, t) := u(rx, r2t)
r1+α

also satisfies the hypotheses.
Now, from [198, Theorem 2.1] and interior regularity estimates (in the case of the heat

equation, by C2 boundary regularity estimates) it follows that

[u]C1,α0 (Qr) = rα−α0 [ur]C1,α0 (Q1) ≤ Crα−α0∥ur∥L∞(Q2) ≤ Crα−α0 ,

and then letting r → ∞ we deduce that

[u]C1,α0 (Rn+1) = 0,

and therefore u is a linear function. From the boundary conditions, we deduce that u =
k(xn)+.

5.3 Boundary growth and regularity estimates
The main goal of this section is to prove that for sufficiently flat domains, solutions that vanish
on the boundary of the domain grow like d1±ε and are C0,γ

p .

Proposition 5.3.1. Let γ ∈ (0, α0). There exists L0 > 0, depending only on γ, the dimension
and the ellipticity constants, such that the following holds.

Let Ω be a parabolic Lipschitz domain in Q1 as in Definition 5.2.2 with Lipschitz constant
L ≤ L0. Let d(x′, xn, t) = xn − Γ(x′, t), and let u ∈ C(Q1) be a viscosity solution to

ut − M−u ≥ −K0(dγ−2 + f) and ut − M+u ≤ K0(dγ−2 + f) in Ω ∩Q1,

u = 0 in ∂ΓΩ ∩Q1.

Assume that ∥d−(γ−n/(n+1))+f∥Ln+1(Q1) ≤ 1. Then,

∥u∥C0,γ
p (Q1/2) ≤ C(∥u∥L∞(Q1) +K0).

The constant C depends only on n, γ and the ellipticity constants.
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We start by introducing the regularized distance [148, 149], a technical tool that will be
useful to construct barriers.

Lemma 5.3.2. Let Ω be a parabolic Lipschitz domain with Lipschitz constant L ≤ 1, in the
sense of Definition 5.2.2. Then, there exists a function d : Ω∩Q1 → R satisfying the following:

1
2(xn − Γ(x′, t)) ≤ d ≤ 3

2(xn − Γ(x′, t))
2
3 ≤ |∇xd| ≤ C1

|∂td| + |D2
xd| ≤ C2Ld

−1,

where C1 and C2 depend only on the dimension.

We will sketch the proof in Appendix 5.10.
As a direct consequence, we obtain the following scaling property.

Lemma 5.3.3. Let Ω be a parabolic Lipschitz domain in QR, in the sense of Definition 5.2.2.
Let r ∈ (0, 1) and let

Ω̃ := {(x, t) ∈ QR | (rx, r2t) ∈ Ω}.

Let d and d̃ be the regularized distances in Ω and Ω̃, respectively. Then,

1
3 d̃(x, t) ≤ 1

r
d(rx, r2t) ≤ 3d̃(x, t).

Proof. It follows from Lemma 5.3.2.

The following barriers are constructed in a very similar way to [140, Lemmas 3.2 and 3.3].
We start with a supersolution.

Lemma 5.3.4. Let ε ∈ (0, 1). There exist sufficiently small η > 0 and sufficiently large K > 0,
only depending on the dimension, ε and the ellipticity constants, such that the following holds.

Let u be a solution to 
ut − M+u ≤ ηd−1−ε in Ω

u ≤ 1 on ∂pΩ
u ≤ 0 on ∂ΓΩ,

where Ω is a parabolic Lipschitz domain in Q1 in the sense of Definition 5.2.2 with Lipschitz
constant η. Then,

u ≤ Kd1−ε − t+ |x′|2 in Ω,
where d is the regularized distance introduced in Lemma 5.3.2, and

u(ren, 0) ≤ Kr1−ε, ∀r ∈ (0, 1).

Proof. We will use the comparison principle with a supersolution that has the desired growth.
Let

φ = Kd1−ε − t+ |x′|2,

where d is the regularized distance introduced in Lemma 5.3.2, and K > 0 is a large constant
to be chosen later.
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Notice that φ ≥ 0 on ∂ΓΩ, and that φ ≥ 1 on {t = −1} and {|x′| = 1}. We can also check

φ ≥ K

(
xn − Γ(x′, t)

2

)1−ε

− t+ |x′|2 > K(1 − 2η)
2 ≥ 1 on {xn = 1} ∩ Ω.

On the other hand, using the estimates in Lemma 5.3.2,

(∂t − M+)d1−ε = (1 − ε)d−ε∂td− sup
λI≤A≤ΛI

Tr(AD2
xd

1−ε)

= (1 − ε)
d−ε∂td− sup

λI≤A≤ΛI

 n∑
i=1

n∑
j=1

aij(d−ε∂2
ijd− εd−1−ε∂id∂jd)


= (1 − ε)d−ε(∂t − M+)d+ ε(1 − ε)d−1−ε inf

λI≤A≤ΛI
∇xd

⊤A∇xd

≥ (1 − ε)
(

−Cη + 4λε
9

)
d−1−ε,

where we omitted the dependence of A and aij on x for formatting. Then,

(∂t − M+)φ ≥ K(1 − ε)
(

−Cη + 4λε
9

)
d−1−ε − 1 − 2(n− 1)Λ ≥ ηd−1−ε,

where we chose η small, K large, and used that d < 3
2 .

Therefore, applying the comparison principle to u and φ, we obtain that u ≤ φ in Ω, and in
particular

u(ren, 0) ≤ φ(ren, 0) = Kd(ren, 0)1−ε ≤ K ′r1−ε.

Analogously, we can consider a subsolution.

Lemma 5.3.5. Let ε ∈ (0, 1). There exist sufficiently small η, k, r0 > 0, only depending on the
dimension, ε and the ellipticity constants, such that the following holds.

Let u ≥ 0 be a solution to{
ut − M−u ≥ −ηdε−1 in Ω

u ≥ 1 on ∂upΩ

where Ω is a parabolic Lipschitz domain in Q1 in the sense of Definition 5.2.2 with Lipschitz
constant η, and

∂upΩ := {xn = 1} ∩ Ω

is the top part of the boundary. Then,

u ≥ kd1+ε + t− |x′|2 in Ω ∩Qr0 ,

where d is the regularized distance introduced in Lemma 5.3.2, and

u(ren, 0) ≥ kr1+ε, ∀r ∈ (0, 1).
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Proof. First, let

Ω(1) :=
{

(x, t) ∈ Ω : |x′| < 1
2 , xn < r0,−

1
2 < t

}
,

Ω(2) :=
{

(x, t) ∈ Ω : |x′| < 1
2 , xn > r0,−

1
2 < t

}
,

and
Ω(3) := Q1 \

{
xn ≤ r0

2

}
,

with r0 ∈ (0, 1) to be chosen later. Let also

∂upΩ(1) := {xn = r0} ∩ Ω(1).

Now, let v be the solution to
vt − M−v = 0 in Ω(3)

v = 1 on ∂upΩ
v = 0 in ∂pΩ(3) \ ∂upΩ.

By the strong maximum principle, min
Ω(2)

v ≥ 2c0 > 0. On the other hand, by the comparison
principle,

w := u+ 2ηrε−1
0 (t+ 1) ≥ v,

because w ≥ u on ∂pΩ(3) and

(∂t − M−)w = (∂t − M−)u+ 2ηrε−1
0 ≥ η(−dε−1 + 2rε−1

0 ) ≥ 0.

Hence, noting that ∂upΩ(1) ⊂ Ω(2),

min
∂upΩ(1)

u ≥ min
Ω(2)

v − 2rε−1
0 η ≥ c0 > 0,

and min
r∈[r0,1]

u(ren, 0) ≥ c0 as well, choosing η small enough.
Now, let

φ(x, t) = kd1+ε + t− |x′|2,

where d is the regularized distance introduced in Lemma 5.3.2, for the domain Ω (that coincides
with the regularized distance for the domain Ω(1) because the two domains lie above the same
graph), and k = min{c0/(4r0), 1/32}.

Then, φ ≤ u on the parabolic boundary of Ω(1). Indeed, since d ≤ 2r0 on ∂upΩ(1), φ < c0 on
∂upΩ(1). When t = −1/2, since d ≤ 2,

φ ≤ 1
32d

1+ε − 1
2 ≤ 1

8 − 1
2 < 0,

and if |x′| = 1/2,
φ ≤ 1

8 − 1
4 < 0.

Finally, φ ≤ 0 on ∂ΓΩ.
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Hence, by an analogous computation to the proof of Lemma 5.3.4, we obtain

φt − M−φ ≤ (1 + ε)k
(
Cη − 4λε

9

)
dε−1 + 1 + 2(n− 1)Λ ≤ −ηdε−1,

using that η and d < 2r0 can be chosen arbitrarily small.
Therefore, applying the comparison principle to u and φ, we obtain that u ≥ φ in Ω(1), and

in particular in Ω ∩Qr0 , and also that for all r ∈ (0, r0)

u(ren, 0) ≥ kd1+ε ≥ k′r1+ε.

On the other hand, if r > r0, we can use directly that u(ren, 0) ≥ c0.

The growth upper bound still holds when we consider a (small) right-hand side in Ln+1,
thanks to Theorem 5.2.4.

Lemma 5.3.6. Let ε ∈ (0, 1). There exist sufficiently small η > 0 and sufficiently large K > 0,
only depending on the dimension, ε, and the ellipticity constants, such that the following holds.

Let d(x′, xn, t) = xn − Γ(x′, t), and let u be a solution to
ut − M+u ≤ ηd−1−ε + f in Ω

u ≤ 1 on ∂pΩ
u ≤ 0 on ∂ΓΩ

where ∥d−(1/(n+1)−ε)+f∥Ln+1(Ω) ≤ η, and Ω is a parabolic Lipschitz domain in Q1 in the sense
of Definition 5.2.2 with Lipschitz constant η. Then,

u(ren, 0) ≤ Kr1−ε, ∀r ∈ (0, 1).

Remark 5.3.7. Thanks to Lemma 5.3.2, we can interchange the regularized distance with xn −
Γ(x′, t) up to a constant. We will do so in the following.

Proof. We will iterate Lemma 5.3.4 combined with Theorem 5.2.4. We define the rescaled
functions

uj(x, t) := u(ρjx, ρ2jt)
ρj(1−ε) ,

with ρ > 0 to be chosen later.
Now,

(∂t − M+)uj ≤ ρj(1+ε)(η(ρjd)−1−ε + f̃j) ≤ ηd−1−ε + ρj(1+ε)f̃j,

with f̃j(x, t) := f(ρjx, ρ2jt).
Let aj := ∥uj∥L∞(Ω̃). By Lemma 5.3.4 and Theorem 5.2.4, a0 ≤ C0. We will show by

induction that aj ≤ C0 for all j ≥ 0.
Again by Lemma 5.3.4 (with ε/2) and Theorem 5.2.4 applied to uj,

aj+1ρ
1−ε ≤ Kρ1−ε/2aj + 2ρ2aj + Cρj(1+ε)∥f̃j∥Ln+1(Ω̃)

≤ Kρ1−ε/2C0 + 2ρ2C0 + Cρj(ε−1/(n+1))∥f∥Ln+1(ρjΩ)

≤ ρ1−εC0/2 + 2ρ2C0 + C∥d−(1/(n+1)−ε)+f∥Ln+1(Ω) ≤ ρ1−εC0,

choosing adequately small ρ and η.
The conclusion follows by observing that given r ∈ (0, 1), for all j such that ρj ≥ r, u(ren, 0) ≤

ajρ
j(1−ε), and hence u(ren, 0) ≤ C0(r/ρ)1−ε.
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Conversely, we can also add a more general right-hand side to the equation for the subsolution.

Lemma 5.3.8. Let ε ∈ (0, 1). There exist sufficiently small η, k > 0, only depending on the
dimension, ε, and the ellipticity constants, such that the following holds.

Let d(x′, xn, t) = xn − Γ(x′, t), and let u ≥ 0 be a solution to{
ut − M−u ≥ −ηdε−1 + f in Ω

u ≥ 1 on ∂upΩ

where ∥d−ε−1/(n+1)f∥Ln+1(Ω) ≤ η, and Ω and ∂upΩ are defined as in Lemma 5.3.5. Then,

u(ren, 0) ≥ kr1+ε, ∀r ∈ (0, 1).

Proof. We will use a similar strategy to the proof of Lemma 5.3.6. We define the rescaled
functions

uj(x, t) := u(ρjx, ρ2jt)
ρj(1+ε) ,

with ρ > 0 to be chosen later.
Now,

(∂t − M−)uj ≥ ρj(1−ε)(−η(ρjd)−1+ε + f̃j) ≥ −ηd−1+ε + ρj(1−ε)f̃j,

with f̃j(x, t) := f(ρjx, ρ2jt).
Let aj := inf

∂upΩ
uj. By hypothesis, a0 = 1. We will show by induction that aj ≥ 1 for all j ≥ 0.

Again by Lemma 5.3.5 (with ε/2) and Theorem 5.2.4, applied to uj,

aj+1ρ
1+ε ≥ kρ1+ε/2aj − 2ρ2 − Cρj(1−ε)∥f̃j∥Ln+1(Ω̃)

≥ kρ1+ε/2 − 2ρ2 − Cρ−j(ε+1/(n+1))∥f∥Ln+1(ρjΩ)

≥ 2ρ1+ε − 2ρ2 − C∥d−ε−1/(n+1)f∥Ln+1(Ω) ≥ ρ1+ε,

choosing adequately small ρ and η.
Finally, by Lemma 5.3.5 and Theorem 5.2.4,

uj(ren, 0) ≥ kaj − Cη ≥ k′ > 0,

for all r ∈ (ρ, 1), provided that η is small enough. Hence, undoing the scaling, u(ren, 0) ≥ k′r1+ε,
as we wanted to prove.

Combining the previous estimates, we can now give the following.

Proposition 5.3.9. Let ε ∈ (0, 1) and let L be a non-divergence form operator as in (5.1).
There exists sufficiently small η > 0, only depending on the dimension, ε and the ellipticity
constants, such that the following holds.

Let Ω be a parabolic Lipschitz domain in Q1 with Lipschitz constant η in the sense of Defi-
nition 5.2.2. Let d(x′, xn, t) = xn − Γ(x′, t), and let u be a solution to{

ut − Lu = f in Ω,
u = 0 on ∂ΓΩ.
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Assume that ∥u∥L∞(Q1) ≤ 1, and f = g + h, with

∥dε+1g∥L∞(Q1) + ∥d−(1/(n+1)−ε)+h∥Ln+1(Q1) ≤ η.

Then,
|u| ≤ Cd1−ε in Ω ∩Q3/4.

Moreover, if u is nonnegative, m = u
(

en

2 ,−
3
4

)
> 0 and

∥d−ε+1g∥L∞(Q1) + ∥d−ε−1/(n+1)h∥Ln+1(Q1) ≤ ηm,

then,
u ≥ cmd1+ε in Ω ∩Q3/4.

The constants C and c are positive and depend only on the dimension, ε, and the ellipticity
constants.

Proof. For the first estimate, let (x0, t0) ∈ ∂ΓΩ ∩Q3/4, and consider the function

v(x, t) := u
(
x0 + 1

4x, t0 + 1
16t

)
.

Then, by Lemma 5.3.6, v(ren, 0) ≤ Kr1−ε for all r ∈ (0, 1). Since d is comparable to
xn − Γ(x′, t), it follows that u ≤ Cd1−ε in Ω ∩Q3/4 ∩ {xn < 1/4}.

Finally, notice that

d ≥ 1
2(xn − Γ(x′, t)) ≥ 1

2

(1
4 − 2η

)
>

1
9 in Ω ∩ {xn ≥ 1/4},

and the conclusion follows adjusting C if necessary.
For the second estimate, let Ω(x0, t0) := Ω ∩Q1/8(x0, t0) and notice that⋃

(x0,t0)∈∂ΓΩ∩Q3/4

∂upΩ(x0, t0) ⊂ E := B′
7/8 × [1/8 − 2η, 1/8 + 2η] × [−37/64, 0],

where ∂upΩ(x0, t0) := Ω(x0, t0) ∩ {xn = x0,n + 1/8}, analogously to Lemma 5.3.5.
Then, by the interior Harnack (Theorem 5.2.3), u ≥ c1m in E, and by an analogous reasoning

to the upper bound with Lemma 5.3.8 instead of Lemma 5.3.6, the conclusion follows.

We are finally able to prove our C0,γ boundary regularity result.

Proof of Proposition 5.3.1. We may assume that ∥u∥L∞(Q1) ≤ 1 and K0 = η (with η from
Proposition 5.3.9) without loss of generality after dividing by a constant. Then, by Proposition
5.3.9 and Lemma 5.3.2,

|u| ≤ K((xn − Γ(x′, t))γ in Ω ∩Q3/4.

Then, we will use interior estimates in combination with Lemma 5.2.6 to deduce the result.
Let p = (y′, yn, s) and ρ ∈ (0, 1

16) such that Q2ρ(p) ⊂ Ω ∩Q5/8, and let

R := max
{
ρ,
yn − Γ(y′, s)

3

}
.
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Note that Q2R(p) ⊂ Ω. We distinguish two cases:
Case 1. R ≥ 1

16 . Then, Q1/8(p) ⊂ Ω ∩Q3/4, and for all (x′, xn, t) ∈ Q1/8(p),

xn ≥ Γ(x′, t) + R

2 ≥ Γ(x′, t) + 1
32 .

Hence,

ut − M−u ≥ −dγ−2 + f ≥ −212 + f,

ut − M+u ≤ dγ−2 + f ≤ 212 + f,

which together with the fact that ∥u∥L∞(Q1) ≤ 1, Theorem 5.2.5, and a covering argument,
gives

[u]C0,γ
p (Qρ(p)) ≤ [u]C0,γ

p (Q1/16(p)) ≤ C.

Case 2. R < 1
16 . Notice that if ρ < R, yn − Γ(y′, s) = 3R, and if ρ = R, using that

Q2ρ(p) ⊂ Ω, yn − Γ(y′, s) ≥ 2ρ = 2R. In either case,

2R ≤ yn − Γ(y′, s) ≤ 3R.

Now, for all (x′, xn, t) ∈ Q3R/2(p),

xn − Γ(x′, t) ≥ yn − Γ(y′, s) − 3
2R − |Γ(x′, t) − Γ(y′, s)| ≥ R

4 ,

xn − Γ(x′, t) ≤ yn − Γ(y′, s) + 3
2R + |Γ(x′, t) − Γ(y′, s)| ≤ 5R

using the parabolic Lipschitz character of Γ and that L0 ≤ 1
8 .

Therefore,

ut − M−u ≥ −CRγ−2 + f,

ut − M+u ≤ CRγ−2 + f,

and ∥u∥L∞(Q3R/2) ≤ K(5R)γ, which combined with Theorem 5.2.5 gives

[u]C0,γ
p (QR(p)) ≲ R−γ(5R)γ +Rn/(n+1)−γ∥Rγ−2 + f∥Ln+1(Q3R/2(p))

≲ 1 +Rn/(n+1)−γ|Q3R/2|1/(n+1)Rγ−2 +Rn/(n+1)−γ∥f∥Ln+1(Q3R/2(p))

≲ 1 + 1 + ∥d−(γ−n/(n+1))+f∥Ln+1(Q3R/2(p)) ≲ 1.

The conclusion follows by Lemma 5.2.6.

5.4 The near-linear solution
Our goal now is to find a special solution satisfying the following.

Proposition 5.4.1. Let ε ∈ (0, α0), and let L be a non-divergence form operator as in (5.1).
Then, there exists δ > 0, only depending on ε, the dimension and the ellipticity constants, such
that the following holds.
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Let Ω be a parabolic Lipschitz domain in Q1 in the sense of Definition 5.2.2 with Lipschitz
constant δ, and let d(x′, xn, t) = xn − Γ(x′, t). Then, there exists φ : Ω → R such that{

φt − Lφ = 0 in Ω
φ = 0 on ∂ΓΩ,

φ ≥ 0, ∥φ∥L∞(Q1) = 1,
1
24d

1+ε ≤ φ ≤ 64d1−ε,

and for all 0 < r1 < r2 ≤ 1,
sup
Qr1

φ

sup
Qr2

φ
≥ 1

8

(
r1

r2

)1+ε

.

We start by constructing solutions with a controlled growth.

Lemma 5.4.2. Let ε ∈ (0, 1), and let L be a non-divergence form operator as in (5.1). There
exists δ1 ∈ (0, ε), only depending on the dimension, ε and the ellipticity constants, such that
the following holds.

Let R = 21/ε, let Ω be a parabolic Lipschitz domain in QR in the sense of Definition 5.2.2
with Lipschitz constant δ1, and let d = xn − Γ(x′, t). Then, there exists φ : Ω → R such that{

φt − Lφ = 0 in Ω
φ = 0 on ∂ΓΩ,

φ ≥ 0, ∥φ∥L∞(Q1) = 1, and
1
24d

1+ε ≤ φ ≤ 64d1−ε in QR.

In particular, ∥φ∥L∞(Qr) ≤ 128r1−ε for all r ∈ [1, R].

Proof. First, by the same computations in Lemmas 5.3.4 and 5.3.5,

(∂t − L)d1−ε ≥ (1 − ε)d−1−ε(−Cδ1 + C ′ε) ≥ 0
(∂t − L)d1+ε ≤ (1 + ε)d−1+ε(Cδ1 − C ′ε) ≤ 0,

provided that δ1 is small enough. Assume without loss of generality that δ1 ∈ (0, 1/6). Then,
since

d(x, t) ≤ 3
2(xn − Γ(x′, t)) ≤ 3

2(R + 2δ1R) ≤ 2R,

it follows that
d1+ε ≤ (2R)εd ≤ (2R)2εd1−ε.

Now, let φ̃ be the solution to{
φ̃t − Lφ̃ = 0 in Ω

φ̃ = (2R)εd on ∂pΩ.

By the comparison principle, it follows that

d1+ε ≤ φ̃ ≤ (2R)2εd1−ε.
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Then, by Lemma 5.3.2,

∥φ̃∥L∞(Q1) ≤ (2R)2ε∥d1−ε∥L∞(Q1) ≤ 4R2ε 3
2 = 24,

∥φ̃∥L∞(Q1) ≥ ∥d1+ε∥L∞(Q1) ≥ 1
4 .

Let now

φ := φ̃

∥φ̃∥L∞(Q1)
.

The first conclusion follows from the previous estimate. For the second one, notice that for
r ≥ 1,

∥φ∥L∞(Qr) ≤ 64∥d1−ε∥L∞(Qr) ≤ 64
(3

2r(1 + 2δ1)
)1−ε

≤ 128r1−ε.

This special solutions satisfy the following estimate.

Lemma 5.4.3. Let ε ∈ (0, α0) and let L be a non-divergence form operator as in (5.1). There
exists an integer n0 > 1/ε, only depending on ε, the dimension and the ellipticity constants,
such that the following holds.

Let R0 = 2n0, let Ω be a parabolic Lipschitz domain in QR0 in the sense of Definition 5.2.2
with Lipschitz constant 1/n0, and let d = xn − Γ(x′, t). Let φ : Ω → R satisfy the following
properties: 

φt − Lφ = 0 in Ω
φ = 0 on ∂ΓΩ
φ ≥ 0

∥φ∥L∞(Q2k ) ≤ 128 · 2k(1+1/n0+ε) ∀ k ∈ {0, . . . , n0}
∥φ∥L∞(Q1) = 1

Then,

sup
Q1/2

φ ≥
(1

2

)1+1/n0+ε

.

Proof. Let us proceed by contradiction: assume there does not exist n0 satisfying the conclusion.
Then, by Lemma 5.4.2 with ε = 1/n0, there exist nk ↑ ∞, Lk non-divergence form operators,
Ωk parabolic Lipschitz domains in QRk

(with Lipschitz constant 1/nk and Rk = 2nk), and
φk : Ωk → R such that

(∂t − Lk)φk = 0 in Ωk

φk = 0 on ∂ΓΩk

φk ≥ 0
∥φk∥L∞(Q2k ) ≤ 128 · 2k(1+1/nk+ε) ∀ k ∈ {0, . . . , nk}
∥φk∥L∞(Q1) = 1

while also satisfying

sup
Q1/2

φk <
(1

2

)1+1/nk+ε

.
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Then, by Proposition 5.3.1, for all r ≥ 1

∥φk∥C0,α
p (Qr) ≤ C(r),

for sufficiently large k, and therefore by Arzelà-Ascoli φk → φ0 locally uniformly, up to a
subsequence.

Therefore, by Proposition 5.2.7, φ0 is a viscosity solution to

(∂t − M+)φ0 ≤ 0 ≤ (∂t − M−)φ0 in {xn > 0}

with φ0 = 0 on {xn = 0}, φ0 ≥ 0, ∥φ0∥L∞(Q1) = 1, and the growth control ∥φ0∥L∞(Q2k ) ≤
128 · 2k(1+ε) for all k ∈ N.

Hence, by Theorem 5.2.8, φ0 = (xn)+, contradicting the fact that

1
2 = sup

Q1/2

φ0 ≤ lim sup
k→∞

sup
Q1/2

φk ≤ lim
k→∞

(1
2

)1+1/nk+ε

= 1
21+ε

<
1
2 .

The next step is to iterate the inequality to obtain the following.

Lemma 5.4.4. Under the hypotheses of Lemma 5.4.3, for all 0 < r1 < r2 ≤ 1,
sup
Qr1

φ

sup
Qr2

φ
≥ 1

8

(
r1

r2

)1+1/n0+ε

.

Proof. Assume without loss of generality that ε ∈ (0, 1
2). Let us first prove by induction that

sup
Q2−k

φ ≥ 2−k(1+ε+1/n0).

It suffices to prove that the function

φ̄(x, t) := φ(x/2, t/4)
sup
Q1/2

φ

also satisfies the hypotheses of Lemma 5.4.3, and then the argument can be iterated. By
construction, (∂t − L̄)φ̄ = 0 in Q2R0 , φ̄ ≥ 0 and ∥φ̄∥L∞(Q1) = 1. Additionally, by Lemma 5.4.3,
for all k ∈ {1, . . . , n0 + 1},

sup
Q2k

φ̄ =
sup

Q2k−1

φ

sup
Q1/2

φ
≤ 128 · 2(k−1)(1+1/n0+ε) · 21+1/n0+ε = 128 · 2k(1+1/n0+ε).

On the other hand, the reasoning with φ̄ implies that for any k ∈ N,

φ̃(x, t) := φ(x/2k, t/4k)
sup
Q2−k

φ
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also satisfies the hypotheses of Lemma 5.4.3, and hence, by the first part of the proof

sup
2−k−m

φ

sup
2−k

φ
= sup

Q2−m

φ̃ ≥ 2−m(1+ε+1/n0).

Now, choose k and m in such a way that 2−k−m ≤ r1 < 2−k−m+1 and 2−k−1 < r2 ≤ 2−k.
Then,

sup
Qr1

φ

sup
Qr2

φ
≥

sup
2−k−m

φ

sup
2−k

φ
≥ 2−m(1+ε+1/n0) >

(
r1

4r2

)1+ε+1/n0

>
1
8

(
r1

r2

)1+ε+1/n0

.

Finally we can combine Lemma 5.4.2 with Lemma 5.4.4 to prove our target result.

Proof of Proposition 5.4.1. Choose n0 from Lemma 5.4.3 with ε/2 instead of ε. Then, the
function introduced in Lemma 5.4.2 with ε = 1/n0 satisfies the hypotheses of Lemma 5.4.3,
and the conclusion follows by Lemma 5.4.4 (with ε/2 instead of ε).

5.5 Proof of the boundary Harnack
The main ingredient in the proof of the boundary Harnack is the following expansion result.

Proposition 5.5.1. Let α ∈ (0, α0), and let L be a non-divergence form operator as in (5.1).
There exists ε0 ∈ (0, 1), only depending on α, the dimension and the ellipticity constants, such
that the following holds.

Let Ω be a parabolic Lipschitz domain in Q1 in the sense of Definition 5.2.2 with Lipschitz
constant ε0. Let d(x′, xn, t) = xn − Γ(x′, t), and let u be a solution to{

ut − Lu = f in Ω
u = 0 on ∂ΓΩ,

and assume that ∥u∥L∞(Q1) ≤ 1, and that f = g + h with

∥d1−αg∥L∞(Q1) + ∥d−1/(n+1)−αh∥Ln+1(Q1) ≤ 1.

Then, for each r ∈ (0, 1] there exists Kr ∈ R such that |Kr| ≤ C and

∥u−Krφ∥L∞(Qr) ≤ Cr1+α,

where φ is the near-linear solution introduced in Proposition 5.4.1 and C depends only on α,
the dimension and the ellipticity constants.

Before proving the expansion, we need to introduce the following growth estimate for blow-
ups (cf. [19, Lemma 4.4]), which is independent of the PDE and valid for general functions.
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Lemma 5.5.2. Let β > γ > 0. For every j ∈ N, let Ωj ⊂ Rn+1, and let uj, φj : Ωj → R such
that ∥uj∥L∞(Q1) ≤ 1, ∥φj∥L∞(Q1) = 1, and, for every 0 < r1 < r2 < 1,

sup
Qr1

φ

sup
Qr2

φ
≥ c1

(
r1

r2

)γ

.

Let Kr,j ∈ R for every r ∈ (0, 1] and j ∈ N, and assume that

sup
j∈N

|Kr,j| < ∞

and
sup

r∈(0,1]
θ(r) = ∞,

where
θ(r) := sup

ρ∈(r,1]
sup
j∈N

ρ−β∥uj −Kρ,jφj∥L∞(Qρ).

Then, there exist sequences ρm ↓ 0 and jm such that

ρ−β
m ∥ujm −Kρm,jmφjm∥L∞(Qρm ) ≥ 1

2θ(ρm),

and
wm := ujm(ρmx, ρ

2
mt) −Kρm,jmφjm(ρmx, ρ

2
mt)

∥ujm(ρmx, ρ2
mt) −Kρm,jmφjm(ρmx, ρ2

mt)∥L∞(Q1)

satisfies
∥wm∥L∞(QR) ≤ CRβ ∀R ∈ [1, 1/ρm).

Moreover, for every 0 < r1 < r2 < 1,

∥(Kr2,j −Kr1,j)φj∥L∞(Qr2 ) ≤ Crβ
2 θ(r1).

The constant C depends only on β, γ, and c1.

We defer the proof to Appendix 5.10. Using Lemma 5.5.2, we can prove the expansion:

Proof of Proposition 5.5.1. We divide the proof into four steps.
Step 1. We reason by contradiction and construct a blow-up sequence. Let us prove first the

following modified claim:
Claim. For every r ∈ (0, 1], there exists Kr with |Kr| ≤ C0r

−α such that

∥u−Krφ∥L∞(Qr) ≤ Cr1+α,

with C0 to be chosen later.
If we assume the claim does not hold, there are sequences uj, φj, and Ωj (with parabolic

Lipschitz constant less than 1/j), such that{
(∂t − Lj)uj = fj in Ωj

uj = 0 on ∂ΓΩj,
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with fj = gj + hj such that

∥d1−αgj∥L∞(Q1) + ∥d−1/(n+1)−αhj∥Ln+1(Q1) ≤ 1,

and
∥uj −Kr,jφj∥L∞(Qrj ) ≥ jr1+α

j ,

where we choose

Kr,j :=
´

Qr
ujφj´

Qr
φ2

j

.

Then, by Proposition 5.4.1 with ε = α/2,

sup
Qr1

φj

sup
Qr2

φj

≥ 1
8(r1/r2)1+α/2,

and by Propositions 5.3.9 and 5.4.1,

|Kr,j| ≤

(´
Qr
u2

j

)1/2

(´
Qr
φ2

j

)1/2 ≤ Cr1−α/2

cr1+α/2 =: C0r
−α,

where we choose the constant C0 from this computation.
Then, by Lemma 5.5.2 with γ = 1 + α/2 and β = 1 + α, there exists a sequence ρm ↓ 0 such

that
wm := ujm(ρmx, ρ

2
mt) −Kρm,jmφjm(ρmx, ρ

2
mt)

∥ujm(ρmx, ρ2
mt) −Kρm,jmφjm(ρmx, ρ2

mt)∥L∞(Q1)

satisfies ∥wm∥L∞(Q1) = 1,

∥wm∥L∞(QR) ≤ CR1+α, ∀R ∈ [1, 1/ρm),

and ˆ
Q1

wm(x, t)φjm(ρmx, ρ
2
mt) = 0

from the choice of Kρm,j.
Step 2. We will prove that wm → (xn)+ locally uniformly along a subsequence.
First, by the construction of wm, we have (omitting the dependence of f on jm)

(∂t − M+)wm ≤ (∂t − Lm)wm ≤ 2ρ1−α
m

θ(ρm) |f(ρmx, ρ
2
mt)| in Ω̃jm ,

where Lm is the corresponding scaled operator, that has the same ellipticity constants, and

Ω̃jm := {(x, t) : (ρmx, ρ
2
mt) ∈ Ωjm}.

Note that Ω̃jm has Lipschitz constant lower or equal to 1/jm.
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Let d be the regularized distance in the domain Ωjm , d̃ the regularized distance in Ω̃jm , and
let us omit the dependence of g, h on j. Then, using Lemma 5.3.3,∥∥∥∥∥d̃1−α 2ρ1−α

m

θ(ρm) |g(ρmx, ρ
2
mt)|

∥∥∥∥∥
L∞(Q1/ρm )

≤

∥∥∥∥∥∥2ρ1−α
m

θ(ρm)

( 3d
ρm

)1−α

|g|

 (ρmx, ρ
2
mt)

∥∥∥∥∥∥
L∞(Q1/ρm )

≤ 6
θ(ρm)∥d1−α|g|∥L∞(Q1).

Similarly, by the scaling of the Ln+1 norm,∥∥∥∥∥d̃−1/(n+1)−α 2ρ1−α
m

θ(ρm) |h(ρmx, ρ
2
mt)|

∥∥∥∥∥
Ln+1(Q1/ρm )

≤

∥∥∥∥∥∥2ρ1−α
m

θ(ρm)

( d

3ρm

)−1/(n+1)−α

|h|

 (ρmx, ρ
2
mt)

∥∥∥∥∥∥
Ln+1(Q1/ρm )

≤ 18ρ(n+2)/(n+1)
m

θ(ρm) ∥(d−1/(n+1)−α|h|)(ρmx, ρ
2
mt)∥Ln+1(Q1/ρm )

= 18
θ(ρm)∥d−1/(n+1)−α|h|∥Ln+1(Q1).

Therefore,
(∂t − M+)wm ≤ |gm| + |hm| in Q1/ρm ∩ Ω̃jm ,

with
∥d̃1−αgm∥L∞(Q1/ρm ) + ∥d̃−1/(n+1)−αhm∥Ln+1(Q1/ρm ) ≤ 18

θ(ρm) .

Analogously,
(∂t − M−)wm ≥ −|gm| − |hm| in Q1/ρm ∩ Ω̃jm .

Moreover, wm = 0 on ∂ΓΩ̃jm , and, for every R ≥ 1, ∥wm∥L∞(QR) ≤ CR1+α for sufficiently
large m. Hence, by Proposition 5.3.1,

∥wm∥C0,α
p (QR) ≤ C(R),

uniformly in m, for m large enough. Then, by Arzelà-Ascoli and Proposition 5.2.7, we obtain
that

wm → w ∈ C(Rn+1),

locally uniformly along a subsequence, where w is a viscosity solution of{
wt − M+w ≤ 0 ≤ wt − M−w in {xn > 0}

w = 0 on {xn = 0},

∥w∥L∞(Q1) = 1 and ∥w∥L∞(QR) ≤ CR1+α for all R ≥ 1. Therefore, by Theorem 5.2.8, w = (xn)+.
Step 3. Let us consider the functions

φ̃jm(x, t) := φjm(ρmx, ρ
2
mt)

∥φjm∥L∞(Qρm )
.
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Then, ∥φ̃jm∥L∞(Q1) = 1, and, by Proposition 5.4.1 with ε = α/2, for all 1 ≤ R ≤ 1/ρm,

∥φ̃jm∥L∞(QR) ≤ 8R1+α/2.

Finally, by the same arguments as in Step 2, φ̃jm → (xn)+ locally uniformly along a subse-
quence.

Step 4. We have wm → (xn)+ and φ̃m → (xn)+ locally uniformly. Now, recall that by the
choice of Kr,j in the construction of wm,ˆ

Q1

wmφ̃m = 0,

and passing to the limit, ˆ
Q1

(xn)2
+ = 0,

which is a contradiction. Therefore, for every r ∈ (0, 1], there exists |Kr| ≤ C0r
−α such that

∥u−Krφ∥L∞(Qr) ≤ Cr1+α.

This is enough for r ∈ (1
2 , 1]. For smaller values of r, observe that

|Kr −Kr/2|(r/4)1+α/2 ≤ ∥(Kr −Kr/2)φ∥L∞(Qr/2)

≤ ∥u−Krφ∥L∞(Qr) + ∥u−Kr/2φ∥L∞(Qr/2) ≤ Cr1+α.

It follows that |Kr − Kr/2| ≤ Crα/2. Then, for r ≤ 1
2 we can write r = 2−ar0, with r0 ∈ (1

2 , 1],
and estimate

|Kr| ≤ |Kr0| +
a−1∑
i=0

|K2−ir0 −K2−i−1r0| ≤ C0r
−α
0 + C

a−1∑
i=0

(2−ir0)α/2 ≤ C.

Finally, we prove our main result.

Proof of Theorem 5.1.2. First, we will use a similar strategy to the proof of Proposition 5.3.1
to estimate the Hölder seminorm of the quotient. Let ε > 0 in Proposition 5.4.1 such that
γ = α− 7ε. Recall that α is chosen in Remark 5.1.3.

Let p = (y′, yn, s) and ρ ∈ (0, 1
16) such that Q2ρ(p) ⊂ Ω ∩Q5/8, and let

R := max
{
ρ,
yn − Γ(y′, s)

3

}
.

Then, we distinguish two cases (cf. Proposition 5.3.1).
Case 1. R ≥ 1

16 . Then, Q1/8(p) ⊂ Ω∩Q3/4, and for all (x′, xn, t) ∈ Q1/8(p), xn ≥ Γ(x′, t)+ 1
16 ,

provided that the Lipschitz constant of the domain is small enough. By Proposition 5.3.9, v ≥
cm > 0 in Q1/8(p). Furthermore, by Theorem 5.2.5, ∥u∥C0,γ

p (Q1/8(p)) ≤ C and ∥v∥C0,γ
p (Q1/8(p)) ≤

C. Therefore,∥∥∥∥uv
∥∥∥∥

C0,γ
p (Qρ(p))

≤
∥∥∥∥uv
∥∥∥∥

C0,γ
p (Q1/8(p))

≤
∥u∥C0,γ

p (Q1/8(p))∥v∥L∞(Q1/8(p)) + ∥u∥L∞(Q1/8(p))∥v∥C0,γ
p (Q1/8(p))

inf
Q1/8(p)

v2 ≤ Cm−2.
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Case 2. R < 1
16 . Then, for all (x′, xn, t) ∈ Q3R/2(p),

Γ(x′, t) + R

2 ≤ xn ≤ Γ(x′, t) + 5R.

Let φ be the special solution defined in Proposition 5.4.1, centered at (y′,Γ(y′, s), s). Then,
by a translation of Proposition 5.5.1, w1 = u−Kuφ and w2 = v −Kvφ satisfy

∥w1∥L∞(QR(p)) ≤ CR1+α and ∥w2∥L∞(QR(p)) ≤ CR1+α.

Using that d is comparable to R in QR(p), the right-hand side of the equation for u can be
estimated as

∥f1∥Ln+1(QR(p)) ≤ ∥g1∥Ln+1(QR(p)) + ∥h1∥Ln+1(QR(p))

≲ R(n+2)/(n+1)Rα−1∥d1−αg1∥L∞(QR(p))

+Rα+1/(n+1)∥d−1/(n+1)−αh1∥Ln+1(QR(p))) ≤ CRα+1/(n+1),

and analogously, in the equation for v, ∥f2∥Ln+1(QR(p)) ≤ CmRα+1/(n+1). Thus, by the interior
estimates in Theorem 5.2.5, and the growth of v and φ, (see Propositions 5.3.9 and 5.4.1),

[w1]C0,γ
p (QR(p)) ≤ CR−γ(CR1+α + CR1+α) ≤ CR1+7ε

[w2]C0,γ
p (QR(p)) ≤ CR−γ(CR1+α + CmR1+α) ≤ CR1+7ε

[v]C0,γ
p (QR(p)) ≤ CR−γ(CR1−ε + CmR1+α) ≤ CR1−γ−ε

[φ]C0,γ
p (QR(p)) ≤ CR−γ(CR1−ε) ≤ CR1−γ−ε.

Now, using that u = w1 +Kuφ, we estimate first

[w1/v]C0,γ
p (QR(p)) ≤

[w1]C0,γ
p (QR(p))∥v∥L∞(QR(p)) + ∥w1∥L∞(QR(p))[v]C0,γ

p (QR(p))

inf
QR(p)

v2

≤ C
R1+7εR1−ε +R1+αR1−γ−ε

m2R2(1+ε) ≤ Cm−2,

where we used Proposition 5.3.9 again to deduce that v ≥ cmR1+ε in QR(p). Then, we estimate

[φ/v]C0,γ
p (QR(p)) ≤

[v/φ]C0,γ
p (QR(p))

inf
QR(p)

(v/φ)2 ≤
[w2/φ]C0,γ

p (QR(p))

inf
QR(p)

(v/φ)2

≤
[φ]C0,γ

p
∥w2∥L∞ + [w2]C0,γ

p
∥φ∥L∞

inf(v/φ)2 inf φ2

≤ C
R1−ε−γR1+α +R1+7εR1−ε

(mR2ε)2(R1+ε)2 = 2Cm−2,

where we omitted the domain in the second line to improve readability. Therefore

[u/v]C0,γ
p (QR(p)) ≤ [w1/v]C0,γ

p (QR(p)) + |Ku|[φ/v]C0,γ
p (QR(p)) ≤ Cm−2.

Combining the three cases, by Lemma 5.2.6, [u/φ]C0,γ
p (Ω∩Q1/2) ≤ Cm−2.
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To obtain a bound for ∥u/φ∥C0,γ
p (Ω∩Q1/2), observe that

∥∥∥∥∥uφ
∥∥∥∥∥

L∞(Q1/2)
≤ u(en/4, 0)
v(en/4, 0) + [u/φ]C0,γ

p (Ω∩Q1/2)

(∣∣∣∣x− 1
4en

∣∣∣∣+ |t|1/2
)

≤ 1
cm

+ Cm−2,

where we used that ∥u∥L∞(Q1) ≤ 1 and v(en/4, 0) ≥ cm > 0 by the interior Harnack. Therefore,
∥u/φ∥C0,γ

p (Ω∩Q1/2) ≤ Cm−2, as we wanted to prove.

5.6 Slit domains
Slit domains appear naturally when studying thin obstacle problems. In the case of parabolic
slit domains, they appear in the time-dependent Signorini problem, and the boundary Harnack
is known to hold in the homogeneous case; see [161, 75].

First, we will introduce a slightly different notation for this section. Given x ∈ Rn+1, we will
denote x′ = (x1, . . . , xn−1), i.e. x = (x′, xn, xn+1). Br(x′, xn) will denote the n-dimensional ball
of radius r centered at (x′, xn), and B′

r(x′) will be the one of Rn−1. We also introduce the slit
parabolic cylinders:

Qr(x, t) := B′
r(x′) × (xn − r, xn + r) × (xn+1 − r, xn+1 + r) × (t− r2, t) ⊂ Rn+2.

In this section, the domains that we will work with will be the following.

Definition 5.6.1. We say Ω is a parabolic Lipschitz slit domain in QR with Lipschitz constant
L if Ω = QR \ E, where

E =
{
(x′, xn, 0, t) ∈ QR | xn ≤ Γ(x′, t)

}
,

and Γ : B′
R × [−R2, 0] → R, with Γ(0, 0) = 0 and ∥Γ∥C0,1

p
≤ L.

We will say that E is the lateral boundary of Ω, and write ∂ΓΩ := E. The parabolic boundary
will be defined as

∂pΩ := ∂ΓΩ ∪
(
Ω ∩ ∂QR ∩ {t < 0}

)
.

The goal of this section is to prove Theorem 5.1.6.

5.6.1 Growth and boundary regularity
In this section, we will follow the same scheme that in Section 5.3 to obtain growth estimates
and regularity up to the boundary of solutions to the heat equation in slit Lipschitz domains.
The final goal of the section is to prove the following:

Proposition 5.6.2. Let γ ∈ (0, 1
2). There exists L0 > 0, depending only on γ and the dimen-

sion, such that the following holds.
Let Ω be a parabolic slit domain in Q1 as in Definition 5.6.1 with Lipschitz constant L ≤ L0.

Let u be a solution to {
ut − ∆u = f in Ω,

u = 0 on ∂ΓΩ.
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Assume that ∥f∥Ln+2(Q1) ≤ K0. Then,

∥u∥C0,γ
p (Q1/2) ≤ C(∥u∥L∞(Q1) +K0).

The constant C depends only on γ and the dimension.

We begin introducing parabolic homogeneous solutions in parabolic slit cones, which will play
the role of the powers of the regularized distance in Section 5.3.

Proposition 5.6.3 (cf. [103, Lemma 5.8]). There exists ε0 > 0, only depending on the dimen-
sion, such that for all ε ∈ (0, ε0), there exist sufficiently small η−, η+ > 0, only depending on
the dimension and ε, such that there exist unique positive solutions of

∂tφ− − ∆φ− = 0 in Q1 \ C−
η− and ∂tφ+ − ∆φ+ = 0 in Q1 \ C+

η+ ,

parabolically homogeneous of degree 1
2 ± ε, i.e.

φ−(λx, λ2t) = λ
1
2 −εφ−(x, t) and φ+(λx, λ2t) = λ

1
2 +εφ+(x, t) ∀λ > 0,

such that ∥φ−∥L∞(Q1) = ∥φ+∥L∞(Q1) = 1, where

C+
η+ := {xn ≤ η+(|x′| + |t|1/2), xn+1 = 0}

and
C−

η− := {xn ≤ −η−(|x′| + |t|1/2), xn+1 = 0}.
Moreover, η− → 0 and η+ → 0 monotonically as ε → 0, and there exists m > 0 such that

φ± ≥ m in Q2 ∩
{

|xn+1| ≥ 1
n+ 1

}
.

We defer the proof to Appendix 5.10. Notice that φ− and φ+ satisfy the following Hopf-type
estimate.

Lemma 5.6.4. Let φ± be as in Proposition 5.6.3. Then,

φ± ≥ c|xn+1| in Q1/2,

for a dimensional constant c > 0.

Proof. It follows from Proposition 5.6.3 and Hopf’s lemma.

Now, we proceed with the same strategy as in Lemmas 5.3.6 an 5.3.8 to obtain the desired
bounds. We start with the upper bound:

Lemma 5.6.5. Let ε ∈ (0, 1/2). There exist sufficiently small η > 0 and sufficiently large
K > 0, only depending on the dimension and ε, such that the following holds.

Let u be a solution to 
ut − ∆u ≤ f in Ω

u ≤ 1 on ∂pΩ
u ≤ 0 on ∂ΓΩ

where ∥f∥Ln+2(Ω) ≤ η, and Ω is a parabolic slit domain in Q1 in the sense of Definition 5.6.1
with Lipschitz constant η. Then,

∥u∥L∞(Qr) ≤ Kr1/2−ε, ∀r ∈ (0, 1).
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Proof. We will use the comparison principle with a barrier. Assume first that f = 0.
Let φ− be as in Proposition 5.6.3 with ε/2 instead of ε, let η = η− and define

v := aφ− + |x′|2 + x2
n − 2nx2

n+1 − 2nt.

First, by Lemma 5.6.4 and letting a = (2n+ 1)/c,

aφ− ≥ ac|xn+1| ≥ (2n+ 1)|xn+1| in Q1.

Then, v satisfies vt − ∆v = 0 in Q1 \ C−
η− ⊃ Ω. Moreover, on the parabolic boundary of Ω we

can distinguish the following cases:

• When t = −1, v ≥ aφ− + 2n− 2nx2
n+1.

• When |x′| = 1, and when |xn| = 1, v ≥ aφ− + 1 − 2nx2
n+1.

• When |xn+1| = 1, v ≥ aφ− − 2n.

• On ∂ΓΩ ⊂ {xn+1 = 0}, v ≥ 0.

To treat the first two cases, note that

aφ− + 1 − 2nx2
n+1 ≥ 1 + (2n+ 1)|xn+1| − 2nx2

n+1 ≥ 1.

Then, when |xn+1| = 1,
aφ− − 2n ≥ 1.

Therefore, by the comparison principle, u ≤ v in Ω. To include the right-hand side, notice
that we can always write u = u0 + uf , where{

(∂t − ∆)u0 = 0 in Ω
u0 = u on ∂pΩ and

{
(∂t − ∆)uf = f in Ω

uf = 0 on ∂pΩ.

Then, by Theorem 5.2.4, and applying the reasoning above to u0,

u = u0 + uf ≤ v + C∥f∥Ln+2(Q1) ≤ v + Cη.

Now, we do an iteration scheme as in Lemma 5.3.6. For that, let us define the rescaled
functions

uj(x, t) := u(ρjx, ρ2jt)
ρj(1/2−ε) ,

with ρ > 0 to be chosen later. Now,

(∂t − ∆)uj = ρj(3/2+ε)fj,

with fj(x, t) := f(ρjx, ρ2jt). Let bj := ∥uj∥L∞(Q1). Writing u = u0 + uf again,

b0 ≤ ∥u0∥L∞(Q1) + ∥uf∥L∞(Q1) ≤ ∥v∥L∞(Q1) + C∥f∥Ln+2(Q1) ≤ a+ 4n+ 2 + Cη.

We will show by induction that bj ≤ b0 for all j ≥ 0. Indeed, by the first part of the proof
and induction hypothesis,

uj ≤ v + C∥ρj(3/2+ε)fj∥Ln+2(Q1),
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and hence, using that v is a sum of terms with at least parabolic homogeneity 1−ε
2 ,

bj+1ρ
1/2−ε ≤ ∥v∥L∞(Qρ) + Cρj(3/2+ε)∥fj∥Ln+2(Q1)

≤ b0ρ
(1−ε)/2 + ρj(3/2+ε−(n+3)/(n+2))∥f∥Ln+2(Q

ρj )

≤ b0ρ
(1−ε)/2 + ∥f∥Ln+2(Q1) ≤ b0ρ

(1−ε)/2 + η ≤ b0ρ
1/2−ε,

after choosing sufficiently small η and ρ.
Finally, given r ∈ (0, 1), let j be such that ρj+1 < r ≤ ρj. Therefore,

∥u∥L∞(Qr) ≤ ∥u∥L∞(Q
ρj ) = bjρ

j(1/2−ε) < b0(r/ρ)1/2−ε.

We also deduce a lower bound:

Lemma 5.6.6. Let ε ∈ (0, 1/6) and µ ∈ (0, 1). There exist sufficiently small η, k > 0, only
depending on the dimension, µ and ε, such that the following holds.

Let u ≥ 0 be a solution to {
ut − ∆u ≥ f in Ω

u ≥ 1 on ∂upΩ

where ∥f∥Ln+2(Ω) ≤ η, Ω is a parabolic slit domain in Q1 in the sense of Definition 5.6.1 with
Lipschitz constant η, and

∂upΩ := {xn = 1} ∩ Ω.
Then,

u(re, 0) ≥ kr1/2+ε, ∀r ∈
(

0, 1
4

)
,

for all unit vectors e = cos(θ)en + sin(θ)en+1 with cos(θ) ≥ −1 + µ.

Proof. The proof is very similar to that of Lemma 5.6.5. Assume first that f = 0.
Let

Ω(1) :=
(x, t) ∈ Ω : |x′| < 1

2 , |xn| < 1
2 , |xn+1| <

1√
2(4n+ 13)

,−1
2 < t


and

∂upΩ(1) := Ω(1) ∩

|xn+1| = 1√
2(4n+ 13)

 .
By an analogous reasoning to the proof of Lemma 5.3.5, u ≥ c0 on ∂upΩ(1), and u(re, 0) ≥ c0
for all r ∈ ( 1√

2(4n+13)
, 1

2), given that η is small enough. However, here c0 depends on µ.
Let φ+ be as in Proposition 5.6.3 with ε/2 instead of ε, let η ≤ η+ and define

v := c0

(
1
2φ+ + 2t+ (4n+ 13)x2

n+1 − 4|x′|2 − 16
(
xn + 1

4

)2

−

)
.

Then, v satisfies vt −∆v ≤ 0 in Q1 \C+
η+ . Moreover, on the parabolic boundary of Ω(1) we can

distinguish the following cases (recall that ∥φ+∥L∞(Q1) = 1 and that |xn+1| ≤ 1/
√

2(4n+ 13)).
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• When t = −1/2, v ≤ c0(1/2 − 1 + 1/2) = 0.

• When |x′| = 1/2, and when xn = −1/2, v ≤ c0(1/2 + 1/2 − 1) = 0.

• When xn = 1/2, v ≤ c0(1/2 + 1/2) = c0.

• When |xn+1| = 1/
√

2(4n+ 13), v ≤ c0(1/2 + 1/2) = c0.

• On ∂ΓΩ ⊂ C+
η+ , v ≤ 0.

Therefore, by the comparison principle, u ≥ v in Ω(1). The right-hand side can be included
in the same way as in Lemma 5.6.5, giving

u ≥ v − C∥f∥Ln+2(Q1) ≥ v − Cη in Ω(1).

Now, we do an iteration scheme as in Lemma 5.3.8. For that, let us define the rescaled
functions

uj(x, t) := u(ρjx, ρ2jt)
ρj(1/2+ε) ,

with ρ > 0 to be chosen later. Now,

(∂t − ∆)uj = ρj(3/2−ε)fj,

with fj(x, t) := f(ρjx, ρ2jt). Let
bj := inf

∂upΩj

uj,

where Ωj is the appropriate scaled domain of uj in Q1. By hypothesis, b0 ≥ 1. We will show
by induction that bj ≥ 1 for all j ≥ 0.

Indeed, by the first part of the proof and induction hypothesis,

uj ≥ v − C∥ρj(3/2−ε)fj∥Ln+2(Q1),

and hence, using the parabolic homogeneity of φ+, and using the same scaling arguments as in
Lemma 5.6.5

bj+1ρ
1/2+ε ≥ c0

inf
∂upΩj

φ+

2 ρ(1+ε)/2 − (4n+ 14)c0ρ
2 − Cρj(3/2−ε)∥fj∥Ln+2(Ω(1)

j )

≥ c0cρ
(1+ε)/2 − Cρ2 − Cρj(3/2−ε−(n+3)/(n+2))η ≥ ρ1/2+ε,

for sufficiently small η and ρ.
Finally, by the first part of the proof,

uj ≥ v − Cη in Ω(1),

and then
uj ≥ c0

2 φ+ − Cη in {t = 0, x′ = 0, xn ≥ −1/4},

which in turn implies uj(re, 0) ≥ c(µ)r1/2+ε − Cη ≥ kr1/2+ε for all r ∈ [1/(4ρ), 1/4). The
conclusion follows undoing the scaling.
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Combining Lemmas 5.6.5 and 5.6.6, we can deduce a growth estimate for all solutions.

Proposition 5.6.7. Let ε ∈ (0, 1/6). There exists sufficiently small η > 0, only depending on
ε and the dimension, such that the following holds.

Let Ω be a parabolic slit domain in Q1 in the sense of Definition 5.6.1. Let u be a solution to{
ut − ∆u = f in Ω,

u = 0 on ∂ΓΩ.

Assume that ∥u∥L∞(Q1) ≤ 1, and ∥f∥Ln+2(Q1) ≤ η.
Then,

|u| ≤ C|(xn − Γ(x′, t), xn+1)|1/2−ε in Ω ∩Q3/4.

Moreover, if u is nonnegative, m = u
(

en

2 ,−
3
4

)
> 0, ∥f∥Ln+2(Q1) ≤ ηm, then

u ≥ cm|(xn − Γ(x′, t), xn+1)|1/2+ε in Ω ∩ C ∩Q3/4,

where C is the "cone" defined as

C :=
{
(x, t) ∈ Rn+2 | xn − Γ(x′, t) + 10|xn+1| ≥ 0

}
.

The constants C and c are positive and depend only on the dimension, ε, and the ellipticity
constants.

Proof. We will follow the same strategy as in Proposition 5.3.9. The proof of the upper bound
is exactly the same, using Lemma 5.6.5 instead of Lemma 5.3.6.

For the second estimate, let Ω(x0, t0) := Ω ∩Q1/8(x0, t0) and notice that⋃
(x0,t0)∈∂ΓΩ∩Q3/4

∂upΩ(x0, t0) ⊂ E := B′
7/8 × [1/8 − 2η, 1/8 + 2η] × [−1/8, 1/8] × [−37/64, 0],

where ∂upΩ(x0, t0) := Ω(x0, t0) ∩ {xn = x0,n + 1/8}, analogously to Lemma 5.6.6. The rest
follows as in Proposition 5.3.9, but here we use the interior Harnack to see that u ≥ c1m in

F := Q3/4 \ {xn < 1/32 − 2η, |xn+1| < 1/32}

instead of E. Here we use η < 1/256 to ensure that there is a uniform positive distance from
F to the boundary of Ω.

Finally, we can deduce the Hölder regularity up to the boundary.

Proof of Proposition 5.6.2. We will use the same strategy as in Proposition 5.3.1. Let us assume
without loss of generality that ∥u∥L∞(Q1) ≤ 1 andK0 = η (with η from Proposition 5.6.7). Then,
by Proposition 5.6.7,

|u| ≤ C(|xn − Γ(x′, t)| + |xn+1|)γ in Ω ∩Q3/4.

Then, we will use interior estimates in combination with Lemma 5.2.6. Let p = (y′, yn, yn+1, s)
and ρ ∈ (0, 1

16) such that Q2ρ(p) ⊂ Ω ∩Q5/8, and let

R := max
{
ρ,

|yn+1|
3 ,

|yn − Γ(y′, s)|
3

}
.
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We distinguish four cases:
Case 1. R ≥ 1

16 , and yn > Γ(y′, s) − 3R or |yn+1| ≥ 1
8 . Then, Q1/8(p) ⊂ Ω ∩ Q3/4. Then, by

Theorem 5.2.5 combined with the fact that ∥u∥L∞(Q1) ≤ 1 and ∥f∥Ln+2(Q1) ≤ 1, we obtain

[u]C0,γ
p (Qρ(p)) ≤ [u]C0,γ

p (Q1/8(p)) ≤ C.

Case 2. R ≥ 1
16 , yn = Γ(y′, s) − 3R and |yn+1| < 1

8 . Then, Q1/8(p) ⊂ Q3/4 and

Q1/8(p) ∩ {xn+1 = 0} ⊂ {xn ≤ Γ(x′, t), xn+1 = 0}.

Hence, u ≡ 0 on Q1/8(p) ∩ {xn+1 = 0}, and we can decompose u = u1 + u2, with u1 =
uχ{xn+1>0} and u2 = uχ{xn+1<0}.

Now, let ũ1 and ũ2 be the odd reflections of u1 and u2 across {xn+1 = 0}, and note that they
satisfy (∂t − ∆)ũi = fi in Q1/8(p), with fi being the appropriate reflection of f . Therefore, by
Theorem 5.2.5 again as in Case 1, [u]C0,γ

p (Qρ(p)) ≤ C.
Case 3. R < 1

16 , and yn > Γ(y′, s) − 3R or |yn+1| ≥ 2R. Then, Q2R(p) ⊂ Ω ∩Q3/4. Moreover,
since |yn+1| ≤ 3R and |yn − Γ(y′, s)| ≤ 3R, |u| ≤ K ′Rγ in Q2R(p). Therefore,

[u]C0,γ
p (QR(p)) ≤ C(R−γ∥u∥L∞(Q2R(p)) +R(n+1)/(n+2)−γ∥f∥Ln+2(Q2R(p)))

≤ C(K ′ +R(n+1)/(n+2)−γ∥f∥Ln+2(Q1)) ≤ C ′.

Case 4. R < 1
16 , yn = Γ(y′, s) − 3R and |yn+1| < 2R. We proceed by an odd reflection as in

Case 2 and then use the estimates of Case 3.

5.6.2 Special solution
Our goal now is to construct a special solution which is almost homogeneous with parabolic
homogeneity 1

2 (cf. Proposition 5.4.1 for the same result in one-sided Lipschitz domains).

Proposition 5.6.8. Let ε ∈ (0, ε0), with ε0 from Proposition 5.6.3. Then, there exist δ > 0
and C > 0, only depending on ε and the dimension, such that the following holds.

Let Ω be a parabolic slit domain in Q1 in the sense of Definition 5.6.1 with Lipschitz constant
δ. Let φ± be the parabolically homogeneous solutions introduced in Proposition 5.6.3, in a way
that η± > δ so that

Q1 \ C+
η+ ⊂ Ω ⊂ Q1 \ C−

η−.

Then, there exists φ : Ω → R such that{
φt − ∆φ = 0 in Ω

φ = 0 on ∂ΓΩ,

φ ≥ 0, φ is even in xn+1, ∥φ∥L∞(Q1) = 1,

1
C
φ+ ≤ φ ≤ Cφ−,

and for all 0 < r1 < r2 ≤ 1,
sup
Qr1

φ

sup
Qr2

φ
≥ 1

8

(
r1

r2

)1/2+ε

.
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First, we prove the following almost positivity property for supersolutions to the heat equa-
tion.

Lemma 5.6.9. Let E ⊂ {xn+1 = 0} ∩Q2 be a closed set, and let w be a supersolution to
wt − ∆w ≥ 0 in Q2 \ E

w = 0 on E
w ≥ 1 in Q2 ∩ {|xn+1| ≥ 1

n+1}
w ≥ −1 in Q2.

Then,
w ≥ 0 in Q1.

Proof. We will proceed by comparison with a barrier. Let (y, s) ∈ Q1. If yn+1 ≥ 1
n+1 , there is

nothing to prove. Otherwise, consider the set

Ω := B1(y′, yn) ×
(

− 1
n+ 1 ,

1
n+ 1

)
× (s− 1, s) \ E.

By construction, Ω ⊂ Q2 \ E. Now, consider

v = w + 2|(x′, xn) − (y′, yn)|2 + 4(s− t) − 2(n+ 1)|xn+1|2,

which by construction is also a supersolution for the heat equation in Ω. Moreover, on the
parabolic boundary we can distinguish the following cases:

• When t = s− 1, v ≥ −1 + 4 − 2
n+1 ≥ 0.

• When |(x′, xn) − (y′, yn)| = 1, v ≥ −1 + 2 − 2
n+1 ≥ 0.

• When |xn+1| = 1
n+1 , v ≥ 1 − 2

n+1 ≥ 0.

• On E, v ≥ w ≥ 0.

Therefore, by the comparison principle, v(y, s) ≥ 0, and it follows that

w(y, s) = v(y, s) + 2(n+ 1)|yn+1|2 ≥ 0.

As a consequence, we can deduce the following.

Lemma 5.6.10. There exist C, ε0 > 0, only depending on the dimension, such that for all
ε ∈ (0, ε0),

φ+ ≤ Cφ− in Q1,

where φ± are the parabolically homogeneous solutions introduced in Proposition 5.6.3.

Proof. Let
w := 2

m
φ− − 1

2φ+

with m from Proposition 5.6.3.
Since {φ− = 0} ⊂ {φ+ = 0}, w is a supersolution for the heat equation in Q2 \ {φ− = 0}.

Moreover, since ∥φ+∥L∞(Q2) ≤ 21/2+ε by homogeneity, w ≥ −1 in Q2, and w ≥ 1 whenever
|xn+1| ≥ 1

n+1 .
Hence, by Lemma 5.6.9, w ≥ 0 in Q1 and the conclusion follows.
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We will also need a Liouville theorem for slit domains:

Theorem 5.6.11. Let α ∈ (0, 1
2), and let u be a solution to

(∂t − ∆)u = 0 in (Rn+1 \ {xn ≤ 0, xn+1 = 0}) × (−∞, 0)
u = 0 on {xn ≤ 0, xn+1 = 0}

u(x′, xn, xn+1, t) = u(x′, xn,−xn+1, t) in Rn+1 × (−∞, 0)

with the growth control
∥u∥L∞(QR) ≤ C(1 +R1+α), ∀R ≥ 1.

Then, u = aφ0 for some a ∈ R, where

φ0(x, t) := Re(
√
xn + ixn+1).

Proof. We will proceed as in [94, Theorem 4.11]. Let γ ∈ (0, 1
2) such that 3γ > 1 + α, and let

ur(x, t) := u(rx, r2t)
r1+α

for r ≥ 1. Notice how ur also satisfies the hypotheses.
Now, by Proposition 5.6.2,

[u]C0,γ(Q2r) = r1+α−γ[ur]C0,γ(Q2) ≤ Cr1+α−γ∥ur∥L∞(Q4) ≤ Cr1+α−γ.

Then, given h ∈ B1 such that hn = hn+1 = 0 and τ ∈ (−1, 1), let

u(1)(x, t) := u(x+ h, t+ τ) − u(x, t)

and notice that it is also an even solution to the heat equation in the same domain. Hence,

∥u(1)∥L∞(Qr) ≤ Cr1+α−γ.

Now we can repeat the procedure starting with u(i) instead of u to obtain that

∥u(2)∥L∞(Qr) ≤ Cr1+α−2γ

and
∥u(3)∥L∞(Qr) ≤ Cr1+α−3γ,

where u(i+1) := u(i)(· + h, · + τ) − u(i). Letting r → ∞ in the last expression, we obtain that
u(3) is identically zero, and therefore u(·, xn, xn+1, ·) is a third order polynomial, but from the
growth condition on u we deduce that actually u is of the form

u(x, t) = ϕ(xn, xn+1) + ψ(xn, xn+1) · x′ + ζ(xn, xn+1)t.

Since the domain is translation invariant in the x′ and t directions, we deduce that ϕ, ψ, ζ
are two-dimensional solutions to the heat equation that do not depend on time, i.e., harmonic
functions in R2 \ (−∞, 0). Hence, they are of the form

∞∑
k=0

ak Re((xn + ixn+1)k+1/2) +
∞∑

k=1
bk Im((xn + ixn+1)k).

Finally, from the growth and the even symmetry of u, we deduce that ϕ ≡ a0 Re((xn+ixn+1)1/2)
and ψ ≡ ζ ≡ 0, as we wanted to prove.
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Remark 5.6.12. The assumption of u being even in the xn+1 direction is necessary to discard
linear terms of the form b1xn+1. This is motivated by the study of free boundary problems such
as the parabolic Signorini problem, where the solution being even is a natural assumption (see
for instance [69]).

Now, we are ready to replicate the strategy of Section 5.4. First, we construct solutions with
a controlled growth.

Lemma 5.6.13. Let ε ∈ (0, ε0), with ε0 from Proposition 5.6.3. There exist C > 0, only
depending on the dimension, and δ1 ∈ (0, ε), only depending on the dimension and ε, such that
the following holds.

Let R = 21/ε and let Ω be a parabolic slit domain in QR in the sense of Definition 5.6.1 with
Lipschitz constant δ1. Then, there exists φ : Ω → R such that{

φt − ∆φ = 0 in Ω
φ = 0 on ∂ΓΩ,

φ ≥ 0, φ is even in xn+1, ∥φ∥L∞(Q1) = 1, and

1
C
φ+ ≤ φ ≤ Cφ− in QR.

In particular, ∥φ∥L∞(Qr) ≤ Cr1/2−ε for all r ∈ [1, R].

Proof. First, by construction and Proposition 5.6.3, if δ1 is small enough φ+ is a subsolution
and φ− is a supersolution for the heat equation in Ω.

Now, from Lemma 5.6.10 and the different parabolic homogeneities of φ+ and φ−, we deduce
that

φ+ ≤ CR2εφ− = 4Cφ− in QR.

Note that C does not depend on ε.
Therefore, by the comparison principle there exists φ̃ ≥ 0, a solution to the heat equation in

Ω, vanishing on ∂ΓΩ, that satisfies

φ+ ≤ φ̃ ≤ 4Cφ− in QR.

By Proposition 5.6.3, 1 ≤ ∥φ̃∥L∞(Q1) ≤ 4C, and therefore

φ := φ̃

∥φ̃∥L∞(Q1)

satisfies the first estimate. The second estimate follows directly from the parabolic scaling of
φ−.

Now, the proof continues as in the one sided case.

Proof of Proposition 5.6.8. We follow the same strategy as in the proof of Proposition 5.4.1.
First, Lemma 5.6.13 replaces Lemma 5.4.2. Then, an analogue to Lemma 5.4.3 can be proved
by the same type of blow-up argument. To do so, we use Proposition 5.6.2 for the boundary
regularity, and Theorem 5.6.11 to classify the blow-up limit.

The conclusion follows by an inductive argument as in Lemma 5.4.4, and combining the
estimates as in the proof of Proposition 5.4.1.
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5.6.3 Expansion in slit domains
The following proposition follows the lines of Proposition 5.5.1, adapted to slit domains.

Proposition 5.6.14. Let α ∈ (0, 1
2). There exists ε0 ∈ (0, 1), only depending on α and the

dimension such that the following holds.
Let Ω be a parabolic slit domain in Q1 in the sense of Definition 5.6.1 with Lipschitz constant

ε0. Let u be a solution to {
ut − ∆u = f in Ω

u = 0 on ∂ΓΩ,
where u is even in xn+1, ∥u∥L∞(Q1) ≤ 1, and ∥f∥Lq(Q1) ≤ 1 with q = (n+ 3)/(1 − α).

Then, for each r ∈ (0, 1] there exists Kr ∈ R such that |Kr| ≤ C and

∥u−Krφ∥L∞(Qr) ≤ Cr1+α,

where φ is the special solution introduced in Proposition 5.6.8 and C depends only on α and
the dimension.

Proof. We follow the same four steps as in Proposition 5.5.1.
Steps 1 and 4 are identical. Steps 2 and 3 have to be modified in the same way. We will only

write the modified Step 2.
Modified Step 2. We prove that wm → w locally uniformly along a subsequence, where w is

a solution to {
wt − ∆w = 0 in Rn+2 \ {xn ≤ 0, xn+1 = 0}

w = 0 on {xn ≤ 0, xn+1 = 0}. (5.7)

Then, by the construction of wm (omitting the dependence of f on jm),

|(∂t − ∆)wm| ≤ 2ρ1−α
m

θ(ρm)f(ρmx, ρ
2
mt),

and estimating the right-hand side∥∥∥∥∥2ρ1−α
m

θ(ρm)f(ρmx, ρ
2
mt)

∥∥∥∥∥
Lq(Q1)

= 2ρ1−α
m

θ(ρm)ρ
−(n+3)/q
m ∥f∥Lq(Qρm ) ≤

2∥f∥Lq(Q1)

θ(ρm) ≤ 2
θ(ρm) ,

where we used that (n+ 3)/q = 1 − α.
Moreover, wm = 0 on the appropriate rescaling of ∂ΓΩjm , and, for every R ≥ 1, ∥wm∥L∞(QR) ≤

CR1+α for sufficiently large m. Hence, by Proposition 5.6.2,

∥wm∥
C

0,1/4
p (QR) ≤ C(R),

uniformly in m, for m large enough. Then, by Arzelà-Ascoli and Proposition 5.2.7, we obtain
that

wm → w ∈ C(Rn+2),
locally uniformly along a subsequence, where w is a viscosity solution to (5.7) and ∥w∥L∞(QR) ≤
CR1+α for all R ≥ 1. Therefore, by Theorem 5.6.11 and the fact that ∥w∥L∞(Q1) = 1, w = φ0.
In the rest of the proof, φ0 plays the role of (xn)+ in the proof of Proposition 5.5.1.
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5.6.4 The Boundary Harnack in slit domains
Proof of Theorem 5.1.6. The strategy of the proof is the same as in Theorem 5.1.2. Let α =
1 − n+3

q
, and ε ∈ (0, ε0) (with ε0 from Proposition 5.6.8) such that γ ≤ 1

2 + α− 17ε.
Let R0 ∈ (0, 1

48) to be chosen later, p = (y′, yn, s) and ρ ∈ (0, R0) such that Q2ρ(p) ⊂ Ω∩Q5/8.
Assume without loss of generality that yn+1 ≥ 0, and let

R := max
{
ρ,
yn+1

8 ,
|yn − Γ(y′, s)|

8

}
.

Then, we distinguish four cases (cf. Proposition 5.6.2).
Case 1. R ≥ R0, and yn > Γ(y′, s) − 8R or yn+1 ≥ 2R. Then, Q2R(p) ⊂ Ω ∩ Q3/4. Now, let

us consider two subcases:

• If yn+1 < 2R, yn = Γ(y′, s) + 8R. Therefore, for all (x, t) ∈ QR(p),

xn ≥ Γ(x′, t) + (7 − 2c0)R > Γ(x′, t) + 6R.

• If yn+1 ≥ 2R, since yn ≥ Γ(y′, s) − 8R, for all (x, t) ∈ QR(p),

xn ≥ Γ(x′, t) − (9 + 2c0)R > Γ(x′, t) − 10R ≥ Γ(x′, t) − 10xn+1.

In both cases it holds that, for all (x, t) ∈ QR(p),

xn − Γ(x′, t) + 10|xn+1| > 0,

and
|xn − Γ(x′, t)| + |xn+1| > 2R.

Hence, by Proposition 5.6.7, v ≥ cm > 0 in QR(p). Furthermore, by Proposition 5.6.2,
∥u∥C0,γ

p (QR(p)) ≤ C and ∥v∥C0,γ
p (QR(p)) ≤ C. Therefore,

∥∥∥∥uv
∥∥∥∥

C0,γ
p (Qρ(p))

≤
∥u∥C0,γ

p (Qρ(p))∥v∥L∞(Qρ(p)) + ∥u∥L∞(Qρ(p))∥v∥C0,γ
p (Qρ(p))

inf
Qρ(p)

v2 ≤ Cm−2.

Case 2. R ≥ R0, yn = Γ(y′, s) − 8R and yn+1 < 2R0. Let

E := Q+
1/8(y′, yn, 0, s) := Q1/8(y′, yn, 0, s) ∩ {xn+1 > 0} ⊂ Q3/4.

Then,
E ∩ {xn+1 = 0} ⊂ {xn ≤ Γ(x′, t), xn+1 = 0}.

Moreover, ρ < R0 <
1
48 , and hence Qρ(p) ⊂ Q+

1/16(y′, yn, 0, s).
We will apply Theorem 5.1.2 with the following functions defined in Q+

1 :

ũ(x, t) := u
(

(y′, yn, 0) + x

8 , s+ t

64

)
and ṽ(x, t) :=

v
(
(y′, yn, 0) + x

8 , s+ t
64

)
∥v∥L∞(Q+

1/8(y′,yn,0,s))
.
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First, ∥ũ∥L∞(Q+
1 ) ≤ 1, v > 0 and ∥ṽ∥L∞(Q+

1 ) = 1, and the domain is a half-space so it has
Lipschitz constant 0. Then, about the right-hand side of the equation,

ũt − ∆ũ = 1
64f1

(
(y′, yn, 0) + x

8 , s+ t

64

)
,

and hence
∥ũt − ∆ũ∥Lq(Q+

1 ) ≤ 8(n+3)/q

64 ∥f∥Lq(Q1) ≤ 1.

Moreover,

ṽ
(
en+1

2 ,−3
4

)
=
v((y′, yn,

1
16),− 3

256)
∥v∥L∞(Q+

1/8(y′,yn,0,s))
≥ c2m

∥v∥L∞(Q+
1/8(y′,yn,0,s))

> 0,

by Proposition 5.6.7.
Therefore, we can apply Theorem 5.1.2 to obtain∥∥∥∥ ũṽ

∥∥∥∥
C0,γ

p (Q+
1/2)

≤ C∥v∥2
L∞(Q+

1/8(y′,yn,0,s))m
−2,

and hence ∥∥∥∥uv
∥∥∥∥

C0,γ
p (Qρ(p))

≤ C∥v∥L∞(Q+
1/16(y′,yn,0,s))m

−2 ≤ Cm−2.

Case 3. R < R0, and yn > Γ(y′, s)−8R or yn+1 ≥ 2R. Then, Q2R(p) ⊂ Ω∩Q3/4. Analogously
to Case 1, we can apply Proposition 5.6.7 to obtain v ≥ cmR1/2+ε in QR(p). Then, the right-
hand side of the equation for u can be estimated in Ln+2 as

∥f1∥Ln+2(Q2R(p)) ≤ R(n+3)(1/(n+2)−1/q)∥f1∥Lq(Q2R(p))

≤ R1/(n+2)+α∥f1∥Lq(Q1) ≤ R1/(n+2)+α,

and analogously ∥f2∥Ln+2(Q2R(p)) ≤ c0mR
1/(n+2)+α.

Now, let φ be the special solution introduced in Proposition 5.6.8, centered at (y′,Γ(y′, s), 0, s).
Then, w1 = u−Kuφ and w2 = v −Kvφ satisfy

∥w1∥L∞(Q2R(p)) ≤ CR1+α and ∥w2∥L∞(Q2R(p)) ≤ CR1+α

by a translation of Proposition 5.6.14.
Finally, we proceed as in the proof of Theorem 5.1.2. By the interior estimates in Theorem

5.2.5, and the growth of v and φ (see Propositions 5.6.7 and 5.6.8), and using that u = w1+Kuφ,
we estimate

[w1/v]C0,γ
p (QR(p)) ≤

[w1]C0,γ
p (QR(p))∥v∥L∞(QR(p)) + ∥w1∥L∞(QR(p))[v]C0,γ

p (QR(p))

inf
QR(p)

v2

≤ C
R1+α−γR1/2−ε +R1+αR1/2−γ−ε

m2R2(1/2+ε) ≤ Cm−2

and

[φ/v]C0,γ
p (QR(p)) ≤

[φ]C0,γ
p

∥w2∥L∞ + [w2]C0,γ
p

∥φ∥L∞

inf(v/φ)2 inf φ2

≤ C
R1/2−ε−γR1+α +R1+α−γR1/2−ε

(mR2ε)2(R1/2+ε)2 ≤ 2Cm−2,
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where we omitted the domain to improve readability, and therefore

[u/v]C0,γ
p (QR(p)) ≤ [w1/v]C0,γ

p (QR(p)) + |Ku|[φ/v]C0,γ
p (QR(p)) ≤ Cm−2.

Case 4. R < R0, yn = Γ(y′, s) − 8R and yn+1 < 2R. Let

E := Q+
6R(y′, yn, 0, s) ⊂ Q3/4.

Then,
E ∩ {xn+1 = 0} ⊂ {xn ≤ Γ(x′, t)}.

Moreover, yn+1 + ρ < 3R, and then Qρ(p) ⊂ Q+
3R(y′, yn, 0, s). As in Case 3, we can apply

Proposition 5.6.14 to obtain w1 = u−Kuφ and w2 = v −Kvφ satisfying

∥w1∥L∞(E) ≤ CR1+α and ∥w2∥L∞(E) ≤ CR1+α.

Assume without loss of generality that C ≥ 36. Now, let x0 = (y′, yn, 0) and let

w̃1(x, t) := w1(x0 + 6Rx, s+ 36R2t)
CR1+α

and ṽ(x, t) := v(x0 + 6Rx, s+ 36R2t)
∥v∥L∞(E)

.

Since yn = Γ(y′, s) − 8R, (y′, yn, 3R, s) ∈ E satisfies

yn − Γ(y′, s) + 10 · 3R ≥ 0,

and by Proposition 5.6.7, v(y′, yn, 3R, s) ≥ cmR1/2+ε, and thus ∥v∥L∞(E) ≥ cmR1/2+ε. There-
fore, ∥w1∥L∞(Q+

1 ) ≤ 1, ∥v∥L∞(Q+
1 ) = 1, and the right-hand sides satisfy

∥(∂t − ∆)w̃1∥Lq(Q+
1 ) = 36R2

CR1+α
(6R)−(n+3)/q∥f1∥Lq(E) ≤ 1

and

∥(∂t − ∆)ṽ∥Lq(Q+
1 ) = 36R2

∥v∥L∞(E)
(6R)−(n+3)/q∥f2∥Lq(E)

≤ 36R2(6R)α−1

cmR1/2+ε
c0m ≤ c0(cmR2ε),

provided that R ≤ R0 is small enough, where we also used that (n+ 3)/q = 1 − α. Finally, by
Proposition 5.6.7, v(x0 + 3Ren, s − 27R2) ≥ cmR1/2+ε which implies ṽ( en

2 ,−
3
4) ≥ cmR2ε, and

also ∥v∥L∞(E) ≤ CR1/2−ε. Thus, by Theorem 5.1.2,

[w̃1/ṽ]C0,γ
p (Q+

1 ) ≤ C(m)R−4ε,

and undoing the scaling,

[w1/v]C0,γ
p (E) ≤ CR1+α

∥v∥L∞(E)
R−γ[w̃1/ṽ]C0,γ

p (Q+
1 ) ≤ C(m)R1/2+α−γ−5ε ≤ C(m).

Consider now

w̃2(x, t) := w2(x0 + 6Rx, s+ 36R2t)
CR1+α

and φ̃(x, t) := φ(x0 + 6Rx, s+ 36R2t)
∥φ∥L∞(E)

.
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By the parabolic homogeneity of φ, we get φ̃( en

2 ,−
3
4) ≥ cR2ε; see Proposition 5.6.8. We also

have that
∥(∂t − ∆)w̃2∥Lq(Q+

1 ) ≤ c0m

by the same reasoning as with w̃1.
By Theorem 5.1.2,

[w̃2/φ̃]C0,γ
p (Q+

1 ) ≤ C(m)R−4ε,

and undoing the scaling,

[w2/φ]C0,γ
p (E) ≤ CR1+α

∥φ∥L∞(E)
R−γ[w̃2/φ̃]C0,γ

p (Q+
1 ) ≤ C(m)R1/2+α−γ−5ε.

On the other hand, by Corollary 5.1.5,

c(m)R4ε ≤ ṽ

φ̃
≤ C(m)R−4ε in Q+

1 ,

which after undoing the scaling (by Proposition 5.6.7) becomes

c(m)R6ε ≤ v

φ
≤ C(m)R−6ε in E.

Hence, we can compute

[φ/v]C0,γ
p (E) ≤

[v/φ]C0,γ
p (E)

inf
E

(v/φ)2 =
[w2/φ]C0,γ

p (E)

inf
E

(v/φ)2

and applying the previous estimates

[φ/v]C0,γ
p (E) ≤ C(m)R1/2+α−γ−17ε ≤ C(m).

Finally, as in Case 3,

[u/v]C0,γ
p (QR(p)) ≤ [w1/v]C0,γ

p (QR(p)) + |Ku|[φ/v]C0,γ
p (QR(p)) ≤ C(m),

as we wanted to prove.

5.7 Applications to free boundary problems

5.7.1 C1,α free boundary regularity for the parabolic obstacle problem
The argument in this proof is standard, we write it for the sake of completeness.

Proof of Corollary 5.1.8. Let e ∈ Rn+1 be a unit vector. Then, since u ∈ C1, ue is a solution
to {

∂tue − ∆ue = fe in {u > 0}
ue = 0 on ∂{u > 0}.
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Let now r > 0 to be chosen later, and define the functions

w1 := ue(rx, r2t)
max{∥ue∥L∞(Qr), Cr}

and w2 := un(rx, r2t)
∥un∥L∞(Qr)

.

Then, ∥w1∥L∞(Q1) ≤ 1, ∥w2∥L∞(Q1) = 1 and w2 > 0. Furthermore, ∥un∥L∞(Qr) ≤ Cr by the C1,1
x

regularity of u, and it follows that

w2

(
en

2 ,−
3
4

)
≥ cd(ren/2,−3r2/4)

Cr
≥ c

4C ,

using that d(ren/2,−3r2/4) ≥ r/4 if the Lipschitz constant of the domain is small enough.
Finally,

∥(∂t − ∆)w1∥Lq(Q1) ≤
r2−(n+2)/q∥∇f∥Lq(Qr)

Cr
≤

∥∇f∥Lq(Q1)

C
r1−(n+2)/q

and
∥(∂t − ∆)w2∥Lq(Q1) ≤

r2−(n+2)/q∥∇f∥Lq(Qr)

un(ren/2,−r2/2) ≤
4∥∇f∥Lq(Q1)

c
r1−(n+2)/q.

Therefore, choosing r > 0 small enough (independent of e) we can apply Theorem 5.1.2 to
w1 and w2 and obtain that w1/w2 ∈ C0,α

p (Q1/2 ∩ {w2 > 0}). Now letting e = ei for all vectors
of the coordinate basis, we obtain that

(∇u, ut)
un

∈ C0,α
p (Qr/2 ∩ {u > 0}) ⊂ C0,α/2(Qr/2 ∩ {u > 0}).

Notice also that the modulus of this function is bounded below by 1.
Now, the normal vector to the level sets {u = t} for t > 0 can be written as

n̂ = (∇u, ut)√
|∇u|2 + u2

t

=
(∇u,ut)

un∣∣∣ (∇u,ut)
un

∣∣∣ ∈ C0,α/2(Qr/2 ∩ {u > 0}),

hence {u = t} is a C1,α/2 hypersurface, and taking the limit as t ↓ 0 (uniformly because u ∈ C1),
we obtain that ∂{u > 0} is C1,α/2 as well.

5.7.2 C1,α free boundary regularity for the parabolic Signorini prob-
lem

In the case of slit domains, the proof has to be slightly modified to account for the different
scaling of the solution.

Proof of Corollary 5.1.9. Let e ∈ Rn+2 be a unit vector. Then, since u ∈ C1, ue is a solution
to {

∂tue − ∆ue = fe in Q1 \ Λ(u)
ue = 0 on Λ(u).

Let now r > 0 to be chosen later, and define the functions

w1 := ue(rx, r2t)
max{∥ue∥L∞(Qr), Cr1/2}

and w2 := un(rx, r2t)
∥un∥L∞(Qr)

.
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Then, ∥w1∥L∞(Q1) ≤ 1, ∥w2∥L∞(Q1) = 1 and w2 > 0. Furthermore, ∥un∥L∞(Qr) ≤ Cr1/2 by the
C3/2

x regularity of u, and it follows that

w2

(
en

2 ,−
3
4

)
≥ cd(ren/2,−3r2/4)1/2

Cr1/2 ≥ c

2C ,

using that d(ren/2,−3r2/4) ≥ r/4 if the Lipschitz constant of the domain is small enough.
Finally,

∥(∂t − ∆)w1∥Lq(Q1) ≤
r2−(n+3)/q∥∇f∥Lq(Qr)

Cr1/2 ≤ ∥∇f∥
C

r3/2−(n+3)/q

and
∥(∂t − ∆)w2∥Lq(Q1) ≤

r2−(n+3)/q∥∇f∥Lq(Qr)

un(ren/2,−r2/2) ≤ 4∥∇f∥
c

r3/2−(n+3)/q.

Therefore, choosing r > 0 small enough (independent of e) we can apply Theorem 5.1.6 to
w1 and w2 and obtain that w1/w2 ∈ C0,α

p (Q1/2 ∩ {w2 > 0}). From here the argument goes on
as in the proof of Corollary 5.1.8.

5.8 The elliptic boundary Harnack with right-
hand side

Applying similar reasoning as in Sections 5.3, 5.4, and 5.5, but using elliptic instead of parabolic
theory, one can arrive to the following result, that generalizes the right-hand sides considered
in [3] and [169] for non-divergence operators.

It is noteworthy that even for the Laplacian, this is the first optimal regularity result for
quotients of solutions in domains that are less regular than C1.

First, let us define a Lipschitz domain in the elliptic setting.

Definition 5.8.1. We say Ω is a Lipschitz domain in BR with Lipschitz constant L if Ω is the
epigraph of a Lipschitz function Γ : B′

R → R, with Γ(0, 0) = 0:

Ω =
{
(x′, xn) ∈ B′

R × (−R,R) | xn > Γ(x′)
}
, ∥Γ∥C0,1 ≤ L.

In this context, we will denote the lateral boundary

∂ΓΩ :=
{
(x, xn) ∈ B′

R × (−R,R) | xn = Γ(x′)
}
,

which is a subset of the topological boundary of Ω.

Remark 5.8.2. To extend the concept of regularized distance to one-sided elliptic Lipschitz
domains, a simple approach is to establish a correspondence between elliptic domains and
time-independent parabolic domains by adding a dummy variable.

Finally, it is worth highlighting that the key difference in the proof is the change in scaling
between the parabolic ABP estimate, Theorem 5.2.4, and its elliptic counterpart, which we
state below.
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Theorem 5.8.3 ([37, Theorem 3.2]). Let L be a non-divergence form operator as in (5.1) and
let u ∈ W 2,n

loc be a solution to Lu = f in Br, with f ∈ Ln(Br).
Then,

sup
Br

u ≤ sup
∂Br

u+ + Cr∥f∥Ln(Br),

where C depends only on the dimension and the ellipticity constants.

Now we are ready to state our main elliptic result.

Theorem 5.8.4. Let 0 < γ < α < α0, m ∈ (0, 1] and let L be a non-divergence form operator
as in (5.1). There exists c0 ∈ (0, 1), only depending on α, γ, the dimension and the ellipticity
constants, such that the following holds.

Let Ω be a Lipschitz domain in B1 in the sense of Definition 5.8.1 with Lipschitz constant
L ≤ c0. Let u and v be solutions to{

Lu = f1 in Ω
u = 0 on ∂ΓΩ and

{
Lv = f2 in Ω
v = 0 on ∂ΓΩ,

and assume that ∥u∥L∞(B1) ≤ 1, ∥v∥L∞(B1) = 1, v > 0, v
(

en

2

)
≥ m, and that fi = gi + hi with

∥d1−αg1∥L∞(B1) + ∥d−αh1∥Ln(B1) ≤ 1

and
∥d1−αg2∥L∞(B1) + ∥d−αh2∥Ln(B1) ≤ c0m,

where d is the regularized distance introduced in Remark 5.8.5.
Then, ∥∥∥∥uv

∥∥∥∥
C0,γ(Ω∩B1/2)

≤ C,

where C depends only on m, α, γ, the dimension and the ellipticity constants.

Remark 5.8.5. The function space considered for the right-hand side is the most general allowed
by our proof. Notice how the weighted Ln+1 norm of the parabolic result translates into a
weighted Ln norm in the elliptic setting, due to the different scaling of the ABP estimate.

By a similar argument to Proposition 5.10.2, Theorem 5.8.4 allows for fi ∈ Lq with q =
n/(1 − α), generalizing [169]. It also allows for |fi| ≤ c0md

α−1 as in [3].

Proof. It follows from the proof of Theorem 5.1.2 and the previous lemmas, using Theorem
5.8.3 instead of Theorem 5.2.4. Notice that if we consider the solution to an elliptic problem
as a stationary solution for the parabolic problem and try to apply Theorem 5.1.2 directly, we
obtain a weaker result.

If we can interchange the roles of u and v, we derive a corollary in a similar manner to the
parabolic case.

Corollary 5.8.6. Let α ∈ (0, α0), m ∈ (0, 1] and let L be a non-divergence form operator as in
(5.1). There exists c0 ∈ (0, 1), only depending on α, the dimension and the ellipticity constants,
such that the following holds.
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Let Ω be a Lipschitz domain in B1 in the sense of Definition 5.8.1 with Lipschitz constant
L ≤ c0. Let u and v be positive solutions to{

Lu = f1 in Ω
u = 0 on ∂ΓΩ and

{
Lv = f2 in Ω
v = 0 on ∂ΓΩ,

and assume that ∥u∥L∞(B1) = ∥v∥L∞(B1) = 1, v
(

en

2

)
≥ m, u

(
en

2

)
≥ m, and that fi = gi + hi

with
∥d1−αgi∥L∞(B1) + ∥d−αhi∥Ln(B1) ≤ c0m,

where d is the regularized distance introduced in Remark 5.8.5.
Then,

1
C

≤ u

v
≤ C in Ω ∩B1/2,

where C depends only on m, α, the dimension and the ellipticity constants.

Remark 5.8.7. The analogous theorems hold for the right notion of elliptic slit domains with a
right-hand side with the same conditions as in Theorem 5.8.4.

5.9 Proof of Corollary 5.1.11
Using the boundary Harnack, we can combine it with the Hopf lemma to get a Hopf-type
estimate for solutions of parabolic equations with a right-hand side. Let us start by defining
Dini continuity and the interior C1,Dini condition.

Definition 5.9.1. We say ω : [0,∞) → [0,∞) is a Dini modulus of continuity if it is nonde-
creasing and there exists r0 > 0 such that

ˆ r0

0
ω(r)dr

r
< ∞.

Definition 5.9.2. Given Ω a parabolic Lipschitz domain in QR, we say Ω satisfies the interior
parabolic C1,Dini condition at 0 if (possibly after a rotation) there exists r0 > 0 and a Dini
modulus of continuity ω such that

{(x′, xn, t) ∈ Qr0 | xn > (|x′| + |t|1/2)ω(|x′| + |t|1/2)} ⊂ Ω.

Our starting point will be the following boundary point lemma for parabolic C1,Dini domains.
We were surprised to not find it in the literature, so we provide it here for completeness. The
proof follows the steps in [147] and relies on a standard iteration scheme.

Theorem 5.9.3. Let L be a non-divergence form operator as in (5.1). Let Ω be a parabolic
Lipschitz domain in Q1 in the sense of Definition 5.2.2, and assume that it satisfies the interior
C1,Dini condition at 0.

Let u be a positive solution to {
ut − Lu = 0 in Ω

u = 0 on ∂ΓΩ,
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and assume that u
(

en

2 ,−
3
4

)
= 1. Then, for all r ∈ (0, δ),

u(ren, 0) ≥ cr,

where c > 0 and δ depend only on the dimension, the ellipticity constants, and the modulus of
continuity of the domain.

We start with an auxiliary lemma for sequences.

Lemma 5.9.4. Let C > 0, and let {ak} and {wk} be sequences of positive real numbers such
that ak+2 = ak+1 − Cwkak. Then, if

∑
wk ≤ 1

2C

(
2 + a1

a2

)−1
,

then ak > a2/6 for all k ≥ 2.

Proof. First, notice that we may assume C = 1 without loss of generality. Then,

a3 = a2 − w1a1 ≥ a2

(
1 − w1

a1

a2

)
> a2

(
1 − 1

2

)
= a2

2 .

Furthermore, if we assume that 2ak+1 > ak,

ak+2 = ak+1

(
1 − wk

ak

ak+1

)
> ak+1

(
1 − ak

4ak+1

)
>
ak+1

2 .

Hence, by induction we see that 2ak+1 > ak for all k ≥ 2.
Now, by iterating the recurrence we also have, for k ≥ 3,

ak > a3(1 − 2w3)(1 − 2w4) · . . . · (1 − 2wk−1),

and since 2wk < 1/2 for all k,

ak > a3e
−4w3e−4w4 · . . . · · · e−4wk−1 > a3e

−4
∑

wj >
a3

e
>
a2

6 ,

where we used that e−2x < (1 − x) for all x ∈ (0, 1/2).

Now we are ready to prove the main statement of the section.

Proof of Theorem 5.9.3. First, from the interior Dini condition we get that there exists r0 > 0
such that

ω(r0) ≤ c0 and
ˆ r0

0
ω(r)dr

r
≤ c0,

where c0 > 0 is a small constant to be chosen later. After scaling, and using the parabolic
Harnack inequality, we may assume r0 = 1 and u(en/2,−1/2) = 1.

Then, we denote
Ω+

r := Ω ∩Qr ∩ {xn > 0}.
By the Hopf lemma for flat boundaries applied to the set {xn > ω(1)}, we obtain u ≥

c1(xn − ω(1)) in Q1/2 ∩ {xn > ω(1)}, and using that u ≥ 0,

u ≥ c1xn − c1ω(1) in Ω+
1/2.
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Let a1 := c1 and b1 := c1ω(1). We will prove by induction that

u ≥ akxn − bk in Ω+
2−k ,

for some positive sequences ak and bk satisfying the recurrence relationsak+1 = ak − 2kCbk

bk+1 = 2−kω(2−k)ak.

Indeed, assume it true for a certain k and let v = u − akxn, which is L-caloric in Ω+
2−k . On

the one hand, v ≥ −bk by induction hypothesis. On the other hand, v ≥ −akxn because u ≥ 0.
Now, let us estimate v in Ω+

2−k−1 from below. To do so, let us define w1 and w2 as
(∂t − L)w1 = 0 in Q2−k ∩ {xn > 0}

w1 = −bk on ∂pQ2−k ∩ {xn > 0}
w1 = 0 on {xn = 0},

and 
(∂t − L)w2 = 0 in Ω ∩Q2−k

w2 = 0 on ∂p(Ω ∩Q2−k) \ ∂ΓΩ
w2 = −akxn on ∂ΓΩ.

Now,

• On ∂p(Ω ∩Q2−k) \ ∂ΓΩ, v ≥ −bk = w1 + w2,

• On ∂ΓΩ ∩ {xn > 0}, v ≥ −akxn = w2 > w1 + w2,

• On {xn = 0} ∩ Ω, v ≥ 0 = w1 > w1 + w2.

Hence, by the comparison principle, v ≥ w1 + w2 in Ω+
2−k .

Then, we estimate w1 by the boundary Lipschitz regularity of solutions (for flat boundaries),
scaling and linearity to obtain

w1 ≥ −Cbk(2kxn) in Q2−k−1 ∩ {xn > 0}

and we estimate w2 with the maximum principle with

w2 ≥ −ak sup
x∈∂ΓΩ∩Q2−k

{xn} ≥ −2−kω(2−k)ak.

Putting everything together one obtains

u ≥ akxn + w1 + w2 ≥ (ak − 2kCbk)xn − 2−kω(2−k)ak in Ω+
2−k−1 .

Moreover, notice that ak+2 = ak+1 − Cω(2−k)ak,

a2 = a1 − 2Cb1 = c1(1 − 2Cω(1)) ≥ c1(1 − 2Cc0) ≥ c1

2 ,

and ∑
ω(2−k) ≤

∑ 1
ln(2)

ˆ 2−k+1

2−k

ω(r)dr
r

≤ c0

ln(2) .
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Hence, choosing c0 small enough we can apply Lemma 5.9.4 and obtain ak ≥ c1/12 for all k.
On the other hand, for k ≥ 2,

bk = 2−k+1ak−1ω(2−k+1) ≤ 2−k+1c1c0,

using that ak is decreasing and ω is nondecreasing. Now if we choose c0 ≤ 1/96, we have
bk ≤ 2−k−2ak for all k ≥ 2, and then for all r ∈ [2−k−1, 2−k),

u(ren, 0) ≥ akr − bk ≥ ak(r − 2−k−2) ≥ akr

2 ≥ c1

24r,

and the conclusion follows.

Finally, after combining it with the boundary Harnack and the near-linear solution from
Section 5.4, we can prove our Hopf lemma for equations with right-hand side.

Proof of Corollary 5.1.11. Let φ be the special solution defined in Proposition 5.4.1, and as-
sume that φ(en/2,−1/2) = 1 after normalizing. From Theorem 5.9.3, for all r ∈ (0, δ) and
some c > 0,

φ(ren, 0) ≥ cr.

Then, divide u by a constant so that ∥u∥L∞(Q1) = 1. Now we can apply Corollary 5.1.5 to φ
and u to obtain

φ

u
≤ C in Q1/2,

and hence
u(ren, 0) ≥ C−1φ(ren, 0) ≥ C−1cr,

for all r ∈ (0,min{1/2, δ}).

5.10 Appendix: Auxiliary results

5.10.1 The space of the right-hand sides
We will prove an interpolation inequality between weighted Lp spaces that seems classical but
we were not able to find in the literature.

Lemma 5.10.1. Let α ∈ (0, 1), p ≥ 1, and let q = (p+ 1)/(1 − α). Let f ∈ Lq((0, 1)). Then,

inf
λ>0

λ+
(ˆ 1

0
(|f | − λxα−1)p

+x
−1−pαdx

) 1
p

 ≤ 2∥f∥Lq((0,1)).

In particular,
Lq ⊂ Lp((0, 1);x− 1

p
−α) + L∞((0, 1);x1−α).

Proof. Assume without loss of generality that f ≥ 0. Then, let us do the change of variables
t = (pxp)−1, and let us also define h : (1

p
,∞) → R as the function satisfying

f(x) = xα−1h(t).
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On the one hand,

∥h∥q
Lq =

ˆ ∞

1
p

h(t)qdt =
ˆ 1

0
(f(x)x1−α)q dx

xp+1 =
ˆ 1

0
f(x)qdx = ∥f∥q

Lq .

On the other hand,
ˆ 1

0
(f(x) − λxα−1)p

+x
−1−pαdx =

ˆ ∞

1
p

(h(t) − λ)p
+x

p(α−1)x−1−pαxp+1dt

=
ˆ ∞

1
p

(h(t) − λ)p
+dt = ∥(h− λ)+∥p

Lp .

Therefore, it suffices to prove that, given 1 ≤ p ≤ q,

inf
λ>0

[λ+ ∥(h− λ)+∥Lp ] ≤ 2∥h∥Lq .

For that purpose, we estimate

∥(h− λ)+∥p
Lp ≤

ˆ
(h− λ)p

+ ≤
ˆ
χ{h>λ}

hq

λq−p
≤ λp−q

ˆ
hq = λp−q∥h∥q

Lq .

Then, if we consider λ = ∥h∥Lq ,

inf
λ>0

[λ+ ∥(h− λ)+∥Lp ] ≤ inf
λ>0

[
λ+ λ1−q/p∥h∥q/p

Lq

]
≤ 2∥h∥Lq .

As a consequence, we can interpolate between the weighted Lebesgue spaces used in the
one-sided boundary Harnack.

Proposition 5.10.2. Let α ∈ (0, 1), q = (n + 2)/(1 − α), and let Ω be a parabolic Lipschitz
domain in Q1 in the sense of Definition 5.2.2. Let f ∈ Lq(Ω).

Then, there exist g, h : Ω → R such that f = g + h and

∥d1−αg∥L∞(Ω) + ∥d−1/(n+1)−αh∥Ln+1(Ω) ≤ 2∥f∥Lq(Ω),

where d(x′, xn, t) = xn − Γ(x′, t).

Proof. Consider the bi-Lipschitz change of variables (y′, yn, s) = (x′, xn − Γ(x′, t), t). Then, it
suffices to apply Lemma 5.10.1 with p = n+ 1 in the variable yn and integrate in y′ and s.

5.10.2 The regularized distance
We will give some ideas on how the construction of the regularized distance is done.

Sketch of the proof of Lemma 5.3.2. We follow the construction in [149, Section IV.5]. Let
φ ∈ C∞(B1) and η ∈ C∞((0, 1)) be nonnegative cutoff functions with

ˆ
Rn

φ =
ˆ
R
η = 1.
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Let A = 4
√
L2 + 1 and K = ∥η′∥L1(0,1). We then define

F (x, t, ρ) = xn −
ˆ
Rn

ˆ
R

Γ
(
x′ − ρ

A
y, t− ρ2

2(1 +K)2A2 s

)
η(s)φ(y)dsdy.

Recall that ∂ΓΩ = {xn = Γ(x′, t)}.
Then, it can be shown that for each (x, t) ∈ Ω∩Q1, there is a unique ρ such that F (x, t, ρ) = ρ,

and we choose d(x, t) to be equal to this ρ.
From the proof in [149, Section IV.5], we obtain

1
2(xn − Γ(x′, t)) ≤ d ≤ 3

2(xn − Γ(x′, t)),

∂nd ≥ 2
3 and |∇xd| ≤ A

2 .

To obtain the last estimate, one needs to proceed as in [148, Theorem 3.1], notice that since
L ≤ 1, A ∈ [4, 4

√
2] and it can be absorbed into C2, and since Γ is not parabolic C1 but only

parabolic Lipschitz, one needs to repeat the computations done with the modulus of continuity
of ∇xΓ substituting it by appropriate expressions concerning the regularity of Γ.

Indeed,
|∇xΓ(x1, t1) − ∇xΓ(x2, t2)| ≤ ξ(|x1 − x2|) + ξ(|t1 − t2|1/2)

becomes
|∇xΓ(x1, t1) − ∇xΓ(x2, t2)| ≤ 2∥∇xg∥L∞ = 2L,

and
|Γ(x, t1) − Γ(x, t2)| ≤ |t1 − t2|1/2ξ(|t1 − t2|1/2)

becomes
|Γ(x, t1) − Γ(x, t2)| ≤ L|t1 − t2|1/2.

After these changes, carrying out the rest of the computations in the proof of [148, Theorem
3.1] one can deduce that

|∂td| + |D2
xd| ≤ C2L

d
.

5.10.3 Blow-up construction
Let us prove how we can construct the blow-up.

Proof of Lemma 5.5.2. First, by the definition of θ, θ(r) < ∞ for each r > 0 because ∥uj∥L∞(Q1) ≤
1, ∥φj∥L∞(Q1) = 1, the Kr,j are bounded for a fixed r, and by hypothesis lim

r→0
θ(r) = ∞.

Then, for every positive integer m, there exist ρm ≥ 1/m and jm such that

ρ−β
m ∥ujm −Kρm,jmφjm∥L∞(Qρm ) ≥ 1

2θ(1/m) ≥ 1
2θ(ρm).

Let us choose ρm ↓ 0 as follows: if θ(1/(m + 1)) = θ(1/m), we take ρm+1 = ρm, and if
θ(1/(m+ 1)) > θ(1/m), then there is a suitable ρm+1 ∈ [1/(m+ 1), 1/m).
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To compute the growth of the wm, we first need to estimate ∥(K2r,j −Kr,j)φj∥L∞(Qr). Indeed,
using the definition of θ,

∥K2r,jφj −Kr,jφj∥L∞(Qr)

rβθ(r) ≤ 2βθ(2r)
θ(r)

∥K2r,jφj − uj∥L∞(Q2r)

(2r)βθ(2r) + ∥uj −Kr,jφj∥L∞(Qr)

rβθ(r)
≤ 2β + 1.

Hence, ∥(K2r,j −Kr,j)φj∥L∞(Qr) ≤ Crβθ(r). Analogously, for any µ ∈ [1, 2],

∥(Kµr,j −Kr,j)φj∥L∞(Qr) ≤ Crβθ(r).

Furthermore, given 1 ≤ a ≤ b,

∥(K2ar,j −Kar,j)φj∥L∞(Qbr) ≤ |K2ar,j −Kar,j|∥φj∥L∞(Qbr)

≤ c−1
1 |K2ar,j −Kar,j|(b/a)γ∥φj∥L∞(Qar)

≤ c−1
1 (b/a)γ∥(K2ar,j −Kar,j)φj∥L∞(Qar)

≤ C(ar)β(b/a)γθ(ar) ≤ Crβaβ−γbγθ(r).

Our next step is the following computation. If R = 2NR0 ≤ 1/r with R0 ∈ [1, 2),

∥(KRr,j −Kr,j)φj∥L∞(QRr) ≤ ∥(KR0r,j −Kr,j)φj∥L∞(QRr)

+
N−1∑
m=0

∥(K2m+1R0r,j −K2mR0r,j)φj∥L∞(QRr)

≤ CRγrβθ(r) + CRγrβθ(r)
N−1∑
m=0

(2mR0)β−γ

≤ CRγrβθ(r) + CRγrβθ(r)Rβ−γ ≤ C(Rr)βθ(r).

Finally, for any 1 ≤ R ≤ 1/ρm,

∥wm∥L∞(QR) =
∥ujm −Kρm,jmφjm∥L∞(QRρm )

∥ujm −Kρm,jmφjm∥L∞(Qρm )

≤
2∥ujm −Kρm,jmφjm∥L∞(QRρm )

ρβ
mθ(ρm)

≤
2Rβ∥ujm −KRρm,jmφjm∥L∞(QRρm )

(Rρm)βθ(ρm)

+
2∥KRρm,jmφjm −Kρm,jmφjm∥L∞(QRρm )

ρβ
mθ(ρm)

≤ 2Rβθ(Rρm)
θ(ρm) + CRβ ≤ CRβ.
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5.10.4 Homogeneous solutions in the complement of thin cones
We will prove Proposition 5.6.3. Let us change a bit the notation for convenience of the proof.
If φ is a positive solution to

∂tφ− ∆φ = 0 in Q1 \ Cη,

where
Cη := {xn ≤ η(|x′| + |t|1/2), xn+1 = 0},

and φ satisfies φ(λx, λ2t) = λκφ(x, t), for some κ, then κ is uniquely determined (as a function
of η).

Indeed, we can write φ(x, t) = |t|κ/2ϕ(x/|t|1/2), and ϕ solves the following eigenvalue problem
for the Ornstein-Uhlenbeck operator (see [103, Lemma 5.8]):{

LOUϕ+ κ
2ϕ = 0 in Rn+1 \ C̃η

ϕ = 0 on C̃η,
(5.8)

where
C̃η = {xn ≤ η(|x′| + 1), xn+1 = 0}

and
LOUϕ(x) := ∆ϕ(x) − x

2 · ∇ϕ(x) = e|x|2/4 Div(e−|x|2/4∇ϕ).

Since ϕ is positive, it is the first eigenfunction for LOU in this domain, and therefore by the
Rayleigh quotient characterization,

κ

2 = inf
u∈C0,1

c (Rn+1\C̃η), ∥u∥
L2

w
=1

ˆ
|∇u|2e−|x|2/4, (5.9)

where
∥u∥2

L2
w

:=
ˆ
u2e−|x|2/4

and the infimum is attained by a unique function ϕη ∈ L2
w by standard arguments.

Now we are ready to start the proof of Proposition 5.6.3. First we will show the stability of
minimizers of the Rayleigh quotient, in the following sense:

Lemma 5.10.3. Let η ∈ (−1
3 ,

1
3) and let κ = κ(η) as in (5.9). Then, for all ε > 0 there exists

δ > 0 such that if ∥u∥L2
w

= 1, u vanishes on C̃η and
ˆ

|∇u|2e−|x|2/4 <
κ

2 + δ,

then
∥u− ϕη∥L2

w
< ε.

Proof. Consider the spectral decomposition of −LOU in the domain Rn+1 \ C̃η, so that the
eigenvalues are

0 < κ

2 < κ2 ≤ . . .

and the eigenfunctions are
{ϕη, ϕη,2, . . .}
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and form an orthonormal basis with respect to the weighted scalar product

⟨f, g⟩ =
ˆ
fge−|x|2/4.

Then, if we write u = αϕη +∑
ciϕη,i,ˆ

|∇u|2e−|x|2/4 = −
ˆ
uLOUu = α2κ

2 +
∑

c2
iκi <

κ

2 + δ.

On the other hand,
1 = ∥u∥2

L2
w

= α2 +
∑

c2
i ,

and then ∑
c2

iκi <
∑

c2
i

κ

2 + δ ⇒
∑

c2
i

(
κi − κ

2

)
< δ,

so it follows that
∥u− ϕη∥2

L2
w

= 2
∑

c2
i <

δ

κ2 − κ/2 < ε,

as required.

Then, we see the monotonicity and continuity of the eigenvalue with respect to the domain.

Lemma 5.10.4. Let κ : (−1
3 ,

1
3) → R as in (5.9). Then, κ is strictly increasing and continuous.

Proof. First we prove the monotonicity. Let −1
3 < η1 < η2 < 1

3 . Then, C̃η1 ⊂ C̃η2 , so
Rn+1 \ C̃η2 ⊂ Rn+1 \ C̃η1 , and since the infimum in the Rayleigh quotient is taken over more
functions in the case of η1, we get κ(η1) ≤ κ(η2).

Now, if κ(η1) = κ(η2), this means that ϕη2 is a solution to (5.8) with η1. But ϕη2 is identically
zero in C̃η2 \ C̃η1 , and hence we have a solution to an elliptic equation that vanishes in an open
subset of the domain, contradicting the strong maximum principle. Therefore it cannot be
κ(η1) = κ(η2) and it must be κ(η1) < κ(η2).

On the other hand, to prove continuity we will obtain an upper bound for κ(η2) in terms of
κ(η1) by deforming the domain and the solution for η1 to get a competitor.

Let
α = arctan(η2) − arctan(η1) < 2 arctan(1/3) < π/3,

and define τ : S1 → S1 as

τ(θ) =


(
1 + 3α

π

)
θ |θ| ≤ π

3 ,

θ + α sgn(θ) π
3 < |θ| ≤ 2π

3 ,(
1 − 3α

π

)
θ + 3α sgn(θ) 2π

3 < |θ|.

Then, let ρ : R2 → R2 be defined in polar coordinates as ρ(r, θ) = (r, τ(θ)), and let J : R2 → R2

defined as J(x, y) = (y, x). Thus,

ψ(x1, . . . , xn−1, xn, xn+1) := ϕη1(x1, . . . , J(ρ(J(xn−1, xn))), xn+1)

is a positive function that vanishes on C̃η2 , and we can get an upper bound for κ(η2) by
computing the value of its Rayleigh quotient, i.e.

κ(η2)
2 ≤ 1

∥ψ∥L2
w

ˆ
|∇ψ|2e−|x|2/4.
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Observe that the deformation of space introduced by ρ changes volume in a factor of 1 + 3α
π

, 1
or 1 − 3α

π
. Hence, by scaling we obtain the following estimates:

∥ψ∥L2
w

≥
(

1 − 3α
π

)
∥ϕη1∥L2

w
= 1 − 3α

π

and ˆ
|∇ψ|2e−|x|2/4 ≤

(
1 − 3α

π

)−1 ˆ
|∇ϕη1|2e−|x|2/4 ≤

(
1 − 3α

π

)−1 κ(η1)
2 ,

and combining them we get

κ(η1) < κ(η2) ≤
(

1 − 3
π

(arctan(η2) − arctan(η1))
)−2

κ(η1),

which already implies that κ is continuous.

To conclude, we write the following:

Proof of Proposition 5.6.3. Let κ : (−1
3 ,

1
3) → R as in Lemma 5.10.4, that is strictly increasing

and continuous, and observe that κ(0) = 1 because φ0(x, t) := Re(
√
xn + ixn+1) is the solution

to the original parabolic problem for η = 0.
Then, there exists ε0 > 0 such that κ−1 : (1−2ε0, 1+2ε0) → [−1

4 ,
1
4 ] is well defined, continuous

and strictly increasing. Moreover, for any ε ∈ (−ε0, ε0), let

φε(x, t) := φ̃ε

∥φ̃ε∥L∞(Q1)
:= |t|1/2+εϕη(x/|t|1/2)

∥|t|1/2+εϕη(x/|t|1/2)∥L∞(Q1)
,

where η = κ−1(1 + 2ε). To see that φε is well defined, we need to check that φ̃ε ∈ L∞(Q1) and
that it is not identically zero in Q1.

First, recall that φ̃ε is a positive solution to the heat equation in Rn+2 \Cη that vanishes on
Cη, so in particular it is a subsolution in the full space. Now, φ̃ε(·,−1) ≡ ϕη, and then, for all
(x, t) ∈ Q1/2,

φ̃ε(x, t) ≤ C

ˆ
ϕη(y)e−|x−y|2/4 ≤ C

(ˆ
e−|x−y|2/6

)1/2 (ˆ
ϕη(y)2e−|x−y|2/3

)1/2

≤ C

(ˆ
ϕη(y)2e−|y|2/4

)1/2

= C,

where we used that for all x ∈ B1/2,

−|x− y|2

3 ≤ C − |y|2

4 .

Hence, by homogeneity, ∥φ̃ε∥L∞(Q1) ≤ 21/2+εC.
On the other hand, since for all −1

3 < η1 < η2 <
1
3 , ϕη2 vanishes on C̃η1 , by Lemmas 5.10.3

and 5.10.4,
lim

η2→η1
∥ϕη2 − ϕη1∥L2

w
= 0.

Now, let E = B1 ∩ {|xn+1| ≥ 1
4(n+1)}. We claim that, for all η ∈ [−1

4 ,
1
4 ], ∥ϕη∥L∞(E) ≥ c > 0,

where c is independent of η. Let us prove it by contradiction. If not, there would exist {ηk}
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such that ∥ϕηk
∥L∞(E) < 1/k, and therefore, after choosing a subsequence, ηkm → η0 ∈ [−1

4 ,
1
4 ],

and by continuity ϕηkm
→ ϕη0 strongly in L2

w, and hence ϕη0 ≡ 0 in E, contradicting the strong
maximum principle.

Furthermore, by the parabolic interior Harnack inequality, φ̃ε ≥ c′ in the set Q1/2 ∩ {xn+1 ≥
1

4(n+1)}, and by homogeneity φ̃ε ≥ c′ also in Q2 ∩ {|xn+1| ≥ 1
n+1}.

Therefore, for all ε ∈ (−ε0, ε0), φ̃ε ≥ c′ in Q2 ∩{|xn+1| ≥ 1
n+1} and ∥φ̃ε∥L∞(Q1) ≤ C, and thus

the conclusion follows.
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