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Abstract

This thesis concerns three problems of geometric realizations of combinatorial structures
via polytopes and polyhedral subdivisions. A polytope is the convex hull of a finite set of
points in a Euclidean space Rd. It is endowed with a combinatorial structure coming from
its faces. A subdivision is a collection of polytopes whose faces intersect properly and such
that their union is convex. It is regular if it can be obtained by taking the lower faces of a
lifting of its vertices in one dimension higher.

We first present a new geometric construction of many combinatorially different poly-
topes of fixed dimension and number of vertices. This construction relies on showing that
certain polytopes admit many regular triangulations. It allows us to improve the best
known lower bound on the number of combinatorial types of polytopes.

We then study the projections of permutahedra, that we call sweep polytopes because
they model the possible orderings of a fixed point configuration by hyperplanes that sweep
the space in a constant direction. We also introduce and study a combinatorial abstraction
of these structures: the sweep oriented matroids, that generalize Goodman and Pollack’s
theory of allowable sequences to dimensions higher than 2.

Finally, we provide geometric realizations of the s-weak order, a combinatorial structure
that generalizes the weak order on permutations, parameterized by a vector s ∈ (Z>0)n.
In particular, we answer Ceballos and Pons’s conjecture that the s-weak order can be
realized as the edge-graph of a polytopal complex that is moreover a subdivision of a
permutahedron.

Keywords: polytopes, polyhedral combinatorics, regular subdivisions, geometric realiza-
tions, triangulations, permutahedra, oriented matroids, allowable sequences of permu-
tations, sweep algorithms, monotone path polytopes, generalized Baues problem, flow
polytopes, Cayley trick, tropical geometry, s-weak order, s-decreasing trees, Stirling s-
permutations.



Résumé

Cette thèse concerne trois problèmes de réalisations géométriques de structures combi-
natoires par des polytopes et des subdivisions polyédrales. Un polytope est l’enveloppe
convexe d’un ensemble fini de points dans un espace euclidien Rd. Il est muni d’une struc-
ture combinatoire donnée par ses faces. Une subdivision est une collection de polytopes
dont les faces s’intersectent correctement et dont l’union est convexe. Elle est régulière si
elle peut être obtenue en prenant les faces inférieures d’un relèvement de ses sommets dans
une dimension de plus.

Nous présentons d’abord une nouvelle construction géométrique d’un grand nombre de
polytopes combinatoirement distincts, de dimension et nombre de sommets fixés. Cette
construction consiste à montrer que certains polytopes admettent un grand nombre de
triangulations régulières. Elle nous permet d’améliorer la meilleure borne inférieure connue
sur le nombre de types combinatoires de polytopes.

Nous étudions ensuite les projections du permutoèdre, nommées polytopes de balayage
(sweep polytopes) parce qu’elles modélisent les manières d’ordonner une configuration de
points fixée en balayant l’espace par des hyperplans dans une direction constante. Nous
introduisons également et étudions une abstraction combinatoire de ces structures : les
matröıdes orientés de balayage, qui généralisent en dimension supérieure à 2 la théorie des
suites admissibles de Goodman et Pollack.

Enfin, nous proposons des réalisations géométriques du s-ordre faible, une structure
combinatoire qui généralise l’ordre faible sur les permutations, paramétrée par un vecteur
s ∈ (Z>0)n. En particulier, nous résolvons une conjecture de Ceballos et Pons en montrant
que le s-permutoèdre peut être réalisé comme le graphe d’un complexe polytopal qui est
une subdivision du permutoèdre.

Mots-clés : polytopes, combinatoire polyédrale, subdivisions régulières, réalisations
géométriques, triangulations, permutoèdres, matröıdes orientés, suites admissibles de per-
mutations, algorithmes de balayage, polytopes des chemins monotones, problème de Baues
généralisé, polytopes de flots, astuce de Cayley, géométrie tropicale, s-ordre faible, s-arbres
décroissants, s-permutations de Stirling.



Resumen

Esta tesis se centra en tres problemas de realizaciones geométricas de estructuras combina-
torias usando politopos y subdivisiones poliedrales. Un politopo es la envolvente convexa
de un conjunto finito de puntos en un espacio Eucĺıdeo Rd. Tiene una estructura combi-
natoria dada por sus caras. Una subdivisión es una colección de politopos cuyas caras se
intersecan correctamente y cuya unión es convexa. Es regular si se puede obtener con las
caras inferiores de un levantamiento de sus vértices en una dimensión más.

Primero, presentamos una nueva construcción geométrica de un gran número de poli-
topos combinatoriamente distintos, con dimensión y número de vértices fijados. Esta con-
strucción consiste en mostrar que ciertos politopos admiten un gran número de triangu-
laciones regulares. Nos permite mejorar la mayor cota inferior conocida en el número de
tipos combinatorios de politopos.

A continuación estudiamos las proyecciones del permutaedro, llamadas politopos de
barrido (sweep polytopes) porque modelan las posibles ordenaciones de una configuración
de puntos fijada inducidas por el barrido con hiperplanos que recorren el espacio en una
dirección constante. Introducimos también y estudiamos una abstracción combinatoria de
estas estructuras: las matroides orientadas de barrido, que generalizan en dimensión mayor
que 2 la teoŕıa de secuencias admisibles de Goodman y Pollack.

Por último, proporcionamos realizaciones geométricas del s-orden débil, una estructura
combinatoria que generaliza el orden débil en permutaciones, parametrizada por un vector
s ∈ (Z>0)n. En particular, resolvemos una conjetura de Ceballos y Pons mostrando que se
puede realizar el s-permutaedro como el grafo de aristas de un complejo politopal que es
una subdivisión del permutaedro.

Palabras clave: politopos, combinatoria poliedral, subdivisiones regulares, realizaciones
geométricas, triangulaciones, permutaedros, matroides orientadas, secuencias admisibles
de permutaciones, algoritmos de barrido, politopos de caminos monotones, problema de
Baues generalizado, politopos de flujos, truco de Cayley, geometŕıa tropical, s-orden débil,
s-árboles decrecientes, s-permutaciones de Stirling.
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Introduction

Context

The present thesis finds its place at the crossroads between combinatorics and geometry.
Roughly speaking, combinatorics is the science of studying (with the many senses this verb
can take) mathematical discrete objects, that is, objects that we can count. Geometry, the
science of shapes, spaces and measures, can have many different flavors. Here we consider
Euclidean geometry, which looks like the geometry we do at elementary school but in a
space Rd that can have any arbitrary (finite) dimension d ∈ N.

Polytopes are the generalization in these higher dimensional spaces of the convex poly-
gons of dimension 2 and convex polyhedra in dimension 3. Like them, their boundary is
partitioned into faces of different dimensions: vertices of dimension 0, edges of dimension
1, faces of dimension 2, 3, . . . , d−1. The structure of these faces defines the combinatorial
type of a polytope and raises many fascinating questions of a combinatorial nature. For
example, in Chapter 2 of this thesis we will deal with the question of counting the number
of possible combinatorial types of polytopes, which is already hard in dimensions higher
than 3.

Besides studying the combinatorial properties of geometric structures, one can ask the
reverse question: given a family of objects with a combinatorial structure, can we find a
geometric object that reflects this structure? Indeed, having geometric realizations sheds
new lights on the combinatorial objects we are studying. Two important examples of
polytopes related to fundamental combinatorial structures are the permutahedron, whose
vertices are related to permutations and whose edge-graph is related to the weak order,
and the associahedron, whose vertices are related to Catalan objects (such as planar binary
trees, parenthesized words, Dyck paths, triangulations of polygons, ...) and whose edge-
graph is related to the Tamari lattice. We devote Section 1.4 of the preliminaries to present
several ways to realize the permutahedron geometrically, that will be generalized with the
realizations of the sweep polytope (Chapter 3) and the s-permutahedron (Chapter 4).

The constructions presented in this thesis are all related to subdivisions, and more pre-
cisely regular subdivisions. To put it roughly, a subdivision of a polytope P is a collection
of subpolytopes whose union is P and such that they intersect nicely. A triangulation is
a subdivision that is as fine as possible, i.e. all the subpolytopes are simplices. Similarly
to polytopes, subdivisions (or more generally polytopal complexes) are geometric objects
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18 Introduction

with an intrinsic combinatorial face structure, and we can ask for the realizability of com-
binatorial structures in terms of polytopal complexes. Regular subdivisions are a particular
family of subdivisions, which enjoy special geometric properties that will be important for
us: they can be obtained by lifting the polytope in one dimension higher, they can be du-
alized, and the set of all regular subdivisions of a polytope are encoded into the secondary
polytope.

Outline of the thesis and contributions

This thesis is divided into four chapters. The first one provides preliminary background
and the next three present three projects that I worked on during my PhD, in collaboration
with several people. These three chapters can be read independently and each one starts
with its own introduction. We give an outline of their content below.

Chapter 1: Preliminaries

We give an overview of the main mathematical notions involved in this thesis.

In Section 1.1 we provide some background definitions in discrete geometry, starting
with the purely combinatorial notions of partially ordered sets and lattices, then turning to
polytopes, polyhedral complexes and subdivisions. We end this section with the Cayley trick,
a technique that gives a correspondence between two families of subdivisions of different
polytopes.

In Section 1.2 we focus on regular subdivisions of point configurations and provide
three geometric realizations associated to them. First, we define a regular subdivision as a
polytopal complex obtained by lifting a point configuration to a polytope in one dimension
higher. Secondly, we show that such a regular subdivision with a lifting function can
be dualized, and a convenient language to express this dualization is given by tropical
geometry. Finally, we present the secondary polytope, a polytope which encodes all regular
subdivisions of a point configuration.

In Section 1.3 we look at subdivisions that arise from projections. Within this more
general framework, we present the fiber polytope, which generalizes both the secondary
polytope and the monotone path polytope. We also introduce the generalized Baues problem,
which deals with the topology of refinement posets of subdivisions.

In Section 1.4, we present the permutahedron. We first describe the combinatorial struc-
ture of this polytope, which is related to the weak order and to ordered partitions. Then we
provide several geometric constructions: explicit coordinates of the vertices, zonotope dual
to the braid arrangement, monotone path polytope of the cube, and dual of a triangulation
of the cube. We also give a few explanations on the associahedron and its connections to
the permutahedron.
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Chapter 2: Many polytopes and many regular triangulations

This chapter is based on the article [PPS23], written with my advisors Arnau Padrol and
Francisco Santos.

We address the problem of estimating the number of combinatorial types of polytopes
of fixed dimension and number of vertices. Except for dimension 2 and 3, precise numbers
and estimations seem out of reach, but one can look for asymptotic bounds. It was known
from previous works that the number of different labeled combinatorial types of d-polytopes
with n vertices for fixed d > 3 and n growing to infinity is at most (n!)d

2±o(1) and at least
(n!)bd/2c±o(1). Our main result is an improvement of this lower bound, to (n!)d−2±o(1).

We first show that certain polytopes, that can be built by adding vertices iteratively in
a controlled way, admit many regular triangulations. This allows us to improve the best
known lower bound on the maximal number of regular triangulations of a point configu-
ration. For instance, we show that there are realizations of the cyclic d-polytope with n

vertices that admit at least (n!)b
d−1

2 c±o(1) regular triangulations.
Then, we show that the lexicographic lifting construction previously used by Padrol to

build many polytopes has the properties that ensure having many regular triangulations.
By adding a vertex and a dimension to all these regular triangulations, we obtain the many
combinatorially distinct polytopes that give the lower bound.

Chapter 3: Sweep polytopes and sweep oriented matroids

This chapter is based on the article [PP23], written with my advisor Arnau Padrol.
The motivation of this work was to provide combinatorial models for point configura-

tions by means of their sweeps, and generalize in higher dimension Goodman and Pollack’s
theory of allowable sequences (2-dimensional case). A sweep of a point configuration is an
ordered partition obtained by recording in which order the points are hit by a hyperplane
that sweeps the space in a constant direction.

We first give geometric realizations of the poset of all sweeps of a point configuration
in terms of its sweep hyperplane arrangement and its sweep polytope. We provide several
constructions of the sweep polytope: zonotope dual to the sweep hyperplane arrangement,
projection of a permutahedron, monotone path polytope of a zonotope.

Since we have a hyperplane arrangement, it is natural to associate to this structure an
oriented matroid, that we call the sweep oriented matroid of the considered point configura-
tion. Oriented matroids (also known as order types or chirotopes) are purely combinatorial
structures that abstract some properties of point configurations over the reals, real hyper-
plane arrangements, linear programming and directed graphs. An oriented matroid consists
of a set of vectors in {0,+,−}E that satisfies certain axioms, for a finite ground set E.
The usual oriented matroid associated to a configuration A of n labeled points in Rd, that
we call the little oriented matroid of A, has ground set [n] and rank d+ 1. In comparison,
the sweep oriented matroid of A has ground set

(
[n]
2

)
(the set of pairs of elements in [n])

and rank d. We show that it is a finer invariant. We give a purely axiomatic description
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of sweep oriented matroids, beyond the realizable cases coming from point configurations.
Any such sweep oriented matroid is still associated to a little oriented matroid, which is
not necessarily realizable anymore.

We give a characterization of oriented matroids that are sweep oriented matroids in
terms of the existence of a tight modular hyperplane. We provide an example of an oriented
matroid that is not sweepable: it cannot be obtained as the little oriented matroid of a
sweep oriented matroid. We relate sweep oriented matroids to the Dilworth truncation
operation in (unoriented) matroid theory and this allows us to give an upper bound on the
number of sweep permutations (the maximal covectors) of a sweep oriented matroid.

Then, we turn to the study of pseudo-sweeps: a generalization of sweeps in which the
sweeping hyperplane is allowed to slightly change direction. This notion can be extended to
arbitrary oriented matroids, in terms of cellular strings. We prove the strong Generalized
Baues Problem for cellular strings of sweepable oriented matroids.

Finally, we introduce a second combinatorial abstraction of the posets of sweeps of point
configurations: the allowable graphs of permutations. They are symmetric sets of permu-
tations pairwise connected by allowable sequences. They have the structure of acycloids
and include sweep oriented matroids but it is open whether they are exactly the same as
sweep oriented matroids or contain more elements.

Let us mention here that our work on sweep polytopes also gave rise to a collaboration
in quantum physics with mathematicians Federico Castillo and Jean-Philippe Labbé and
physicists Julia Liebert and Christian Schilling [CLL+23]. To put it in a nutshell, it ap-
peared that a special case of lineup polytope (a variant of sweep polytope) is exactly the set
of spectra of the convex hull of 1-body reduced density matrices that come from a system of
many particles with fixed energy levels. This result provided an effective way to compute
constraints that generalize the famous Pauli’s exclusion principle “No two fermions can
occupy at the same time the same quantum state”. We chose not to include more material
on this subject in the present manuscript because it would require to introduce a heavy
formalism on quantum physics.

Chapter 4: Geometric realizations of the s-weak order and its quo-

tients

The first three sections of this chapter rely on the article [GDMP+23], written with Rafael
S. González D’León, Alejandro H. Morales, Daniel Tamayo Jiménez and Martha Yip.

We provide three geometric realizations of the s-weak order for any s ∈ (Z>0)n. This
lattice structure was introduced by Ceballos and Pons as a generalization of the usual weak
order on permutations that mimicks the generalization of the Tamari lattice to the ν-Tamari
lattice. The objects of this lattice structure can be defined in terms of s-decreasing trees or
in terms of Stirling s-permutations. The usual weak order is recovered with s = (1, . . . , 1).
In our first realization, the Hasse diagram of the s-weak order is obtained as the dual graph
of a DKK triangulation of the flow polytope of the oruga graph. Along the way, we prove
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a few new results about the structure of the oriented dual graphs of DKK triangulations
for general flow polytopes. In particular we provide a Lidskii-type decomposition of these
graphs.

The Cayley trick allows us to show that the Hasse diagram of the s-weak order is also
the dual graph of a certain mixed subdivision of cubes. Finally, we apply tropical dualiza-
tion to this mixed subdivision and obtain a realization of the s-permutahedron (a polytopal
complex whose edge-graph is the Hasse diagram of the s-weak order) as a subdivision of the
n-permutahedron. This third construction answers a first conjecture by Ceballos and Pons.

The last section of this chapter sketches lines of research that were recently being
developed to provide geometric realizations of the lattice quotients of the s-weak order.
Indeed, similarly to the Tamari lattice and the weak order, Ceballos and Pons showed
that the s-Tamari lattice is a lattice quotient of the s-weak order and they conjectured
that certain realizations of the s-associahedron could be obtained by removing facets from
certain realizations of the s-permutahedron.

With Vincent Pilaud, we adapted in the article [PP24] the tools developed to realize
the quotients of the weak order (non-crossing arc diagrams, shards and shard polytopes) to
the s-weak order. This requires to deal with polytopal complexes instead of polytopes and
answers Ceballos and Pons second conjecture.

With Rafael S. González D’León, Alejandro H. Morales, Daniel Tamayo Jiménez,
Martha Yip, Matias von Bell and Yannic Vargas, we are working on a graph operation
whose consequences on the DKK triangulation of the associated flow polytope model cer-
tain lattice congruences. Applied to the s-oruga graph, these operations should provide
realizations of a family of lattice quotients of the s-weak order that generalizes permutrees.





Chapter 1
Preliminaries

References that we used extensively to write these preliminaries and that we warmly rec-
ommend are the books Lectures on Polytopes, by Ziegler [Zie95], and Triangulations, Struc-
tures for Algorithms and Applications, by De Loera, Rambau and Santos [DRS10].

In all this work we denote by Rd the standard Euclidean space of dimension d, equipped
with the canonical basis e1, . . . , ed and the standard orthogonal scalar product 〈·, ·〉 (most
of the time we will cheerfully identify Rd and its dual space (Rd)∗).

We denote the all-zero vector 0 and the all-one vector 1 :=
∑

ei.

For n ∈ N we denote by [n] the set {1, . . . , n}. We denote by |X| the number of elements
of a finite set X.

1.1 Polytopes and subdivisions

1.1.1 Partially ordered sets and lattices

Before delving into geometry, we give a few definitions related to posets, since they appear
in many places in this thesis.

A poset is a partially ordered set, that is, a set X equipped with a binary relation �
which is reflexive (x � x for all x ∈ X), anti-symmetric (if x � y and y � x, then x = y)
and transitive (if x � y and y � z, then x � z). This relation is said to be partial because
we do not ask that for any pair of elements x, y ∈ X we have either x � y or y � x,
contrary to total orders (also called linear orders).

For an example of poset, one can think of the set of subsets of a given set S, ordered
by inclusion. Such poset is called the Boolean lattice on S.

We use the notation x ≺ y to mean that x � y and x 6= y, and the notation x � y to
mean that y � x.

A cover relation of the poset is a pair x, y ∈ X such that x ≺ y and no z ∈ X satisfies
x ≺ z ≺ y.
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A chain of the poset is a set of elements of X of the form {x1, . . . , xk} such that
x1 ≺ . . . ≺ xk.

The Hasse diagram of the poset is the directed graph whose vertices are the elements
of X and there is an oriented edge from x to y exactly when there is a cover relation x � y.

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

Figure 1.1: Hasse diagram of the Boolean lattice on [3] (set of subsets of [3] ordered by
inclusion). The edges are oriented upward.

Figure 1.1 shows the Hasse diagram of the Boolean lattice on [3]. We will always
represent Hasse diagrams with the edges oriented upward (and sometimes rightward for
horizontal edges).

If (X,�) and (X ′,�′) are two posets, a poset isomorphism between them is a bijection
φ : X → X ′ such that for any x, y ∈ X, x � y if and only if φ(x) �′ φ(y).

If (X,�) is a poset, its opposite poset is the poset (X,�).
Much of the posets that we encounter in this thesis have the following stronger structure.
A poset (X,�) is a lattice if for any non-empty subset of elements Y ⊆ X, its set of

upper bounds {z ∈ X | z � y for all y ∈ Y } has a unique minimal element, called the join
of Y and denoted by

∨
Y , and its set of lower bounds {z ∈ X | z � y for all y ∈ Y } has a

unique maximal element, called the meet of Y and denoted by
∧
Y .

For example, in the Boolean lattice on a set S, the join corresponds to taking union
and the meet to taking intersection.
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1.1.2 Polytopes

The convex hull of a set X ⊆ Rd is the convex set:

conv(X) :=

∑
i∈[n]

λixi

∣∣∣∣∣∣n ∈ N, xi ∈X and λi ∈ R≥0 for all i ∈ [n] and
∑
i∈[n]

λi = 1

 .

The affine hull of a set X ⊆ Rd is the affine subspace:

aff(X) :=

∑
i∈[n]

λixi

∣∣∣∣∣∣n ∈ N, xi ∈X for all i ∈ [n] and
∑
i∈[n]

λi = 1

 .

The relative interior of a set X ⊆ Rd is the convex relatively open (i.e. open in its
affine hull) set:

relint(X) :=

∑
i∈[n]

λixi

∣∣∣∣∣∣n ∈ N, xi ∈X and λi ∈ R>0 for all i ∈ [n] and
∑
i∈[n]

λi = 1

 .

A point configuration is an ordered sequence A = (a1, . . . ,an) ∈ Rd×[n] of points in Rd

indexed by [n]. We formally consider A a sequence rather than a set since the ordering of
the points ai is sometimes important, but we will slightly abuse notation and write things
like ai ∈ A, or call the points ai the elements of A. We do not require the points to be
distinct.

A polytope P can be simply defined as the convex hull of a finite number of points in
a Euclidean space.

The dimension of P , denoted dim(P ), is the dimension of its affine hull, and we take
the convention dim(∅) = −1.

In spite of their very simple geometric definition, polytopes come with a rich combina-
torial structure, given by their faces.

Definition 1.1.1. Let P be a polytope in Rd. Let u be a point in Rd, thought of as a
direction. We say that the set of points of P that maximize the linear form 〈·,u〉 is a face
of P , that we denote

P u :=

{
x ∈ P

∣∣∣∣ 〈x,u〉 = max
y∈P
〈y,u〉

}
.

Such a face is itself a polytope in Rd.
By convention, we also consider that the empty set ∅ is a face of P . Note that the

whole polytope P is a face of itself, maximized by the direction u = 0. Faces of P of
dimension 0 are called vertices, faces of dimension 1 are called edges and faces of dimension
dim(P ) − 1 are called facets. Faces of dimension k are called k-faces. The set of faces of
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dimension at most k of P is called the k-skeleton of the polytope. The 1-skeleton is also
called the graph of the polytope.

The set of faces of P , endowed with the order relation of inclusion is called the face poset
of P , or its face lattice since it has the property of being a lattice ([Zie95, Theorem 2.7]).

The face poset of a polytope defines its combinatorial type: we say that two polytopes
are combinatorially equivalent if their face posets are isomorphic (as posets).

Example 1.1.2 (Simplices). The simplest possible example of a d-polytope is called a simplex
(simplices in the plural) and can be obtained by taking the convex hull of any set of d+ 1
points that are affinely independent (i.e. (a1, . . . ,ad+1) ∈ RD×[d+1] such that there is no
(λ1, . . . , λd+1) ∈ Rd+1 with

∑d+1
i=1 λi = 1 and

∑d+1
i=1 λiai = 0). The standard simplex is

obtained with the vectors of the canonical basis of Rd+1:

4d = conv ({e1, . . . , ed+1}) ⊂ Rd+1

=

x ∈ Rd+1

∣∣∣∣∣∣
∑

i∈[d+1]

xi = 1 and xi ≥ 0 for all i ∈ [d+ 1]

 .

For any subset I ⊆ [d+1], the vertices {ei | i ∈ I} define a face of4d, that is maximized
in the direction

∑
i∈I ei. Thus, the face poset of the simplex is isomorphic to the Boolean

lattice on [d+ 1].

Figure 1.2: Standard simplex 42.

Figure 1.2 shows the standard simplex 42, embedded in R3. Its face lattice is isomor-
phic to the Boolean lattice on [3], which is depicted on Figure 1.1.
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Example 1.1.3 (Cubes). Another kind of geometric realization of the Boolean lattice is
given by the cube:

���d = conv

({∑
i∈I

ei | I ⊆ [d]

})
⊆ Rd

=
{
x ∈ Rd

∣∣ 0 ≤ xi ≤ 1 for all i ∈ [d]
}
.

Here, the subsets of [d] index the vertices of the polytope, and we recover the Boolean
lattice on [d] by orienting the edges of ���d along the direction 1.

The poset of non-empty faces of the cube is isomorphic to the poset of sequences in
{+,−, 0}d with the partial order relation � such that (a1, . . . , ad) � (b1, . . . , bd) if and only
if for all i ∈ [d], either ai = bi, or bi = 0. The face of ���d corresponding to the sequence
(a1, . . . , ad) ∈ {+,−, 0}d is maximized in the direction

∑
ai=+ ei −

∑
ai=− ei.

Figure 1.3 shows the Hasse diagram of the face lattice of the cube ���3, with non-empty
faces indexed by sequences in {+,−, 0}3. One can also see that an orientation of the graph
of the cube (on top) allows to recover the Hasse diagram of the Boolean lattice on [3] shown
on Figure 1.1.

A polytope is simplicial if all its facets are simplices, or equivalently if its combinatorial
type is stable under small perturbations of its vertices.

Even though face posets of polytopes are very structured (for example they are lattices,
they are graded by the dimensions of faces, they are atomic and co-atomic, ..., see [Zie95,
Theorem 2.7]), for dimensions higher than 3 there exists no combinatorial characteriza-
tion for posets that are realizable as face posets of polytopes. Mnëv’s Universality Theo-
rem [Mnë88] and its extension by Richter-Gebert [RG96], imply that deciding whether a
poset is the face lattice of a 4-dimensional polytope is computationally hard (∃R-complete).
The problem remains hard even when restricting to the generic case of simplicial polytopes,
see [AP17]. A consequence of this lack of combinatorial characterization is that the enu-
meration of combinatorial types of polytopes is also a hard problem, that we discuss in
Chapter 2.

Definition 1.1.4. Let P be a polytope in Rd and F one of its nonempty faces. We call
normal cone of F the closed cone of all directions that maximize F among faces of P :{
u ∈ Rd

∣∣F ⊆ P u
}

. It is a cone because it is stable under addition and multiplication by
a non-negative scalar.

The normal fan of P , that we denote N (P ), is the collection of the normal cones of
the nonempty faces of P .

Two polytopes are normally equivalent if they have the same normal fan.

See Figures 1.4 and 1.5 for examples in dimension 2.
Normal equivalence implies combinatorial equivalence, since the cones ofN (P ) ordered

by reverse inclusion form a poset that is isomorphic to the poset of nonempty faces of P .
In other words, the combinatorial information of a polytope is contained in its normal fan.
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000

−− 0 −0− 0−− +− 0 −0+ 0−+ −+ 0 +0+ 0 + + + + 0 +0− 0 +−

0− 0 −00 00− 00+ 0 + 0 +00

∅

+−+ −+ + + + + + +−+−−−+−−−+−−−

Figure 1.3: Face lattice of the cube ���3. The non-empty faces are indexed with sequences
in {+,−, 0}3 to show the isomorphism alluded to in Example 1.1.3.

As the example of Figure 1.5 shows, the converse is not true: there are polytopes that are
combinatorially equivalent but not normally equivalent.

The following basic construction is at the heart of the Cayley trick and appears in
several places in Chapters 3 and 4.

Definition 1.1.5. Let A1, . . . ,Ak be a collection of k point configurations in Rd, with
Aj = (aj,1, . . . ,aj,mj) ∈ Rd×[mj ] for all j ∈ [k]. Their Minkowski sum is the point configu-
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Figure 1.4: A polygon (left) and its normal fan (right).

(a)

(b)
(c)

Figure 1.5: Example of three polygons that are combinatorially equivalent. The polygons
(a) and (b) are moreover normally equivalent.

ration

A1 + . . .+ Ak := {a1,i1 + · · ·+ ak,ik | (i1, . . . , ik) ∈ [m1]× . . .× [mk]} ∈ Rd×([m1]×...×[mk]).

The point configurations A1, . . . ,Ak are called the summands of the Minkowski sum.
For the Minkowski sum of k copies of a point configuration A we simply write kA.
The Minkowski sum of k polytopes P1, . . . ,Pk in Rd is defined similarly as the polytope

P1 + . . .+ Pk := {x1 + · · ·+ xk |xi ∈ Pi} in Rd.
A Minkowski sum of segments (one-dimensional polytopes) is called a zonotope. For

example, the standard cube ���n is a zonotope obtained by taking the Minkowski sum of
segments conv(0, ei) for i ∈ [d].

See Figure 1.6 for an example of Minkowski sum in dimension 2.
We also introduce the following basic construction.

Definition 1.1.6. Let P1 ⊂ Rd1 , . . . ,Pk ⊂ Rdk be a collection of k polytopes (or more
general sets) in different Euclidean spaces.

Their product is the polytope P1 × . . . × Pk := {(x1, . . . ,xk) |xi ∈ Pi} ⊂ Rd1+...+dk ,
where (x1, . . . ,xk) is an abuse of notation to denote the point of Rd1+...+dk whose sequence
of coordinates is the concatenation of the coordinates of the xi.
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+ =

A1 A2 A1 + A2

a1,1 a1,2

a1,3

a2,1 a2,2

a2,3a2,4

a(1,1) a(1,2)

a(1,3)

a(1,4)

a(2,1) a(2,2)

a(2,3)a(2,4)

a(3,1) a(3,2)

a(3,3)a(3,4)

Figure 1.6: Minkowski sum of two point configurations A1 and A2 (represented with their
convex hull). A point a1,i1 + a2,i2 is labeled by a(i1,i2).

1.1.3 Polyhedral complexes and subdivisions

A hyperplane in Rd is a set of points of the form
{
x ∈ Rd

∣∣ 〈u,x〉 = c
}

for a certain vector
u ∈ Rd and a certain value c ∈ R. If c = 0 we say that such hyperplane is linear.

A halfspace in Rd is a set of points of the form
{
x ∈ Rd

∣∣ 〈u,x〉 ≤ c
}

for a certain vector
u ∈ Rd and a certain value c ∈ R.

A polyhedron is the intersection of a finite number of halfspaces. Its dimension is the
dimension of its affine hull.

The next theorem allows us to give another description of a polytope, that amounts
to define it with its facets rather than with its vertices. The proof relies on elementary
geometric techniques but it is not trivial, and the computational problem of going efficiently
from one description to the other is hard.

Theorem 1.1.7 (see [Zie95, Theorem 1.1]). A set of points in Rd is a polytope if and only
if it is a bounded polyhedron.

The same definition of faces than Definition 1.1.1 applies to polyhedra.

Definition 1.1.8. A polyhedral complex in Rd is a finite collection C of polyhedra in Rd,
called its cells, or faces, such that:

1. if P ∈ C and F is a face of P , then F ∈ C,

2. for all P ,Q ∈ C, P ∩Q is a common face of P and Q.

The set of cells of C ordered by containment gives the face poset of C. The dimension
of C is the maximum over the dimensions of its cells. A complex is pure if all its inclusion-
maximal cells have the same dimension. Its support is the union of all its cells.
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A polytopal complex is a polyhedral complex whose all cells are bounded (hence they
are polytopes). A polytopal simplicial complex is a polyhedral complex whose all cells are
simplices. Note that it is a geometric realization of a more abstract combinatorial object:
a simplicial complex on a finite set X is a finite collection C of subsets of X such that if
A ∈ C and B ⊆ A then B ∈ C (for a polytopal simplicial complex the set X would be its
set of vertices).

Definition 1.1.9. Let C,C′ be two polyhedral complexes. We say that C′ refines C, or C
coarsens C′ if they have the same support and any cell of C′ is included in a cell of C.

We have already seen examples of polyhedral complexes: the set of faces of a polytope,
the normal fan of a polytope. Here is another example.

Definition 1.1.10. A hyperplane arrangement in Rd is a finite set of hyperplanes H1, . . . ,Hk

in Rd. It defines a polyhedral complex whose cells are the closures of the connected com-
ponents of Rd \ {H1, . . . ,Hk} and all their faces.

Proposition 1.1.11 ([Zie95, Proposition 7.12]). Let P1, . . . ,Pk be polytopes in Rd. The
normal fan of their Minkowski sum

∑
iPi is the common refinement of all their normal

fans N (Pi). In particular, any normal fan of a summand N (Pi) coarsens the normal fan
of the sum N (

∑
iPi).

As a special case, we see that the normal fan of a zonotope whose edge directions are
u1, . . . ,uk is the arrangement of linear hyperplanes orthogonal to the vectors ui.

At first approximation, a subdivision of a point configuration A could be defined as a
polytopal complex S with support conv(A) such that all the polytopes in S have their
vertices in A. This definition is valid for a point configuration A which is in convex position,
namely its points correspond exactly to the vertices of the polytope conv(A) (in particular
they are not repeated). In this case we moreover have that any subdivision of A uses all
its points. However, when A is not in convex position, we need a more subtle definition
that takes into account the labels of the points in A and makes a difference between two
sets of labels even if they induce the same convex hull.

We recall that the notation relint(X) denotes the relative interior of the set X.

Definition 1.1.12. Let A = (a1, . . . ,an) be a point configuration in Rd×[n]. A subdivision
of A is a collection S of subsets of A, called its cells, such that:

1. if B ∈ S and C is the intersection of B with a face of conv(B), then C ∈ S,

2. for all B,C ∈ S such that B 6= C, relint(B) ∩ relint(C) = ∅,

3. ∪B∈S conv(B) = conv(A).

A triangulation of A is a subdivision of A whose all cells consist of affinely independent
points (in particular their convex hull are simplices).
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The trivial subdivision of A is the collection formed by A and all its subsets that are
on faces of conv(A).

For two subdivisions S and S ′ of A we say that S ′ refines S, or S coarsens S ′ if any
cell of S ′ is contained in an element of S.

Example 1.1.13. Figure 1.7a shows a configuration M of six points in R2 that form
concentric equilateral triangles. This configuration is called “the mother of all exam-
ples” in [DRS10]. Figure 1.7b shows the trivial subdivision Striv of M whose cells are
{a1,a2,a3,a4,a5,a6}, {a1,a2}, {a1,a3}, {a2,a3}, {a1}, {a2}, {a3}, ∅. Figure 1.7c shows a
triangulation T of M , whose cells are {a1,a2,a3}, {a1,a2}, {a1,a3}, {a2,a3}, {a1}, {a2},
{a3}, ∅. Note that these two subdivisions are different, and T refines Striv.

Other examples of subdivisions and triangulations of M are provided on Figure 1.11.
The triangulations of Figures 1.11c and 1.11d coarsen the subdivision of Figure 1.11b.

The set of all subdivisions of a point configuration can be ordered by refinement. Then
the triangulations are the minimal elements of this poset and the trivial subdivision is the
maximal one.

1.1.4 Cayley trick

The Cayley trick originally comes from elimination theory on polynomial systems and the
study of resultants and discriminants ([GKZ94, Chapter 9, Proposition 1.7]). A polytopal
version was first given by Sturmfels in [Stu94, Section 5] as a correspondence between
two families of regular subdivisions of different polytopes. Humber, Rambau, and Santos
showed in [HRS00] that there is the same correspondence for non-necessarily regular sub-
divisions. In this section, we start with this version of the Cayley trick, before introducing
regular subdivisions in the next section, and revisit the Cayley trick in Proposition 1.2.4.
We refer to [DRS10, Section 9.2] for a detailed presentation.

Definition 1.1.14. Let A1 ∈ Rd×[m1], . . . ,Ak ∈ Rd×[mk] be a collection of k point configu-
rations in Rd. We denote by

∑
Ai their Minkowski sum. A Minkowski cell of

∑
Ai is a

Minkowski sum
∑

Bi where for each i, Bi is a subset of Ai. A mixed subdivision of
∑

Ai

is a subdivision of
∑

Ai whose all cells are Minkowski cells (see [DRS10, Definition 9.2.5]
or [San05, Definition 1.1]). A fine mixed subdivision is a minimal mixed subdivision via
containment of its summands.

See Figures 1.8 and 1.9 for examples.
We recall that e1, . . . , ek denotes the standard basis of Rk. We call the point configu-

ration

Cay(A1, . . . ,Ak) := ({e1} ×A1, . . . , {ek} ×Ak) ∈ R(k+d)×({1}×[m1]∪...∪{k}×[mk])

the Cayley embedding of A1, . . . ,Ak.

Proposition 1.1.15 (The Cayley trick, special case of [HRS00, Theorem 3.1]). Let A1, . . . ,Ak

be point configurations in Rd. The polytopal subdivisions (respectively triangulations) of
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a4

a5 a6

a1

a2 a3

(a) The point configuration M .

a4

a5 a6

a1

a2 a3

(b) The trivial subdivision of M .

a4

a5 a6

a1

a2 a3

(c) A triangulation of M .

Figure 1.7: Example of a point configuration with its trivial subdivision and an example
of triangulation.

Cay(A1, . . . ,Ak) are in bijection with the mixed subdivisions (respectively fine mixed sub-
divisions) of A1 + . . .+ Ak.

A concrete way to have this bijection (see the “one-picture-proof” in [HRS00, Figure 1],
or Figure 1.10 below) is to intersect a subdivision of Cay(A1, . . . ,Ak) with the subspace
( 1
k
, . . . , 1

k
)× Rd of Rk × Rd. Up to dilation by the factor k we obtain a mixed subdivision

of A1 + . . .+ Ak.

Example 1.1.16. Let us make some comments about the examples of Figures 1.6, 1.8
and 1.9. The Minkowski sum A1 + A2 shown on Figure 1.6 has repeated points. For
example, the points a(3,1) := a1,3 + a2,1 and a(2,4) := a1,2 + a2,4 have the same position.
However, the labelings are important for the definition of a subdivision. Similarly, the
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Minkowski cell depicted on Figure 1.8 would not be valid if a(3,1) were replaced by a(2,4),
or if the points a(2,1) and a(1,2) were not included.

The careful reader can check that all the cells of the subdivisions depicted on Figure 1.9
are indeed Minkowski cells of A1 + A2.

+ =

B1 B2 B1 + B2

a1,1 a1,2

a1,3

a2,1 a2,2

a2,3a2,4

a(1,1) a(1,2)

a(1,3)

a(1,4)

a(2,1) a(2,2)

a(2,3)a(2,4)

a(3,1) a(3,2)

a(3,3)a(3,4)

Figure 1.8: A Minkowski cell of the sum A1 + A2 from Figure 1.6.

a(1,1) a(1,2)

a(1,3)

a(1,4)

a(2,1) a(2,2)

a(2,3)a(2,4)

a(3,1)
a(3,2)

a(3,3)a(3,4)

a(1,1) a(1,2)

a(1,3)

a(1,4)

a(2,1) a(2,2)

a(2,3)a(2,4)

a(3,1)
a(3,2)

a(3,3)a(3,4)

Figure 1.9: Two mixed subdivisions of the sum A1 + A2 from Figure 1.6. The one on the
right is a fine mixed subdivision.

1.2 Regular subdivisions

It might not be obvious that all point configurations admit subdivisions, but we will show
a geometric way to obtain some, consisting in lifting the points of the configuration in
one dimension higher. The subdivisions that can be obtained this way are called regular
subdivisions. In this section we review three polyhedral constructions associated to regular
subdivisions that play a role in this thesis.



1.2. REGULAR SUBDIVISIONS 35

{e1} ×A1

{e2} ×A2

{1
2
(e1 + e2)} × (A1 + A2)

Figure 1.10: Illustration of the Cayley trick: a subdivision of the Cayley embedding of
point configurations A1 and A2 from Figure 1.6 (left) is intersected so that we recover the
mixed subdivision of A1 + A2 depicted on the left of Figure 1.9 (right).

1.2.1 Lifting and admissible lifting function

Liftings are at the heart of our construction to build many polytopes in Chapter 2.

Definition 1.2.1. Let A = (a1, . . . ,an) ∈ Rd×[n] be a point configuration in Rd. Let
` : [n]→ R be a function that we call the lifting function. (We could also define it as a vector

in R[n].) Then the lifting of A according to ` is the point configuration Â := ((a1, `(1)), . . . ,
(an, `(n))) in Rd+1.

A face F of the corresponding lifted polytope conv(Â) is called lower if its normal
cone contains a vector with last coordinate negative, that is to say if there is a direction
u ∈ Rd+1 with ud+1 < 0 that is maximized on F .

We denote by π :

{
Rd+1 → Rd

(x, xd+1) 7→ x
the projection that forgets the last coordinate.

Then, the collection S :=
{
π(F ∩ Â)

∣∣∣F is a lower face of conv(Â)
}

is a subdivision of

A. A subdivision that can be obtained this way by a lifting is called regular, and we will
say that ` is an admissible lifting function for S.

Example 1.2.2. Figure 1.11 shows again the configuration M of six points in R2 that
form concentric equilateral triangles (1.11a), together with examples of a regular subdi-
vision (1.11b), a regular triangulation (1.11c) and a non-regular triangulation (1.11d).
The following argument should convince the reader that indeed there can be no ad-
missible lifting function for the triangulation T of Figure 1.11d. Suppose that there
were such a lifting function `. Then, the fact that the edge [a1,a5] is in T implies
that ε`(1) + (1 − ε)`(5) < ε`(2) + (1 − ε)`(4), where ε ∈]0, 1[ is such that the segments
[a1,a5] and [a2,a4] intersect at εa1 + (1 − ε)a5 = εa2 + (1 − ε)a4. Similarly, by look-
ing at edges [a2,a6] and [a3,a4] we would have ε`(2) + (1 − ε)`(6) < ε`(3) + (1 − ε)`(5)
and ε`(3) + (1 − ε)`(4) < ε`(1) + (1 − ε)`(6). Summing these inequalities would give
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ε(`(1)+`(2)+`(3))+(1−ε)(`(4)+`(5)+`(6)) < ε(`(1)+`(2)+`(3))+(1−ε)(`(4)+`(5)+`(6)),
which is not possible.

a4

a5 a6

a1

a2 a3

(a) The point configuration M in R2.

0

0 0

1

1 1

(b) A regular subdivision of M , with a lifting
function indicated in brown on each point.

0

0 0

1

2 3

(c) A regular triangulation of M , with a lifting
function indicated in brown on each point.

(d) A triangulation of M which is not regular.

Figure 1.11: Example of a point configuration with regular and non-regular subdivisions.
See Example 1.2.2.

The next proposition is a variant of the Cayley trick (Proposition 1.1.15) restricted to
regular subdivisions. Note that this was the first polytopal version of the Cayley trick, and
it was initially stated in terms of fiber polytopes (which gives more information).

Definition 1.2.3. Let A1 ∈ Rd×[m1], . . . ,Ak ∈ Rd×[mk] be a collection of k point configura-
tions in Rd. A mixed subdivision of the Minkowski sum

∑
Ai ∈ Rd×([m1]×...×[mk]) is said to

be coherent if it can be obtained from a lifting function ` : [m1] × . . . × [mk] → R of the
form `(i1, . . . , ik) =

∑
`j(ij) for some lifting functions `j : [mj]→ R for j ∈ [k].
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This is a special case of coherent subdivisions for subdivisions coming from projections,
see Remark 1.3.2.

For example, the mixed subdivisions of Figure 1.9 are coherent. For the one on the
right, an admissible lifting function is shown on Figure 1.12.

Proposition 1.2.4 (The Cayley trick for regular subdivisions [Stu94, Section 5]). Let A1, . . . ,Ak

be point configurations in Rd. The regular subdivisions (respectively triangulations) of
Cay(A1, . . . ,Ak) are in bijection with the coherent mixed subdivisions (respectively co-
herent fine mixed subdivisions) of A1 + . . .+ Ak.

+ =

A1 A2 A1 + A2

a1,1

0

a1,2

0

a1,3

0

a2,1

0

a2,2

−6

a2,3

3

a2,4

6

a(1,1)

0

a(1,2)

−6

a(1,3)

3

a(1,4)

6

a(2,1)

0

a(2,2)

−6

a(2,3)

3

a(2,4)

6

a(3,1)

0

a(3,2)

−6

a(3,3)

3

a(3,4)

6

Figure 1.12: Minkowski sum of the two point configurations A1 and A2 with lifted functions
indicated in brown, and the corresponding coherent mixed subdivision of A1 + A2.

1.2.2 Tropical dualization

In our search for geometrical realizations, it will prove useful (see Section 4.4.3) to be
able to dualize certain polyhedral complexes. It happens that tropical geometry offers a
convenient setting to do so, for the case of regular polyhedral subdivisions.

This section is based on the work of Joswig in [Jos21, Chapter 1] and [Jos17] for the
case of the Cayley trick.

We stick to Joswig’s choice to define the tropical addition with min rather than max.

The tropical semiring is the set T := R ∪ {∞} equipped with

• the tropical addition x⊕ y := min(x, y),

• the tropical multiplication x� y := x+ y.
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We will call tropical polynomial on d variables any function F : Rd → R of the form:

F (x) =
⊕
i∈[n]

ci � xai = min {ci + 〈ai,x〉 | i ∈ n} ,

where n ∈ N and for all i ∈ [n], ci ∈ T and ai ∈ Rd.
This is a concave piecewise affine function. Note that F is not uniquely determined by

the exponents ai and the coefficients ci.

Remark 1.2.5. Here we go beyond the usual definition of a polynomial by allowing the
exponents ai to take non-integer values. However, there will be no harm for us to do so
since our purposes are more geometric than algebraic.

The tropical hypersurface defined by the tropical polynomial F , or vanishing locus of
F , is the set

T (F ) :=
{
x ∈ Rd | the minimum of F (x) is attained at least twice

}
.

It is the image codimension-2-skeleton of the dome

D(F ) :=
{

(x, y) ∈ Rd+1 | x ∈ Rd, y ∈ R, y ≤ F (x)
}

under the orthogonal projection that omits the last coordinate [Jos21, Corollary 1.6].
See the right of Figures 1.13 and 1.14 for examples.
The cells of T (F ) are the projections of the faces of D(F ) (here we include the regions

of Rd delimited by T (F ) as its d-dimensional cells ; in fact we are considering the normal
complex NC(F ) defined in [Jos21, after Example 1.7]).

Definition 1.2.6. Let A = {a1, . . . ,an} be a point configuration in Rd, and S a regular
subdivision of A with admissible lifting function `.

Such a point configuration together with its lifting function ` is associated to the tropical
polynomial:

F (x) =
⊕
i∈[n]

`(i)� xai = min {`(i) + 〈ai,x〉 | i ∈ [n]} ,

where x ∈ Rd.

We say that T (F ) is the tropical dual of the subdivision S with admissible function `,
since we have the following theorem:

Theorem 1.2.7 ([Jos21, Theorem 1.13]). There is a bijection between the k-dimensional
cells of S and the (d− k)-dimensional cells of T (F ), that reverses the inclusion order.

This bijection sends a vertex aj to the region{
x ∈ Rd

∣∣∣∣ `(j) + 〈aj,x〉 = min
i∈[n]
{`(i) + 〈ai,x〉}

}
,

and a cell of S to the intersection of the regions corresponding to its vertices.
See Figures 1.13 and 1.14 for examples.
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(0, 0)
0

(2, 0)
0

(2, 2)
0

A1

x

y

2x+ 2y

0

2x

F1(x, y) = 0⊕ x�2 ⊕ (x�2 � y�2)

Figure 1.13: Left: Point configuration A1 with lifting indicated in brown. Right: The
corresponding tropical hypersurface, associated to the tropical polynomial F1. The regions
are labeled by the evaluation of F1 on them, and colored according to their associated
vertex of A1. Coordinate axes are flipped with respect to the usual orientation.

(0, 0)

0

(3, 0)

−6

(3, 2)

3

(0, 2)

6

A2

x

y

3x+ 2y + 3

0 3x− 6

2y + 6

F2(x, y) = 0⊕ (−6� x�3)⊕ (6� y�2)⊕ (3� x�3 � y�2)

Figure 1.14: Left: A subdivision of the point configuration A2 with lifting indicated in
brown. Right: The corresponding tropical hypersurface, associated to the tropical polyno-
mial F2. The regions are labeled by the evaluation of F2 on them, and colored according
to their associated vertex of A2. Coordinate axes are flipped with respect to the usual
orientation.
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Example 1.2.8. If we take A to be the vertex configuration of a polytope P and consider
the trivial subdivision, obtained with a constant lifting function, then for the tropical dual
we obtain the image of the normal fan of P by the function x 7→ −x (since we defined the
faces as maximizing sets but chose the min convention for the tropical dualization). An
example can be seen on Figure 1.13.

In our work we need the following refinement of the previous theorem.

Lemma 1.2.9 ([GDMP+23, Lemma 5.2]). The bijection of Theorem 1.2.7 restricts to a
bijection between the interior cells of S and the bounded cells of T (F ).

Proof. It is sufficient to show that the bijection restricts to a bijection between the interior
facets ((d − 1)-dimensional cells) of S and the bounded edges of T (F ). Indeed, suppose
that it is the case. Any cell of S is either maximal and associated to a vertex of T (F ),
or it is an intersection of facets of S. A non-maximal cell of S is interior if and only if it
is included only in interior facets of S. Thus it is sent via the bijection to a cell of T (F )
that only contains bounded edges. Reciprocally, a non-bounded cell of T (F ) contains a
non-bounded edge, so it is sent to a boundary cell of S.

Let us show the statement about the interior facets of S in a fashion similar to the
proof of [Jos21, Theorem 1.13]. Let Ñ (F ) := conv{(ai, r) | i ∈ [n], r ≥ `(i)} ⊆ Rd+1 be
the extended Newton polyhedron of F , whose lower faces project bijectively onto the cells
of S. Let e be an edge of T (F ) and H its corresponding facet in S via the bijection.
Suppose that e is unbounded, of the form e = w+R+v for some v,w ∈ Rd. Then, for any
λ ∈ R+ the vector −(w + λv, 1) is in the normal cone of the lift of H in Ñ (F ). Taking
the limit of λ → 0 of −

(
1
λ
w + v, 1

λ

)
, we obtain that −(v, 0) is in the normal cone of the

lift of H , hence H is in the boundary of S.
Reciprocally, if H is a boundary facet of S, it means that the normal cone of the lift of

H in Ñ (F ) is a two-dimensional cone whose extremal rays can be written −R+(v, 0) and
−R+(w, 1), for some v,w ∈ Rd. For any λ ∈ R+, the vector −(w+λv, 1) = −λ( 1

λ
w+v, 1

λ
)

is in this cone, so the point w + λv belongs to the edge e in T (F ). Hence, this edge is
unbounded.

In the case where A is a Cayley embedding, Joswig explains in [Jos21, Corollary 4.9]
how the Cayley trick allows us to describe the tropical dual of a regular mixed subdivision
with an arrangement of tropical hypersurfaces. This extends what was known for regular
triangulations of a product of simplices 4m−1 ×4d−1 (which is the Cayley embedding of
m copies of the standard simplex 4d−1): these triangulations are dual to arrangements of
tropical hyperplanes, see [DS04, Section 4], [FR15].

We consider A to be the Cayley embedding Cay(A1, . . . ,Ak) ∈ R(k+d)×({1}×[m1]∪...∪{k}×[mk]),
with Aj = (aj,1, . . . ,aj,mj) ∈ Rd×[mj ], and consider a regular subdivision given by a lifting
function ` : {1} × [m1] ∪ . . . ∪ {k} × [mk]→ R.

After the Cayley trick we obtain the subdivision S̃ of the point configuration Ã :=∑
Ai ∈ Rd×([m1]×...×[mk]) with the lifting function ˜̀ : [m1] × . . . × [mk] → R such that

˜̀(i1, . . . , ik) =
∑k

j=1 `(j, ij).
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The corresponding tropical polynomial is

F̃ (x) =
⊕

(i1,...,ik)∈[m1]×...×[mk]

˜̀(i1, . . . , ik)� x
∑k
j=1 aj,ij

=
⊕

(i1,...,ik)∈[m1]×...×[mk]

k⊙
j=1

`(j, ij)� xaj,ij

=
k⊙
j=1

⊕
ij∈[mj ]

`(j, ij)� xaj,ij

=
k⊙
j=1

Fj(x),

where Fj is the tropical polynomial Fj(x) =
⊕

ij∈[mj ]
`(j, ij)� xaj,ij .

Then, the vanishing locus T (F̃ ) is obtained by taking the union of the vanishing loci

T (Fj) for j ∈ [k] and the cells of T (F̃ ) are the intersections of the cells of all T (Fj),
j ∈ [k]. We say that these cells are induced by the arrangement of tropical hypersurfaces
{T (Fj) | j ∈ [k]}. We have the following theorem as a consequence of Theorem 1.2.7.

Theorem 1.2.10. The tropical dual of the mixed subdivision S̃ is the polyhedral complex of
cells induced by the arrangement of tropical hypersurfaces {T (Fj) | j ∈ [k]}.

See Figure 1.15 for an example, related to Figures 1.12, 1.13 and 1.14.

(0, 0)
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(2, 4)

6

A1 + A2

x

y
F1(x, y)� F2(x, y)

Figure 1.15: Illustration of the Cayley trick on tropical hypersurfaces. Left: A mixed
subdivision S̃ of the Minkowski sum Ã = A1 +A2. Right: The corresponding arrangement
of tropical hypersurfaces, associated to the tropical polynomial F̃ = F1 � F2.
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1.2.3 Secondary polytope

In this section, we describe a polytope whose structure encodes the set of all regular
subdivisions of a given point configuration. The secondary polytope was first defined
by Gef’fand, Kapranov and Zelevinsky in [GKZ94] in their study of discriminants and
resultants of polynomial systems.

We give here their first definition, but we will see in Section 1.3.2 another definition,
as a fiber polytope, in the more general framework of coherent subdivisions compatible
with a projection. We recommend [DRS10, Section 5.1] for an in-depth presentation of the
secondary polytope.

For a polytope P in Rd we denote by volEucl(P ) its usual Euclidean volume (in partic-
ular, if P lives in an affine subspace of dimension smaller than d then volEucl(P ) = 0).

Definition 1.2.11. Let A ∈ Rd×[n] be a point configuration that affinely spans Rd.

To each triangulation T of A, we associate the following vector in Rn, called the GKZ-
vector of T (named after Gef’fand, Kapranov, Zelevinsky):

gkz(T ) :=
∑
C∈T

volEucl(C)

 ∑
aj vertex of C

ej

 .

The secondary polytope of A is:

Σ(A) := conv({gkz(T ) |T triangulation of A}).

Theorem 1.2.12 ([GKZ94, Chapter 7, Theorem 2.4]). Let A be a point configuration. The
poset of non-empty faces of Σ(A) is isomorphic to the refinement poset of the regular
subdivisions of A. In particular, the vertices of Σ(A) are in bijection with the regular
triangulations of A.

A remarkable example of secondary polytope is the associahedron, which we will present
briefly in Section 1.4.6. The associahedron of dimension n − 3 can be realized as the
secondary polytope of any 2-dimensional n-gon ([GKZ94, Section 7.3.B]).

1.3 Projections and compatible subdivisions

We now introduce the framework of subdivisions that are compatible with projections and
two related topics: fiber polytopes, which generalize secondary polytopes, and the Gener-
alized Baues Problem, which deals with the topology of refinement posets of subdivisions.

In this section we consider an affine projection π : RD → Rd, that maps the vertex con-
figuration (p1, . . . ,pn) of a polytope P ⊂ RD to a point configuration A = (a1, . . . ,an) ∈
Rd×[n]. We also denote Q the polytope conv(A) = π(P ).
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1.3.1 Subdivisions compatible with a projection

A π-compatible subdivision of A is a subdivision of A all of whose cells label faces of P .
Such a π-compatible subdivision is π-coherent if it is regular and admits a lifting func-

tion of the form ` :

{
[n] → R
i 7→ 〈u,pi〉

, for a certain direction u ∈ RD.

See Figure 1.16 for an example.

a1

a2

a3 a4

a5

a6

a7a8

(a) A point configuration A in R2 that is the image of a 3-dimensional cube by a projection π.

a1

a2

a3 a4

a5

a6

a7a8

a1

a2

a3 a4

a5

a6

a7

a1

a2

a3 a4

a5

a6

a8

(b) The three π-compatible subdivisions of A (they are also π-coherent).

Figure 1.16: Example of a point configuration and compatible subdivisions.

Remark 1.3.1. Note that we can recover our previous definitions of subdivisions and regular

subdivisions by taking the simplicial linear projection π4 :

{
Rn → Rd

ei 7→ ai
from the simplex

4n−1. Indeed, the subdivisions of A are then the π4-compatible subdivisions of A and
the coherent subdivisions of A are the π4-coherent subdivisions of A.
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Remark 1.3.2. Note that the Cayley trick (Propositions 1.1.15 and 1.2.4) can be expressed
in this setting.

Let A1 = (a1,1, . . . ,a1,m1), . . ., Ak = (ak,1, . . . ,ak,mk) be k point configurations in Rd.
We define the Minkowski linear projection

πM :

{
4m1−1 × . . .×4mk−1 ⊂ Rm1+...+mk → A1 + . . .+ Ak ⊂ Rd

ei1 × . . .× eik 7→ a1,i1 + . . .+ ak,ik
.

Then the (resp. coherent) mixed subdivisions of
∑

Ai as defined in Definition 1.1.14 (resp.
Definition 1.2.3) are exactly the (resp. πM -coherent) πM -compatible subdivisions of

∑
Ai.

1.3.2 Fiber polytopes

The construction of fiber polytopes was introduced by Billera and Sturmfels in [BS92],
generalizing the theory of secondary polytopes in a unified way that encompasses concepts
such as monotone path polytopes, zonotopal tiling polytopes and secondary polytopes. We
refer to [Zie95, Lec. 9] and [DRS10, Sec. 9.1] for gentle introductions to the topic.

Recall that we are considering polytopes P and Q related by an affine surjection
π : P → Q. The fibers of π over Q form a polytope bundle y ∈ Q 7→ π−1({y}) ∩ P
whose Minkowski integral, after some normalization, is the fiber polytope Σ (P , π):

Σ (P , π) =
1

volEucl(Q)

∫
Q

(π−1({y}) ∩ P )dy.

This Minkowski integral is well-defined by the construction of Riemann integrals, as a limit
of finite Minkowski sums of fibers over points of Q.

The fiber polytope can also be described as a finite Minkowski sum. Namely,

Σ (P , π) =
1

volEucl(Q)

∑
C∈Γ(P ,π)

volEucl(C) π−1({bC}) ∩ P ,

where Γ(P , π) is the set of chambers: the subsets of Q of the form

Cy =
⋂

F face of P
y∈π(F )

π(F )

for y ∈ Q; and bC is the barycenter of the chamber C.

Note that Σ (P , π) lies in the fiber over the barycenter of Q, π−1
(

1
volEucl(Q)

∫
Q
y dy

)
∩P ,

thus it is a polytope of dimension dim(P )− dim(Q).
Figure 1.17 shows an example of this construction. When P is the three dimensional

cube ���3 and π is the projection from R3 to R that sums the coordinates, we obtain that
the fiber polytope Σ (P , π) is a regular hexagon.
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+1
3 =

P

A

π

Figure 1.17: Construction of the fiber polytope Σ (P , π), where P = ���3 and π is the
projection from R3 to R that sums the coordinates.

Theorem 1.3.3 ([BS92, Theorem 2.1]). The poset of non-empty faces of Σ (P , π) is iso-
morphic to the refinement poset of the π-coherent subdivisions of A.

As Remark 1.3.1 suggests, the secondary polytope that we defined in Definition 1.2.11
is a special case of fiber polytope (up to dilation).

Theorem 1.3.4 ([BS92, Theorem 2.5]). Let A = (a1, . . . ,an) ∈ Rd×[n] be a point configura-
tion, Q its convex hull and π4 the linear projection from Rn to Rd that maps ei to ai for
any i ∈ [n]. Then Σ(A) = (d+ 1) volEucl(Q)Σ (4n−1, π4) .

Theorem 1.3.3 is remarkable, since it shows that the set of π-coherent subdivisions have
a very special structure among all π-compatible subdivisions.

1.3.3 Monotone path polytopes

We now present an important class of fiber polytopes: the monotone path polytopes, which
will reappear in Chapter 3 (Section 3.2.3, Section 3.6.1).

If Q is a one-dimensional polytope and P ⊂ Rn, then π : P → Q is a linear form
defined by a vector u ∈ Rn via π(x) = 〈u,x〉. For simplicity, assume that π is generic in
the sense that it is not constant along any edge of P , and let pm and pM be the minimal
and maximal vertices of P with respect to π. A π-monotone path is a path from pm to pM
composed of edges of P along which π is always increasing. One way to obtain π-monotone
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pm pM
P

Q

π

Figure 1.18: A projection π : P → Q with a parametric simplex path in blue at the bottom,
a non-coherent π-monotone path in red and a coherent cellular string of 2-dimensional faces
in cyan.

paths is to consider some generic vector w orthogonal to u and consider the sequence of
vertices of P that are extremal in the direction w+λu as λ ranges from −∞ to∞. These
paths induce the finest π-coherent subdivisions of Q, and are known as parametric simplex
paths in linear programming, where they play an important role as they are the paths
followed by the shadow-vertex simplex method [Bor87, GS55].

More generally, a cellular string on P with respect to π is a sequence of faces F1, . . . ,Fk
of P of dimension at least 1 such that pm ∈ F1, pM ∈ Fk, and every two adjacent faces
Fi,Fi+1 meet at a vertex pi such that π(x) ≤ π(pi) ≤ π(y) for each x ∈ Fi and y ∈ Fi+1.
Such a cellular string is π-coherent if there is some (not-necessarily generic) vector w
orthogonal to u such that these are the maximal faces of P maximized in a direction of
the form w + λu.

See examples of π-monotone paths and cellular string on Figure 1.18
The fiber polytope Σ (P , π) is called the monotone path polytope of P and π. Its

vertices are in one-to-one correspondence with the parametric π-monotone paths of P , and
its faces are in correspondence with the π-coherent cellular strings.

The example of fiber polytope on Figure 1.17 is a monotone path polytope.

1.3.4 Generalized Baues problem

The generalized Baues problem, or GBP for short, deals with topological properties of the
whole refinement poset of π-compatible subdivisions of a given point configuration. It will
be at the center of Section 3.6.2, where we prove a particular case of the strong GBP in a
more abstract setting related to oriented matroids.

In this section, we provide a quick overview of the GBP, based on Reiner’s survey [Rei99].
We will not give much details about the topological concepts involved, and refer to [Bjö95]
and [BLS+99, Section 4.7].
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Definition 1.3.5. Let X be a poset. Its order complex ∆ (X) is the simplicial complex
formed by all its chains. The topology of X refers to the topological space that realizes the
simplicial complex ∆ (X).

Definition 1.3.6. For the projection π : P → A, we denote ω(P , π) the refinement poset
of non-trivial π-compatible subdivisions of A. We denote ωcoh(P , π) the subposet of non-
trivial π-coherent subdivisions of A.

Note that it follows from Theorem 1.3.3 that ωcoh(P , π) has the topology of a (dim(P )−
dim(A)− 1)-sphere. Indeed, the barycentric subdivision of the boundary of Σ (P , π) is a
geometric realization of ∆ (ωcoh(P , π)).

Weak GBP. Is ω(P , π) homotopy equivalent to a (dim(P )− dim(A)− 1)-sphere? It is
the case if the inclusion ωcoh(P , π) ↪→ ω(P , π) induces a homotopy equivalence.

Strong GBP. Is the inclusion ωcoh(P , π) ↪→ ω(P , π) a strong deformation retraction?

The name of the problem comes from a conjecture stated by Baues in his study of
iterated loop spaces ([Bau80]), that corresponds to the weak GBP for monotone paths of
the permutahedron. The more general version of the weak GBP was asked by Billera and
Sturmfels in [BS92, end of Section 5].

There are examples for which the answer to the GBP is negative, but to characterize
the projections π : P → A that satisfy the conjecture remains an actively studied open
problem. Here are some families for which the strong generalized Baues conjecture was
proven to be true:

• dim(P )− dim(A) ≤ 2 ([R94]),

• A is 1-dimensional ([BKS94a]): the π-compatible subdivisions are then the π-monotone
paths. This answers positively Baues’s initial conjecture.

• P is the hypersimplex 4n,k = 4(k)
n−1 and A = C

(k)
n , where Cn is a configuration

of n points in convex position in R2, and for any point configuration (resp. poly-
tope) R with n vertices s1, . . . , sn and k ∈ [n], R(k) denotes (resp. the convex hull
of) the configuration

{∑
i∈I si

∣∣ I ⊆ [n], |I| = k
}

([OS22]). This family of subdivi-
sions, called hypersimplicial, is related to the study of plabic graphs and the positive
Grassmannian.

And here are a some examples were the generalized Baues conjecture was disproved:

• first particular counterexample: P is a simplicial 5-polytope with 10 vertices, pro-
jected onto a hexagon in R2 ([RZ96]),

• P is the simplex 416 and A a configuration of 17 points in general position in R6,
whose graph of triangulations flips is not connected ([San06]),

• P is a cube and Q a zonotope of dimension 4 whose graph of zonotopal tilings is
not connected ([Liu20]). This counter-example also disproves the conjecture that the
extension space of realizable oriented matroids of rank d has the homotopy type of a
(d− 1)-sphere.
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1.4 Several realizations of the permutahedron

In this section we present the permutahedron, a very well-known and important polytope
that we will generalize in two different directions in Chapter 3 and Chapter 4. We first
present the combinatorial structure encoded by the faces of the permutahedron and then
give several constructions of the permutahedron, that are related to our generalizations.

1.4.1 Combinatorics of the permutahedron

The Weak order

Let n ∈ N. A permutation of [n] is a bijection from [n] to [n]. We can visualize a
permutation σ as a word σ(1)σ(2) . . . σ(n). We denote by Sn the set of all permutations of
[n]. Even though we will not use it in this work, let us mention that the composition law ◦
endows this set with a group structure called the symmetric group. This is a very central
object in mathematics, that embraces combinatorial, algebraic and geometric aspects. In
this thesis we will be more interested with the following poset structure on Sn.

The set of inversions of a permutation σ ∈ Sn is:

inv(σ) := {(σ(i), σ(j)) | i < j and σ(i) > σ(j)} .

The (right) weak order on Sn is the partial order � such that for two permutations σ, τ ∈
Sn we have σ � τ if and only if inv(σ) ⊆ inv(τ).

See Figure 1.19 for examples with n = 2, 3, 4.

21

12

123

213 132

231 312

321

1234

2134 1324 1243

2314 3124 2143 1342 1423

3214 2341 3142 2413 4123 1432

3241 2431 3412 4213 4132

3421 4231 4312

4321

Figure 1.19: Hasse diagrams of the weak orders on S2,S3 and S4. Figure adapted from
Viviane Pons.
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One of the first studies of this poset concerns the analysis of voting systems, and shows
that this poset is a lattice [GR63]. The name “permutoèdre” (in French) appears in the
same article.

Ordered partitions

An ordered partition of [n] is an ordered collection of non-empty disjoint subsets (I1, . . . , Il)
whose union is [n]. Ordered partitions where all parts are singletons are identified with
permutations. They are the maximal elements in the refinement order: we say that
J = (J1, . . . , Jl) refines I = (I1, . . . , Ik), denoted J � I, if each Ii is the union of some
consecutive Jj’s.

Definition 1.4.1. We call n-permutahedron any polytope whose poset of non-empty faces
is isomorphic to the opposite of the refinement poset of ordered partitions of [n].

See Figure 1.20 for an example with n = 3.

1|2|3

2|1|3 1|3|2

2|3|1 3|1|2

3|2|1

123

12|3 1|23

2|13 13|2

23|1 3|12

Figure 1.20: Ordered partitions of [3] indexing the faces of the 3-permutahedron. Figure
adapted from Viviane Pons.

In particular, the vertices of such a polytope are indexed by permutations in Sn. There
is an edge between two vertices indexed by σ and σ′ ∈ Sn if and only if σ′ can be obtained
from σ by exchanging two adjacent letters σ(i) and σ(i+ 1) of the permutation. Hence,
this graph can be oriented to recover the Hasse diagram of the weak order on permutations
(we orient the edge from σ to σ′ if σ(i) < σ(i+ 1)).
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1.4.2 Vertices and normal fan

Unlike its cousin the associahedron (Section 1.4.6), or its generalization the s-permutahedron
(Chapter 4), it is very easy to give explicit coordinates for the permutahedron. It seems
(according to [Zie95, Example 0.10]) that it was first studied by Schoute in 1911 in [Sch11].

Definition 1.4.2. We define the standard n-permutahedron to be the polytope:

Permn := conv(
{

(σ−1(1), . . . , σ−1(n))
∣∣σ ∈ Sn

}
) ⊂ Rn.

It lives in the (n − 1)-dimensional affine subspace of the sum of coordinates constant

equal to
∑

i∈[n] i = n(n+1)
2

. See Figure 1.21 for an example with n = 3 and the left of
Figure 1.24 or the right of Figure 3.3 for examples with n = 4.

Figure 1.21: Standard 3-permutahedron (vertices indexed by their coordinates).

Lemma 1.4.3. The standard n-permutahedron is indeed a permutahedron in the sense
of Definition 1.4.1.

Proof. Let u = (u1, . . . , un) be a direction in Rn. We associate to it the ordered partition
I = (I1, . . . , Il) of [n] such that for any 1 ≤ i < j ≤ l, k1 ∈ Ii and k2 ∈ Ij implies that
uk1 < uk2 and k1, k2 ∈ Ii implies uk1 = uk2 . Then, we have that the vertices of the face
Permu

n are exactly the points (σ−1(1), . . . , σ−1(n)) for the permutations σ ∈ Sn that refine
the ordered partition I.

This proof also shows that the normal fan of Permn is the braid arrangement Bn: the
arrangement of hyperplanes {u ∈ Rn | 〈u, ei〉 = 〈u, ej〉} for all 1 ≤ i < j ≤ n.
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We see that the facets of Permn correspond to ordered partitions with two parts. Its
facet description is:

Permn =

x ∈ Rn+1

∣∣∣∣∣∣
∑
i∈[n]

xi = n(n+1)
2

and
∑
i∈I

xi ≥ |I|(|I|+1)
2

, for all ∅ 6= I ( [n]

 .

1.4.3 Zonotope

The fact that its normal fan is a hyperplane arrangement implies that Permn is normally
equivalent to a zonotope, obtained by summing segments in the directions ei − ej for all
1 ≤ i < j ≤ n. In fact, we can recover exactly Permn as the zonotope:

Permn = n+1
2

1n +
∑

1≤i<j≤n

[
−ei − ej

2
,
ei − ej

2

]
,

where [p, q] ⊂ Rn denotes the segment between the points p and q (see [Zie95, Ex. 7.15]).

1.4.4 Monotone path polytope of the cube

Let ���n = [0, 1]n be the n-dimensional cube, and let π : Rn → R be the linear form that
sums the coordinates, i.e. the form π = 〈1n, · 〉 induced by the all-ones vector.

Then it is quite straightforward to see that the π-monotone paths are in bijection with
the permutations in Sn, and that they are all π-coherent. More precisely, to a permutation
σ ∈ Sn we associate the monotone path that passes through the vertices of the cube of
the form

∑k
i=1 eσ(i) for k = 0, 1, . . . , n. It is π-coherent since it can be maximized by the

direction w =
∑n

i=1(n− i)eσ(i).
In fact we have:

Proposition 1.4.4 ([BS92, Ex. 5.4], see also [Zie95, Ex. 9.8]). The monotone path poly-
tope Σ (���n, π) is a permutahedron, and up to a translation and dilation it is the standard
permutahedron: Σ (���n, π) = 2

n
Permn − n+1

n
1n.

See Figure 1.17 for an example with n = 3.
In Section 3.2.3 we will re-interpret this monotone path construction as a special ex-

ample of a sweep polytope seen as a monotone path polytope of a zonotope.

1.4.5 Dual of a triangulation of the cube

It happens that the π-monotone paths of ���n that we just described also provide a trian-
gulation of ���n, that we denote T Permn , with maximal cells

conv

({
k∑
i=1

eσ(i)

∣∣∣∣∣ k ∈ {0, . . . , n}
})

=
{
x ∈ [0, 1]n

∣∣xσ(1) ≥ . . . ≥ xσ(n)

}



52 CHAPTER 1. PRELIMINARIES

Figure 1.22: The triangulation T Permn of the cube (left) and its corresponding tropical
hypersurface (right).

for all σ ∈ Sn ([DRS10, Proposition 6.3.4]). Note that this triangulation is obtained by
intersecting the braid fan Bn with the cube [0, 1]n.

This triangulation T Permn is regular, an admissible lifting function is `(I) = − |I|(|I|+1)
2

if we index the vertices of ���n by the subsets I ⊆ [n].
If we apply the tropical dualization process described in Section 1.2.2 we obtain the

tropical polynomial FPermn(x) = min
{
`(I) +

∑
i∈I xi

∣∣ I ⊆ [n]
}

.

Proposition 1.4.5. The bounded cells of the tropical hypersurface T (FPermn) are exactly the
faces of the standard permutahedron Permn.

The example for n = 3 is depicted on Figure 1.22.

Proof. First, we can see that the inclusion poset of interior cells of T Permn is isomorphic to
the poset of ordered partitions. Indeed, an interior cell of T Permn is of the form{
x ∈ [0, 1]n

∣∣∣xi1 = . . . = xik1
< xik1+1

= . . . = xik1+k2
< . . . < xik1+...+kl−1+1

= . . . = xik1+...+kl

}
for a certain ordered partition I = ({i1, . . . , ik1}, . . . , {ik1+...+kl−1+1, . . . , ik1+...+kl}) of [n].

Then, it follows from Theorem 1.2.7 that the bounded cells of T (FPermn) are in bijec-
tion with the faces of Permn. It only remains to show that for any σ ∈ Sn, the point
(σ(1), . . . , σ(n)) is indeed a vertex of T Permn . Let σ ∈ Sn and v := (σ(1), . . . , σ(n)). Then

for any I ⊆ [n], `(I) +
∑

i∈I vi = − |I|(|I|+1)
2

+
∑

i∈I σ(i) ≥ 0 with equality if and only if
I = {σ−1(1), . . . , σ−1(k)} for a certain k ∈ [n]. Moreover, v is the only point in Rn that
satisfies these equality cases for all k ∈ [n], thus it is a vertex of T (FPermn).

This realization can be seen as a special example of the tropical realization of the
s-permutahedron that will be presented in Section 4.4.3. Indeed, for s = (1, . . . , 1) the
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flow polytope of the graph Orun is exactly the cube ���n and its DKK triangulation is the
triangulation T Permn .

1.4.6 Relation with the associahedron

Let us say a few words here about the associahedron and its connection to the permutahe-
dron. Indeed, even though we will not allude much to the associahedron in the rest of this
thesis, this “mythical polytope” is a very good example of nontrivial realizations of an om-
nipresent combinatorial structure. Moreover, its relation to the permutahedron motivated
Ceballos and Pons Conjecture 4.1.2, to which we give elements of solution in Section 4.5.

Among the abundant literature on the topic, we refer to the surveys [MHPS12] and
[PSZ23].

The combinatorial structure behind the associahedron was first defined by Tamari in
1951 ([Tam51]) and Stasheff in 1963 ([Sta63]) with motivation from associativity and loop
spaces. In particular, the now called Tamari lattice can be defined on the parenthesized
words of length n+1 such that the covering relations correspond to the rewriting rule of the
form (u1u2)u3 � u1(u2u3). See the Hasse diagrams for n = 2, 3, 4 depicted on Figure 1.23.

(ab)c

a(bc)

((ab)c)d

(a(bc))d

a((bc)d)

(ab)(cd)

a(b(cd))

(((ab)c)d)e

((a(bc))d)e

((ab)(cd))e(a((bc)d))e

(a(b(cd)))e

((ab)c)(de)

(a(bc))(de)

(ab)((cd)e)

(ab)(c(de))a(((bc)d)e)

a((b(cd))e)a((bc)(de))

a(b((cd)e))

a(b(c(de)))

Figure 1.23: Hasse diagrams of the Tamari lattices on parenthesized words of length 3, 4, 5.
Figure adapted from Viviane Pons.

The same structure can be defined on other Catalan families, for example with rotations
on planar rooted binary trees with n + 1 leaves, flips on triangulations of a polygon with
n+ 2 edges, Tamari rotations on Dyck paths of length 2n.
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We call n-associahedron any polytope of dimension n− 1 whose graph can be oriented
to recover the Tamari lattice on parenthesized words of size n + 1. Then, the higher
dimensional faces of such a polytope will be in bijection with partially parenthesized words
of size n+ 1 (or Schröder trees with n+ 1 leaves, or subdivisions of a polygon with n+ 2
edges, ...)

A drawing of a polytopal realization of the associahedron in dimension 3 was already
provided in Tamari’s thesis. However, it is only in 1989 that an explicit realization valid for
any dimension was first published by Lee ([Lee89]). Since then, several different families of
realizations were found, with fruitful connections to other topics in mathematics and still
mysteries and questions (see for example [CZ12]).

The weak order and the Tamari lattice are related in several ways, for example the
Tamari lattice is a lattice quotient of the weak order (see Section 4.5.1). This combinatorial
relationship can be translated geometrically: some realizations of the associahedron can be
obtained by deforming realizations of the permutahedron. In particular, Loday’s realization
([Lod04]) can be obtained by removing facets from the permutahedron, since its facet
description is:

Assn =

x ∈ Rn

∣∣∣∣∣∣
∑
i∈[n]

xi = n(n+1)
2

and
∑
a≤i≤b

xi ≥ (b−a+1)(b−a+2)
2

for all 1 ≤ a ≤ b ≤ n

 .

See Figure 1.24 for an example of this geometric phenomenon.

Figure 1.24: The standard 4-permutahedron (left), Loday’s 4-associahedron (right), and
the superposition of both (middle). Figures from Viviane Pons.



Chapter 2
Many polytopes and many regular

triangulations

This chapter reproduces the article [PPS23], written with Arnau Padrol and Francisco
Santos.

We show that for fixed d > 3 and n growing to infinity there are at least (n!)d−2±o(1)

different labeled combinatorial types of d-polytopes with n vertices. This is about the
square of the previous best lower bounds. As an intermediate step, we show that certain
neighborly polytopes (such as particular realizations of cyclic polytopes) have at least
(n!)b(d−1)/2c±o(1) regular triangulations.

2.1 Introduction

In the preface of his classical book in polytope theory [Grü03], Grünbaum traces the
problem of enumerating the number of combinatorial types of polytopes back to Euler,
and cites its difficulty as one of the main reasons for the “decline in the interest in convex
polytopes” at the beginning of the XXth century.

These efforts were concentrated in the case of 3-dimensional polytopes, starting with
many contributions by Cayley and Kirkman, according to Grünbaum’s historical remarks
in [Grü03, Chapter 13.6]. Thanks to Steinitz’s Theorem, which gives a correspondence
between combinatorial types of 3-dimensional polytopes and 3-connected planar graphs,
nowadays we have quite precise knowledge on the number of 3-polytopes with n ver-
tices [BW88, RW82] and the distribution of many combinatorial parameters [BGR92].

In contrast, for higher-dimensional polytopes the problem is still very far from being
solved. One of the main difficulties lies in the lack of a combinatorial characterization of
face lattices of polytopes, as explained in Section 1.1.2.

However, the mere number of polytopes is relatively small. In 1986 Goodman and
Pollack [GP86] showed that the number of (labeled) combinatorially different simplicial

55
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d-polytopes with n vertices is bounded by (n!)cd for some constant cd depending solely
on d, and Alon [Alo86] proved that this upper bound is valid for non-necessarily simpli-
cial polytopes too. This contrasts with the number of combinatorially different simplicial
(d− 1)-spheres with n vertices, which grows at least as eΩ(nbd/2c) [Kal88, NSW16].

In 1982 Shemer [She82] had devised constructions producing about (n!)
1
2
±o(1) different

simplicial polytopes. This matches the upper bound, except for the fact that the constant
cd in the upper bound of Goodman and Pollack and Alon is d2 ± o(1), much bigger than the
1/2 obtained by Shemer. The construction was greatly improved by Padrol [Pad13] (see
also [GP16]) who showed that there are at least (n!)bd/2c±o(1) (labeled) neighborly polytopes.
There are alternative constructions that give these many different combinatorial types of
polytopes, which led Nevo and Padrol to ask whether the number of d-dimensional poly-
topes with n vertices and m facets was bounded above by mn+o(n) (unpublished). As the
maximal number of facets of a d-polytope with n vertices is O(nbd/2c) by the Upper Bound
Theorem [McM70], this would imply that the bound of (n!)bd/2c±o(1) is asymptotically tight.

The main result in this chapter gives a negative answer to this question, by essentially
doubling the exponent of n! in the construction of Padrol:

Theorem 2.1.1. The number of different labeled combinatorial types of d-polytopes with n
vertices for fixed d > 3 and n growing to infinity is at least (n!)d−2±o(1).

All the polytopes that we construct are b(d − 1)/2c-neighborly. That is, they are
neighborly for odd d, but only

(
d
2
− 1
)
-neighborly if d is even. In fact, for even d the number

of neighborly polytopes in our family is at most the same as in the family constructed by
Padrol. See Remark 2.4.12 for more details.

Enumerating polytopes is intimately tied to enumerating regular triangulations of point
configurations. In fact, the number of (combinatorial types of) simplicial d-polytopes with
n vertices coincides with that of (d − 1)-dimensional regular triangulations with n − 1
vertices. See the beginning of Section 2.4 for details on this relation. In the same vein,
counting all triangulations, regular or not, is related to counting simplicial spheres.

In particular, the Goodman-Pollack bound implies the same upper bound of (n!)d
2±o(1)

for the number of regular triangulations, while the construction of Kalai [Kal88] can be

adapted to derive that the cyclic d-polytope with n vertices has at least eΩ(nbd/2c) triangu-
lations in total [DRS10, Theorem 6.1.2].

Observe that the upper bound is for the total number of (combinatorially different)
regular triangulations of all polytopes (for fixed parameters n and d), while the construc-
tion of Kalai counts triangulations of a single polytope. For regular triangulations of a
single polytope, it is shown in [DRS10, Theorem 7.2.10] that the Cartesian product of a
cyclic 3-polytope with n vertices and a segment has at least (n/2)! = (n!)1/2±o(1) regular
triangulations. The second result in this chapter is a significant improvement of this lower
bound, showing for example that:

Theorem 2.1.2. For fixed d ≥ 3 and n going to infinity, there are realizations of the cyclic
d-polytope with n vertices having at least

(n!)b
d−1

2 c±o(1)
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regular triangulations.

It has to be noted that the total number of triangulations of a polytope (or point config-
uration) depends only on its oriented matroid (another combinatorial invariant that is finer
than the combinatorial type and that we will present in Section 3.3.1), while the number
of regular triangulations varies for different realizations of the same oriented matroid.

Apart of its intrinsic interest, Theorem 2.1.2 is an intermediate step for Theorem 2.1.1;
the proof of Theorem 2.1.1 consists in showing that all of the many polytopes constructed
by Padrol [Pad13] admit realizations with the many regular triangulations stated in The-
orem 2.1.2.

This makes our proof of Theorem 2.1.1 more geometric, as opposed to combinatorial,
than previous constructions of “many” polytopes. In fact, the combinatorial types of poly-
topes obtained with our method may depend on choices made along the construction, for
example via the particular realizations used for the Padrol polytopes, which affects what
triangulations of them are regular, or via the particular lifting functions used for the regular
triangulations.

2.2 Definitions and notation

In this chapter we will usually assume that the points in a point configuration A =
(p1, . . . ,pn) ∈ Rd×[n] are distinct and in convex position. We will allow ourselves to identify
pi and i in some notations that should not be ambiguous though.

We say that A is k-neighborly if any subset of k points is the vertex set of a face
of conv(A), and just neighborly if it is

⌊
d
2

⌋
-neighborly; the latter makes sense since the

simplex is the only d-polytope that is more than
⌊
d
2

⌋
-neighborly.

We denote RegTriang(A) the set of regular triangulations of A.
A point q /∈ A is said to be in general position with respect to A if no hyperplane

spanned by points of A contains q, and in very general position with respect to A if
moreover no small perturbation of q changes RegTriang(A ∪ {q}). An argument similar
to that in [Ath99, Part 2] shows that configurations in very general position form a dense
open subset of the space of all point configurations.

Two points pi,pj ∈ A are said to be triangulation-inseparable in A if we have that

(i) RegTriang(A \ {pi}) = RegTriang(A \ {pj}) up to relabeling j to i, and

(ii) for any T ∈ RegTriang(A \ {pi}) there is a lifting function ` : [n] → R which
restricted to both A \ {pi} and A \ {pj} produces T as a regular triangulation (up
to relabeling j to i).

Let p be a vertex of conv(A). We define A/p to be any point configuration obtained as
the intersection of the half-lines positively spanned by {p′ − p |p′ ∈ A \ {p}} with an affine
hyperplane that does not contain p and intersects all these half-lines. Following [DRS10,
Definition 4.2.9] we call A/p the contraction of A at the point p. All the configurations that
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can be obtained as A/p have the same triangulations and the same regular triangulations.
In fact, regular triangulations of A/p are exactly the links at p of regular triangulations of
A [DRS10, Lemmas 4.2.20 and 4.2.22]. Here, the link of a triangulation T at a point pi,
which we denote T /pi, is defined as

T /pi := {F ⊂ [n] \ {i} |F ∪ {i} ∈ T } .

2.3 Many regular triangulations

The main idea of our construction of configurations with a large number of regular trian-
gulations is to split a point into two triangulation-inseparable points and to estimate the
number of regular triangulations generated after this operation. This is inspired by the
study of triangulations of cyclic polytopes done in [Ram97, RS00].

First, we show that we can indeed obtain triangulation-inseparable pairs by such a
splitting.

Lemma 2.3.1. Let A be a point configuration in Rd and p ∈ A in very general position with
respect to A\{p}. Then there is an ε > 0 such that p and p′ are triangulation-inseparable
in A ∪ {p′} for any p′ ∈ B(p, ε) in very general position with respect to A. Here B(p, ε)
denotes the ball of radius ε centered at p.

Proof. Up to relabeling, we can assume that A = (p1, . . . ,pn) and p = pn. By definition
of being in very general position with respect to A \ {pn}, there exists some η > 0 such
that RegTriang(A) = RegTriang(A \ {pn} ∪ {p′}) for all p′ ∈ B(pn, η). In particular, any
such a p′ fulfills the first condition for being triangulation-inseparable with p.

For each regular triangulation T ∈ RegTriang(A) we can choose a specific lifting func-
tion wT : [n] → R that induces T , and choose it so that the point (pn, wT (n)) is still in
general position with respect to the lifted configuration {(pi, wT (i)) | i ∈ [n− 1]}. Hence
there is some 0 < εT < η such that {(pi, wT (i)) | i ∈ [n]} and {(pi, wT (i)) | i ∈ [n− 1]} ∪
{(p′, wT (n))} have the same faces, for all p′ ∈ B(pn, εT ,). This means that wT induces T
as a regular triangulation of A \ {pn} ∪ {p′} for all p′ ∈ B(pn, εT ).

If we take ε = min
T ∈RegTriang(A)

εT , we obtain that p and p′ are triangulation-inseparable

in A ∪ {p′} for all p′ ∈ B(p, ε).

The following result is our main technical lemma, which provides lower bounds for the
number of triangulations under the presence of triangulation-inseparable points. The main
ideas are illustrated in Example 2.3.3.

Lemma 2.3.2. Let A be a point configuration in Rd and let p ∈ A be a vertex of conv(A)
that is in very general position with respect to A\{p}. We denote C the minimum number
of cells in a regular triangulation of A/p.

Let p′ be such that p and p′ are triangulation-inseparable in A ∪ {p′}, p′ is in very
general position with respect to A, and p′ is a vertex of conv(A ∪ {p′}). Then we have

|RegTriang(A ∪ {p′})| ≥ |RegTriang(A)| × (C + 1).
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Proof. We denote A′ the point configuration A \ {p} ∪ {p′}.
Let us call a regular triangulation T̃ of A∪A′ good if there is a regular triangulation T

of A such that T and T̃ coincide when restricted to A\{p}. Since a regular triangulation
of A is determined by its restriction to A \ {p}, this definition implicitly gives a map

φ : {good triangulations of A ∪A′} → RegTriang(A).

We claim that for every T ∈ RegTriang(P ) we have

|φ−1(T )| ≥ c(T /p) + 1 ≥ C + 1,

where we denote by c(L) (and call size of L) the number of cells of a pure polyhedral
complex L. This formula implies the statement.

Let T be a regular triangulation of A. To avoid confusion we denote by T ′ the tri-
angulation T but considered as a triangulation of A′. Let w ∈ RA∪A′ be a lifting vector
producing T and T ′ when restricted to A and A′, which exists because p and p′ are
triangulation-inseparable. We will assume moreover a genericity condition on w that will
be detailed later at item (8).

For each t ∈ R we consider the following lifting vector wt ∈ RA∪A′ , which varies
continuously with t:

• For q ∈ A \ {p}, wt(q) := w(q) is independent of t.

• If t ≤ 0 then wt(p) := w(p) and wt(p
′) := w(p′)− t.

• If t ≥ 0 then wt(p) := w(p) + t and wt(p
′) := w(p′).

Let T t be the regular subdivision of A ∪A′ produced by wt. We have that:

1. The restriction of T t to A\{p} coincides with the restriction of T : Indeed, if σ is a
face of T contained in A\{p} then w, and hence any wt, sends all of A∪A′\σ above
some supporting hyperplane of the lift of σ; hence, σ is a face in T t. Conversely,
suppose σ is a cell in T t for some t that is contained in A \ {p}. If t ≤ 0 then wt,
and hence w, sends A \ σ above the hyperplane. Hence, σ is a cell of T . If t ≥ 0
then wt, and hence w, sends A′ \ σ above the hyperplane. Hence, σ is a cell of T ′,
which restricted to A \ {p} coincides with T .

2. If t ≤ 0 then for every cell σ ∈ T t, σ \ {p′} is a face in T : This is because for
t ≤ 0 we have that wt restricted to A equals w, which produces T as a regular
triangulation of A.

3. If t ≥ 0 then for every cell σ ∈ T t, σ \ {p} is a face in T ′: Same proof.

4. If T t is not a triangulation for a certain t then every non-simplicial cell is of the
form τ ∪ {p,p′} where τ is a cell of T /p. Let σ be a non-simplicial cell of T t. By
claims (2) and (3), σ uses both of p and p′ and either σ \ {p′} is in T or σ \ {p} is
in T ′. Hence, σ \ {p,p′} is in T /p = T ′/p′.
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5. Each such τ ∪ {p,p′} appears as a cell for at most one value of t:

If t ≤ 0 then the value of t is fixed by the fact that wt(p
′) = w(p′) − t equals

the height at which the lifted hyperplane containing τ ∪ {p} meets the vertical line
{p′}×R ; same, changing p and p′, if t ≥ 0. Thus, we at most have one value of t in
(−∞, 0] and one in [0,∞). Moreover, there cannot be two values, one negative and
one positive. Indeed, if τ ∪ {p,p′} is a cell of T t for t < 0, then the point (p′, w(p′))
is below the lifted hyperplane containing τ ∪ {p}, so (p, w(p)) is above the lifted
hyperplane containing τ ∪ {p′} and there is no t′ > 0 such that τ ∪ {p,p′} is a cell
of T t′ .

6. Assuming T t is a triangulation, let Lt := T t/p\{p′} and L′t := T t/p
′ \{p}. Lt and

L′t are contained in T /p and they are complementary in the sense that their union
equals T /p and their intersection is lower dimensional. Lt and L′t are contained in
T /p = T ′/p′ by properties (2) and (3). They are complementary because every cell
τ ∈ T /p needs to be joined to one and only one of p and p′ to give a cell of T t.

7. In the limit when t→ −∞ we have that Lt = T /p (and hence L′t is lower-dimensional)
and in the limit t→ +∞ we have that L′t = T /p (and hence Lt is lower-dimensional).
In these limits, T t equals the triangulation obtained by placing point p′ (respectively
p) in T (respectively in T ′). This implies Lt = T /p (respectively L′t = T /p).

8. We can take w sufficiently generic so that no T t contains two different non-simplicial
cells. Suppose that (τ1, τ2) is a pair of cells in T /p such that τ1∪{p,p′} and τ2∪{p,p′}
are in T t for the same value of t. Let H1 and H2 be the two hyperplanes in Rd+1

spanned by the lifts of τ1 ∪ {p} and τ2 ∪ {p} for that t. Our hypothesis implies that
H1 and H2 intersect the vertical line {p′}×R at the same height (namely, at height
wt(p

′)). If this happens for a sufficiently generic choice of w then the intersection of
H1 with {p′} ×R does not change when slightly perturbing the heights of all points
in τ1 \ τ2: This implies that this intersection point lies in the affine span of (the
lifted) configuration (τ1 ∩ τ2)∪ {p}. Hence, p′ lies in the affine span of (the original)
(τ1 ∩ τ2) ∪ {p}, and p′ is not in general position.

9. If T t is not a triangulation, and ε > 0 is small enough, then c(Lt+ε) = c(Lt−ε) − 1
and c(L′t+ε) = c(L′t−ε) + 1. There is a single cell of T t of the form τ ∪ {p,p′}. If s
is in the neighborhood of t, all the cells of T s not contained in τ ∪ {p,p′} remain
unchanged because they are defined by an open condition on s. For s < t, we have
that τ ∪ {p} is a cell of T s but τ ∪ {p′} is not, because p′ is above the hyperplane
spanned by τ ∪{p}. Similarly, for s > t, we have that τ ∪{p} is not a cell of T s but
τ ∪ {p′} is.

Claim (1) says that whenever T t is a triangulation it is a good triangulation and it
lies in the preimage of T . As we move t continuously from −∞ to +∞ there are finitely
many values of t where T t is not a triangulation, by claims (4) and (5). Of course, outside
those values the triangulation T t is constant, and claim (8) says that (if p′ is in general
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position and w is generic) at those values the change in the triangulation is a geometric
bistellar flip in a cell of the form τ ∪{p,p′}. This flip changes the numbers of cells of T /p
contained in Lt and in L′t by one unit, increasing L′t and decreasing Lt as t increases, by
(9). By property (7) the size of L′t grows from zero to c(T /p) as t goes from −∞ to +∞,
so we encounter at least c(T /p) + 1 different good triangulations in the preimage of T
along the process.
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Figure 2.1: A two-dimensional illustration of the proof of Lemma 2.3.2. In the left picture,
a triangulation of a hexagon. In the rest, the vertex p is split into {p,p′}, and increasing
values of the parameter t induce different good triangulations of the heptagon A ∪A′.

Example 2.3.3. To illustrate Lemma 2.3.2, we use a two-dimensional example (reminis-
cent of some classical proofs of the recurrence relation for Catalan numbers). It has the
advantage of clarity, as it can be easily depicted, see Figure 2.1.

When a point p is split into {p,p′}, the facets of the polytope that were incident to p
are divided into two families, those that remain facets after the splitting, and those that
replace p by p′. Moreover, new facets containing both p and p′ are created. Similarly,
the cells incident to p in a triangulation are divided into two families, those containing p
and those containing p′, and new cells containing both p and p′ are created. This can be
read in the link T /p, which is divided into two parts, Lt and L′t, without full dimensional
intersection: We have that F ∪ {p} ∈ T t whenever F ∈ Lt, F ∪ {p′} ∈ T t whenever
F ∈ L′t, and that F ∪ {p,p′} ∈ Tt whenever F ∈ Lt ∩ L′t.

When t = −∞, we have that Lt ∩L′t = L′t, and it coincides with the boundary faces of
T /p that are incident to p′ in conv(A ∪ {p′}). As the values of t increase, Lt ∩ L′t flips
successively through each of the simplices of T /p, giving rise to different triangulations. At
the end, when t =∞, we have that Lt ∩L′t = Lt, and it coincides with the boundary faces
of T /p that are incident to p in conv(A ∪ {p′}). The number of different triangulations
thus created is therefore one more than the number of cells in the link T /p.
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There are some important differences that only appear in higher dimensions. First
of all, all triangulations of a polygon are regular, while starting in dimension 3 there
are polytopes with non-regular triangulations. Moreover, in dimension two there is only
one way to go from T −∞ to T ∞ since the link T /p is one-dimensional, while in higher
dimensions there are usually several different paths between these two triangulations. The
c(T /p) + 1 triangulations T t that we see as t ranges from −∞ to ∞ will depend on the
relative position of p and p′ and the choice of the lifting function w. Finally, in a polygon,
the vertex figure is just a segment (with interior points) and the number C in the statement
is always 1, so the lemma does not give an interesting bound in that case.

Without any further constraint this lemma is not very useful, as conv(A/p) could be
a simplex and C = 1. However, a lower bound on C can be proved if we have knowledge
on the neighborliness of A/p, thanks to the following lemma.

For a pure d-dimensional simplicial complex C and 0 ≤ j ≤ d+ 1 we denote

hj(C) =

j∑
k=0

(−1)j−k
(
d+ 1− k
d+ 1− j

)
fk−1(C),

where fk(C) is the number of faces of C of dimension k. The numbers h0(C), . . . , hd+1(C),
collectively called the h-vector of C, are known to be nonnegative in certain special cases,
which include C being a topological sphere; see [Zie95, Chapter 8].

Lemma 2.3.4. Let d > 2 and 1 ≤ k ≤ d+ 1. Let Q be a d-dimensional simplicial polytope
on n vertices. Then the number of cells in any triangulation of Q is bounded from below
by hk(∂Q).

In particular, if Q is k-neighborly for 1 ≤ k ≤
⌊
d
2

⌋
, then this number is bounded by:

hk(∂Q) =

(
n− d− 1 + k

k

)
.

Proof. Let T be a triangulation of Q. We want a bound on fd(T ).
We use the following result from McMullen and Walkup [MW71, Thm. 2], cited in a

modern version in [DRS10, Thm. 2.6.11]. For any 0 ≤ j ≤ d,

hj(∂Q)− hj−1(∂Q) = hj(T )− hd+1−j(T ),

where ∂Q is the boundary simplicial complex of Q, of dimension d − 1, and we take
h−1(∂Q) = 0.

Then we have:

fd(T ) =
d+1∑
l=0

hl(T )

= hk(∂Q)− h−1(∂Q) +
k∑
j=0

hd+1−j(T ) +
d+1∑
l=k+1

hl(T )

≥ hk(∂Q).
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The first h-coefficients of neighborly polytopes are well known, as they achieve the
maximum allowed by the Upper Bound Theorem ([McM70, Lemma 2], see also [Zie95,
Lemma 8.26]). In particular we have:

hk(∂Q) =

(
n− d− 1 + k

k

)
.

Remark 2.3.5. From the proof one derives that for 1 ≤ k ≤
⌊
d
2

⌋
, a triangulation T has

exactly hk(∂(Q)) cells if, and only if, hj(T ) = 0 for every j ≥ k + 1. This, in turn, is
equivalent to all interior cells of T having dimension at least d− k.

As a consequence of the previous two lemmas we have:

Theorem 2.3.6. Let A = (p1, . . . ,pn−1, q) be a configuration of n points in very general
convex position in Rd such that:

(i) for every d + 1 ≤ i ≤ n − 1, pi and q are triangulation-inseparable in Ai :=
(p1, . . . ,pi, q), and

(ii) the point configuration A/q is k-neighborly.

Then

|RegTriang(A)| ≥
n−1∏
m=d

(
m− d+ k

k

)
,

which is of order (n!)k±o(1) for fixed k and d.

Proof. For k = 0 the statement is void, therefore we assume that k ≥ 1. We proceed by
induction on n. In the base case n = d + 1 we have that A = Ad is a simplex, with only
one regular triangulation, so the result is trivial.

Assume that the theorem is true for n = m − 1. Note that Am−1 satisfies the hy-
potheses of the theorem. Indeed, the first condition is automatic and the second follows
because Am/q is a subset of A/q, and a subset of a k-neighborly point configuration is
still k-neighborly.

Now, since pm and q are triangulation-inseparable in Am by the first hypothesis, we
can apply Lemma 2.3.2 to deduce that

|RegTriang(Am)| ≥ |RegTriang(Am−1)| × (Cm + 1),

where Cm is the minimum number of cells in a regular triangulation of Am/q = (A/q) \
{pm+1, . . . ,pn−1}. And since Am/q is a k-neighborly (d− 1)-dimensional simplicial poly-
tope on m vertices (all points are vertices since it is at least 1-neighborly), Lemma 2.3.4
implies that Cm ≥

(
m−d+k

k

)
.
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At the end, using the induction hypothesis we conclude that:

|RegTriang(A)| ≥
n−1∏
m=d

(
m− d+ k

k

)

≥
n−1∏
m=d

(
m− d+ k

k

)k
= ((n− d− 1 + k)!)k × 1

((k − 1)!k(n−d))
k

= exp(kn log n+ o(n log n)).

The combination of these results provides Theorem 2.1.2: a lower bound of order

(n!)b
d−1

2 c±o(1) for the number of regular triangulations of cyclic polytopes in certain re-
alizations. The cyclic d-polytope with n vertices is a neighborly simplicial polytope that
can be realized as the convex hull of n arbitrary points p1, . . . ,pn along the moment curve{

(t, t2, . . . , td) ∈ Rd
∣∣ t ∈ R

}
. See for example [Zie95, Example 0.6] for details.

Proof of Theorem 2.1.2. We first fix the last vertex q = pn on the moment curve and
then define the points p1, . . . ,pn−1 consecutively. At step i, we slide the point pi along
the moment curve until it is close enough to pn so that Lemma 2.3.1 implies them to be
triangulation-inseparable, after a perturbation of pi into very general position if needed.
For d ≥ 3, the contraction of the last vertex in a cyclic polytope with n vertices is a
(d−1)-dimensional cyclic polytope with n−1 vertices, and in particular

⌊
d−1

2

⌋
-neighborly.

Hence Theorem 2.3.6 gives the result.

It is not clear to us whether cyclic polytopes (or neighborly polytopes in general) do
indeed have more triangulations than “typical” simplicial polytopes of the same dimension
and number of vertices. In fact, in dimension two quite the opposite is true: the convex
n-gon minimizes the number of triangulations and of regular triangulations among point
configurations of n points in general position [KVY23, GS21].

2.4 Many polytopes

Let us call polytopal (simplicial) d-ball any (labeled) simplicial complex that can be realized
as a regular triangulation of a configuration of points in dimension d. By adding a point
“at infinity” to a polytopal d-ball one obtains a polytopal d-sphere with one more vertex,
and viceversa. Thus, the number of combinatorially different labeled polytopal d-balls
with n vertices coincides with the number of combinatorially different labeled simplicial
(d+ 1)-polytopes with n+ 1 vertices.

On the other hand, if two simplicial polytopes are combinatorially different then no
triangulation of the first can be combinatorially equal to one of the second, because we
can recover the boundary complex of a simplicial polytope from any of its triangulations.
Hence:



2.4. MANY POLYTOPES 65

Lemma 2.4.1. If A1, . . . ,AN are configurations of dimension d and size n in convex and
general position and with combinatorially different convex hulls, then there are at least

N∑
i=1

|RegTriang(Ai)|

combinatorially different labeled simplicial (d+ 1)-polytopes with n+ 1 vertices.

In this section we show that not only cyclic polytopes but all the Gale sewn polytopes
introduced in [Pad13] fulfill (in certain realizations) the conditions of Theorem 2.3.6. This
provides us with a large family of polytopes with many regular triangulations, to which we
can apply Lemma 2.4.1 and obtain even more polytopes.

In order to have a self-contained presentation, we give in Section 2.4.1 all the definitions
and lemmas that are used in the proofs of the constructions in the Section 2.4.2. Most
of the contents of the latter can be traced back to [Pad13, GP16], but observe that the
presentation in [Pad13] is formulated in the Gale dual setting of extensions while ours, and
the one in [GP16], is already formulated in a primal setting of liftings.

2.4.1 Lexicographic liftings

A central tool for our construction are lexicographic liftings, which are a way to derive
(d+ 1)-dimensional point configurations from d-dimensional point configurations.

Definition 2.4.2. A positive lexicographic lifting of a point configuration A = (p1, . . . ,pn) ⊂
Rd (with respect to the order induced by the labels) is any configuration Â = (p̂1, . . . , p̂n, q̂)
of n+ 1 labeled points in Rd+1 such that:

(i) q̂ is a point in the halfspace xd+1 > 0,

(ii) for 1 ≤ i ≤ n, the point p̂i lies in the half-line from q̂ through (pi, 0),

(iii) for d+ 2 ≤ i ≤ n, and for every hyperplane H spanned by d+ 1 points taken among
{p̂1, . . . , p̂i−1}, the points q̂ and p̂i lie on the same side of H .

Remark 2.4.3. Positive lexicographic liftings exist for every point configuration, and are
a special case of the lexicographic liftings produced with a sign vector in {+,−}n, as
defined e.g. in [GP16, Def. 4.1]. One way to construct a positive lexicographic lifting is to
choose q̂ arbitrarily with xd+1 > 0 and then take p̂i := (1 − εi)q̂ + εi(pi, 0) for constants
0 < εn � εn−1 � · · · � ε1. See Figure 2.2.

The faces of conv(Â) that do not contain q̂ give a particular subdivision of A that
is called the placing, or pushing, triangulation. We refer the reader to Section 4.3.1 of
[DRS10] for more details.
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(a) A (b) Â (c) Checking (iii)

Figure 2.2: A positive lexicographic lifting Â ⊂ R2 of a configuration A ⊂ R1.

Definition 2.4.4. A face F of a polytope P is visible from a point p ∈ Rd if there is an
affine functional that is zero on F , strictly positive on p and strictly negative on P \F . F
is hidden from p if there is an affine functional that is zero on F and strictly negative both
on p and on P \ F . Note that a face that is not a facet can be both visible and hidden
from p, and if p is in general position with respect to P and p /∈ P , then any face of P
(even facets) is either visible or hidden from p.

Let A = (p1, . . . ,pn) be a point configuration in general position in Rd. We denote
Ai := (p1, . . . ,pi). The placing triangulation T n of An is defined iteratively by taking for
T 1 the singleton {1} and for T i the union of the faces of T i−1 with all simplices of the
form F ∪ {i} where F gives a face of conv(Ai−1) that is visible from pi. T i is the only
triangulation of Ai that contains T i−1. The pulling triangulation of A is the union of all
simplices that give proper faces of conv(A) and all F ∪ {n} where F ⊆ [n − 1] gives a
proper face of conv(A). (Proper faces are those different from the whole polytope).

Lemma 2.4.5. Let Â = (p̂1, . . . , p̂n, q̂) be a positive lexicographic lifting of the point config-
uration A = (p1, . . . ,pn) ⊂ Rd in convex position. For i ∈ [n] we denote Ai := (p1, . . . ,pi)

and Âi := (p̂1, . . . , p̂i). Then:

(i) The faces of conv(Ân) that are hidden from q̂ are exactly the liftings of faces of the
placing triangulation of An.

(ii) The faces of conv(Ân) that are visible from q̂ are exactly the liftings of faces of the
pulling triangulation of An.

(iii) For i ∈ [n−1], the faces of conv(Âi) that are hidden, resp. visible, from p̂i+1 coincide
with the faces that are hidden, resp. visible, from q̂.

(iv) The faces of conv(Â) are exactly the faces of conv(Ân) that are hidden from q̂, which
are the liftings of faces of the placing triangulation of An, and all conv({p̂i | i ∈ F }∪
{q̂}) where F gives a face of conv(An).
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Proof. Items (i) and (ii) are reformulations of [DRS10, Lemma 4.3.4] and [DRS10, Lemma
4.3.6], which correspond to the case where the point q̂ is “at infinity”. In that case, the

faces of conv(Ân) hidden from q̂ correspond to the lower faces of conv(Ân), thus to faces of
the corresponding induced regular subdivision of An. The faces of conv(An) visible from
q̂ correspond to the lower faces of the lifting of An induced by the opposite (negative)
heights. Then, in both [DRS10, Lemma 4.3.4] and [DRS10, Lemma 4.3.6] where we take
the opposite heights, the condition on the constant c0 and the heights amounts to asking
that the lifting is a positive lexicographic lifting.

Item (iii) follows from the definitions and the fact that a face of a polytope P is hidden,
resp. visible, from a point p if and only if it is contained in a facet of P that is hidden,
resp. visible from p.

For (iv), notice that the faces of conv(Â) that do not contain q̂ are exactly the faces

of conv(Ân) hidden from q̂. The same argument as before shows that they form the

placing triangulation of Ân. If F ⊆ [n] is such that F ∪ {q̂} gives a face of Â, let H
be a supporting hyperplane of this face. Then the intersection of H with the hyperplane
xd+1 = 0 is a supporting hyperplane of the face given by F for conv(An) in Rd × {0}.

Corollary 2.4.6. Let A = (p1, . . . ,pn) ⊂ Rd be a point configuration in convex posi-

tion. Let Â = (p̂1, . . . , p̂n, p̂n+1) be a positive lexicographic lifting of A and let ̂̂A =

( ̂̂p1, . . . , ̂̂pn, ̂̂pn+1, ̂̂pn+2) be a positive lexicographic lifting of Â, with respect to the same

order. Then the combinatorial type of conv(̂̂A) is completely determined by (the oriented
matroid of) the point configuration A.

Proof. According to Lemma 2.4.5 (iv), the faces of conv(̂̂A) are the liftings of faces of the

placing triangulation of Ân+1 and all conv(
{̂̂pi ∣∣ i ∈ F

}
∪ { ̂̂pn+2}) where F gives a face

of conv(Ân+1). The definition of the placing triangulation and Lemma 2.4.5 (i), (ii), (iii)

imply that the placing triangulation of Ân+1 (and thus also the faces of conv(Ân+1)) is
determined by the placing and pulling triangulations of the Pi.

If one starts with a 0-dimensional point configuration (that is a point repeated multiple
times), and then perfoms a sequence of positive lexicographic liftings always with respect
to the same order, then one obtains a cyclic polytope. If the order is altered at each step,
then many combinatorial types of polytopes are obtained, but not necessarily neighborly.
Moreover, different lifting orders might give rise to equivalent polytopes. However, if one
restricts to changing the order of the lifting only every two dimensions, then neighborliness
is preserved and the combinatorial type can be controlled. This is used in [Pad13] to
construct many neighborly polytopes. The original presentation in [Pad13] is in terms
of lexicographic extensions of the Gale dual, but we refer to the following primal version
for liftings taken from [GP16]. We repeat the main ideas of that proof for the reader’s
convenience.

Theorem 2.4.7 ([GP16, Theorem 5.5(i)]). Let A = (p1, . . . ,pn) ⊂ Rd be a k-neighborly

point configuration in general position. Let Â = (p̂1, . . . , p̂n, p̂n+1) be a positive lexico-
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graphic lifting of A and let ̂̂A = ( ̂̂p1, . . . , ̂̂pn, ̂̂pn+1, ̂̂pn+2) be a positive lexicographic lifting

of Â, with respect to the same order. Then ̂̂A is (k + 1)-neighborly.

Proof. Let S be a subset of [n] of size k or k − 1. Then {pi | i ∈ S} is the vertex set of a
face of conv(A). Hence, it follows from Lemma 2.4.5 (iv) that {p̂i | i ∈ S} ∪ {p̂n+1} is the

vertex set of a face of conv(Â). The same reasoning shows that any subset of ̂̂A of size

k + 1 that contains ̂̂pn+2 or ̂̂pn+1 is the vertex set of a face of ̂̂A.
For the remaining cases, let S be a subset of [n] of size k + 1. We want to show that{̂̂pi ∣∣ i ∈ S} is the vertex set of a face of conv(̂̂A). Let m ≤ n be the largest element of S.

Denote Am = (p1, . . . ,pm) and Âm = (p̂1, . . . , p̂m). We have that S \ {m} gives a face
of conv(Am−1) by neighborliness, thus S \ {m} gives a face of the pulling triangulation

of Am−1, thus S \ {m} gives a face of Âm−1 visible from p̂m by Lemma 2.4.5 (ii), thus S

gives a face of the placing triangulation of Âm, and thus S gives a face of the placing

triangulation of Â. It follows from Lemma 2.4.5 (iv) that S gives a face of ̂̂A.

The following lemma allows us to prove that the combinatorial type can be controlled
without explicitly using the rigidity of neighborly oriented matroids of odd rank as it was
originally done in [Pad13, Proposition 6.7].

Lemma 2.4.8. Let A = (p1, . . . ,pn) be an r-neighborly point configuration in even dimen-

sion d = 2r such that n > d+ 2. Let Â = (p̂1, . . . , p̂n, p̂n+1) be a lexicographic lifting of A

and let ̂̂A = ( ̂̂p1, . . . , ̂̂pn, ̂̂pn+1, ̂̂pn+2) be a positive lexicographic lifting of Â, with respect
to the same order. Then n is the only index k ∈ [n] such that the double contraction̂̂A/{ ̂̂pn+1, ̂̂pk} is r-neighborly.

Proof. For r ≥ 1, we know that ̂̂A is 2-neighborly, so all pairs {n + 1, k} for k ∈ [n]

give edges of ̂̂A, and all points of the configuration ̂̂A/{ ̂̂pn+1} are vertices. This justifies

that the double contraction ̂̂A/{ ̂̂pn+1, ̂̂pk} is well-defined. If d = r = 0, ̂̂A/{ ̂̂pn+1} is a
1-dimensional configuration of points ordered linearly n, n − 1, . . . , 2, 1, n + 2. Thus, the
double contraction is well-defind only for k = n + 2 and k = n and we already have the
result of the lemma.

Note that A is a realization of ̂̂A/{ ̂̂pn+2, ̂̂pn+1}. It follows from the definition of contrac-

tion that a set S ⊆ [n]\{k} gives a face of conv(̂̂A/{ ̂̂pn+1, ̂̂pk}) if and only if S∪{n+1, k}
gives a face of conv(̂̂A).

We denote Âi := (p̂1, . . . , p̂i) for i ∈ [n].

We first show that ̂̂A/{ ̂̂pn+1, ̂̂pn} is r-neighborly. Let S ⊆ [n+2]\{n+1, n} be a subset
of cardinality r. If S contains n+ 2, we define S ′ := S ∪{n} \ {n+ 2}. S ′ is a subset of [n]
of cardinality r, hence it defines a face of conv(A) and S ∪{n+ 1, n} = S ′ ∪{n+ 1, n+ 2}
indeed defines a face of conv(̂̂A). If S does not contain n + 2, then it is a subset of [n] of
cardinality r and hence it gives a face of conv(A). Thus, S∪{n} gives a face of the pulling



2.4. MANY POLYTOPES 69

triangulation of A, and by Lemma 2.4.5(ii) a face of conv(Ân) that is visible from p̂n+1.

Therefore, S ∪ {n, n + 1} gives a face of the placing triangulation of conv(Â), thus a face

of conv(̂̂A).

Now, let k be an element of [n − 1]. To show that ̂̂A/{ ̂̂pn+1, ̂̂pk} is not r-neighborly,
we will exhibit a subset S ⊆ [n] \ {n+ 1, k} of cardinality r such that S ∪ {n+ 1, k} does

not give a face of conv(̂̂A). Since n > d + 2, we can find a subset W of [n] of cardinality
d+2 = 2(r+1) that contains k but not n. Radon’s theorem implies that there is a partition
of W into two subsets W1 and W2 such that conv({pi | i ∈ W1})∩ conv({pj | j ∈ W2}) 6= ∅.
In particular, W1 and W2 do not give faces of conv(A). Since A is r-neighborly, W1 and W2

necessarily have at least r+ 1 elements, so they are both exactly of cardinality r+ 1. (This
is where the assumption of even dimension is used). We define T to be the Wi that contains
k, and S := T \{k}. Since T does not give a face of conv(A) and does not contain n, it does

not give a face of Ân that is visible from p̂n+1. Hence, T ∪{n+1} = S∪{n+1, k} does not

give a face of the placing triangulation of Â. However, all faces of ̂̂A not containing n+ 2
must be faces of the placing triangulation of Â by Lemma 2.4.5(iv). Thus, S ∪ {n+ 1, k}
does not give a face of ̂̂A.

Corollary 2.4.9 ([Pad13, Proposition 6.1] and [GP16, Lemma 6.1]). Let A = (p1, . . . ,pn)
be an r-neighborly point configuration in even dimension d = 2r. Then there are at least
n!

(d+2)!
distinct labeled combinatorial types of (d + 2)-polytopes with n + 2 vertices obtained

by the following construction:

• Choose a permutation σ of n.

• Define the point configuration Aσ = (pσ(1), . . . ,pσ(n)).

• Let Âσ be a positive lexicographic lifting of Aσ and let ̂̂Aσ = ( ̂̂pσ(1), . . . , ̂̂pσ(n), ̂̂pn+1, ̂̂pn+2)

be a positive lexicographic lifting of Âσ.

• Define ̂̂A = ( ̂̂p1, . . . , ̂̂pn, ̂̂pn+1, ̂̂pn+2).

• Take the convex hull conv(̂̂A).

Remark 2.4.10. In fact, [GP16, Lemma 6.1] gives a bound improved by a factor n+ 1, but
this does not change the asymptotics of the bound on the total number of polytopes.

Proof. Let ̂̂A = ( ̂̂p1, . . . , ̂̂pn, ̂̂pn+1, ̂̂pn+2) be a point configuration in Rd+2 obtained as in
the statement, with a permutation σ that we do not know. We will show that we can

recover σ(n), σ(n− 1), . . . , σ(d + 3) from A and the face lattice of conv(̂̂A). This implies
that distinct choices for σ(n), σ(n − 1), . . . , σ(d + 3) give distinct labeled combinatorial

types conv(̂̂A), and there are n!
(d+2)!

such choices.

We will consecutively recover the values of σ(m) starting from m = n until m = d+ 3.
Suppose that we have already recovered σ(n), σ(n−1), . . . , σ(m+1) for some d+3 ≤ m ≤ n.
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We consider the point configuration ̂̂Am := ̂̂A \ { ̂̂pσ(n), . . . , ̂̂pσ(m+1)} (where we abuse
notation for the labels but the only important thing is to record the last two points).
It follows from Corollary 2.4.6 that its combinatorial type is well defined, because it is
obtained as the relabeling of the double lifting of the point configuration (pσ(1), . . . ,pσ(m))

(with the two additional points ̂̂pn+1 and ̂̂pn+2). Moreover, since the point configuration
(pσ(1), . . . ,pσ(m)) is r-neighborly, it follows from Lemma 2.4.8 that we can recover σ(m) as

the only index k ∈ [m] such that ̂̂Am/{ ̂̂pn+1, ̂̂pk} is r-neighborly.

2.4.2 Construction of many polytopes

We will use the following slight variation of the construction used in [Pad13] to give a lower
bound for the number of polytopes.

Theorem 2.4.11 ([Pad13, Theorem 6.8]). The number of labeled combinatorial types of
neighborly d-polytopes with n > d vertices obtained from a 0-dimensional point configuration
by a sequence of positive lexicographic liftings (with orders that might change along each
step of the sequence) is at least

(n!)b
d
2c±o(1).

Proof. We build iteratively sets P2k that contain realizations of distinct labeled combina-
torial types of neighborly polytopes of dimension 2k with n− d+ 2k vertices.

We define P0 to be the singleton with the degenerate configuration of n − d labeled
points in the 0- dimensional space.

Suppose that we have constructed P2k for some 0 ≤ k <
⌊
d
2

⌋
. Let P2k+2 be the

union over all configurations A ∈ P2k of the distinct labeled point configurations obtained
from A by relabelings and two positive lexicographic liftings in the same order, as in

Corollary 2.4.9. This union is disjoint because if ̂̂A is a double lifting of A, we can recover

the combinatorial type of A by taking ̂̂A/{ ̂̂pn−d+2k+2, ̂̂pn−d+2k+1}. Hence, Corollary 2.4.9

gives that |P2k+2| ≥ |P2k| × (n−d+2k)!
(2k+2)!

. Theorem 2.4.7 ensures that the point configurations
in P2k+2 are neighborly.

For k =
⌊
d
2

⌋
we obtain that:

|P2b d2c| ≥
b d2c−1∏
k=0

(n− d+ 2k)!

(2k + 2)!

≥ ((n− d)!)b
d
2c∏b d2c

k=1 (2k)!

= (n!)b
d
2c+o(1).

If d is odd, instead of taking a pyramid as in [Pad13, Corollary 6.10], we do one last

positive lexicographic lifting on all the elements of P2b d2c to obtain (n!)b
d
2c+o(1) realizations
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of distinct labeled combinatorial types of d-polytopes with n vertices. This variant still
conserves the number of distinct combinatorial types since we recover the polytopes in
P2b d2c by taking the contractions of the last labeled point.

The combination of these constructions allows us to prove Theorem 2.1.1: The number
of different labeled combinatorial types of d-polytopes with n vertices for fixed d > 3 and
n growing to infinity is at least (n!)d−2±o(1).

Proof of Theorem 2.1.1. We start by applying Theorem 2.4.11 in dimension d − 1. The
last step of the construction of the many (d − 1)-polytopes in that theorem is a positive

lexicographic lifting Â = (p̂1, . . . , p̂n−1, q̂) from a
⌊
d−2

2

⌋
-neighborly (d− 2)-polytope A.

Lemma 2.3.1 ensures that we can do this lifting step by step so that for every i from
d to n − 1, p̂i and q̂ are triangulation-inseparable in (p̂1, . . . , p̂i, q̂). Indeed, the value
of εi in Remark 2.4.3 can be taken arbitrarily small. While very general position is not
guaranteed by the construction, note that these configurations are in general position, and
hence we can do a small perturbation into very general position if needed without changing
the combinatorial type.

Moreover, note that by construction A is the contraction Â/q̂, and that similarly
(p1, . . . ,pi) = (p̂1, . . . , p̂i, q̂)/q̂. These contractions are thus

⌊
d−2

2

⌋
-neighborly.

Hence Theorem 2.3.6 applies: each of these polytopes has at least (n!)b
d−2

2 cn±o(1) regular
triangulations. Then Lemma 2.4.1 gives us a lower bound of (n!)d−2±o(1) labeled simplicial
types of d-polytopes with n vertices.

Remark 2.4.12. It follows from the construction that all these many d-polytopes are
⌊
d−1

2

⌋
-

neighborly, because they come from regular triangulations of Padrol’s neighborly (d− 1)-
polytopes.

Hence, for odd d our polytopes are neighborly, since in this case
⌊
d
2

⌋
=
⌊
d−1

2

⌋
.

On the other hand, if d is even then the following lemma shows that we do not im-
prove Padrol’s bound on the number of neighborly polytopes, because each of the Padrol
polytopes that we use has at most one neighborly triangulation.

Lemma 2.4.13. A polytope in odd dimension 2k + 1 has at most one triangulation that is
(k + 1)-neighborly.

Proof. This is a direct consequence of the observation after [Dey93, Lemma 3.1], see also
[DRS10, Lemma 8.4.1]: a triangulation of a d-polytope is completely determined by its⌊
d
2

⌋
-skeleton. For a triangulation of a (2k + 1)-polytope, being (k + 1)-neighborly exactly

means that its k-skeleton is complete.





Chapter 3
Sweep polytopes and sweep oriented matroids

This chapter is based on the article Sweeps, polytopes, oriented matroids, and allowable
graphs of permutations [PP23], written with my advisor Arnau Padrol.

A sweep of a point configuration is any ordered partition induced by a linear functional.
Posets of sweeps of planar point configurations were formalized and abstracted by Goodman
and Pollack under the theory of allowable sequences of permutations. We introduce two
generalizations that model posets of sweeps of higher dimensional configurations.

Sweeps of a point configuration are in bijection with faces of an associated sweep poly-
tope. Mimicking the fact that sweep polytopes are projections of permutahedra, we define
sweep oriented matroids as strong maps of the braid oriented matroid. Allowable sequences
are then the sweep oriented matroids of rank 2, and many of their properties extend to
higher rank. We show strong ties between sweep oriented matroids and Dilworth trun-
cations from (unoriented) matroid theory. Pseudo-sweeps are a generalization of sweeps
in which the sweeping hyperplane is allowed to slightly change direction, and that can be
extended to arbitrary oriented matroids in terms of cellular strings. We prove that for
sweepable oriented matroids, sweep oriented matroids provide a sphere that is a deforma-
tion retract of the poset of pseudo-sweeps. This generalizes a property of sweep polytopes
(which can be interpreted as monotone path polytopes of zonotopes), and solves a special
case of the strong Generalized Baues Problem for cellular strings.

A second generalization are allowable graphs of permutations: symmetric sets of per-
mutations pairwise connected by allowable sequences. They have the structure of acycloids
and include sweep oriented matroids.

3.1 Introduction

It is very natural to order a point configuration by the values of a linear functional, and
it is not surprising that applications abound in discrete and combinatorial geometry. For
example, this is the core of sweep algorithms, a central paradigm in computational geom-
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etry (see [dBCvKO08, Section 2.1]). The simplex methods for linear programming visit
vertices of a convex polytope in such a linear order (see for example [MG06]). Moreover,
these orderings are precisely those inducing the Bruggesser-Mani line shellings in the polar
polytope [BM71] (see [Zie95, Lec. 8]).

The set of all linear orderings of a planar point configuration was already studied by
Perrin in 1882 [Per82]. This was a precursor to the theory of allowable sequences, introduced
and developed by Goodman and Pollack [GP80a, GP80b, GP82, GP84, GP93]. The idea
is the following. Given a configuration A of n points in the plane, for each generic vector
u ∈ R2, we sweep the plane with a line orthogonal to u. The order in which the points
are hit by the line gives rise to a permutation σ ∈ Sn (see Figure 3.1). As u rotates 180◦

clockwise, we obtain a sequence of permutations in which:

(i) the move from a permutation to the next one consists of reversing one or more disjoint
substrings;

(ii) each pair i, j with 1 ≤ i < j ≤ n is reversed in exactly one move along the sequence.

An allowable sequence is a sequence of permutations from the identity to its reverse
(σ, σ ∈ Sn are reverse if σ(t) = σ(n − t + 1) for all t) fulfilling these two conditions.
Contrary to Perrin’s claim, Goodman and Pollack showed that there are unrealizable al-
lowable sequences [GP80a, Fig. 3 and Thm. 3.1], that is, that do not arise from a point
configuration with this construction (c.f. Figure 3.10).

Figure 3.1: A segment of an allowable sequence. The sweeps between two consecutive
permutations in the sequence correspond to ordered partitions.

Allowable sequences are hence purely combinatorial objects abstracting geometric prop-
erties of planar point configurations. They are closely related to pseudoline arrangements
and oriented matroids (see [BLS+99, Sects. 1.10 & 6.4]), although their combinatorial struc-
ture is in some senses easier to grasp and manipulate. In particular, in the simple case
(where consecutive permutations differ by a transposition), allowable sequences are in corre-
spondence with reduced decompositions of the reverse of the identity and maximal chains in
the weak order of Sn, see [BLS+99, Sec. 6.4], as well as with (minimal primitive) sorting net-
works [Knu98, Sec. 5.3.4]. This has allowed for their complete enumeration [Sta84, EG87],
as well as the study of uniform random instances [AHRV07, ADHV19, Dau19].
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They turned out to be a very effective tool to study problems of geometric combinatorics
in the plane, used for example to prove Ungar’s theorem (a configuration of 2n points not
all on a same line determines at least 2n slopes) [Ung82], to decide the stretchability of
arrangements of at most eight pseudolines [GP80b], or to estimate the number of k-sets
and (≤ k)-sets [AG86, LVWW04, Wel86]. See [GP93, Ch. V] and [Fel04, Ch. 6] for some
of their applications.

The construction detailed above extends naturally to any higher dimensional point
configuration A ∈ Rd×[n]. Every vector u ∈ Rd defines a sweep, which is the ordered
partition of [n] in which the points of A are met when sweeping with a hyperplane in
direction u. Goodman and Pollack already observed that sweeps induce a complex on the
unit sphere Sd−1, “which has not yet been fully investigated” ([GP93, after Def. 2.3]). This
was further explored by Edelman [Ede00] and Stanley [Sta15] who, in particular, presented
a tight upper bound for the number of sweeping orders of a d-dimensional configuration of
n points.

Ordered by refinement, the poset of sweeps Π(A) is isomorphic to the face poset of
a polyhedral fan generated by a hyperplane arrangement SH(A), called the valid order
arrangement by Stanley in a polar formulation [Sta15]. As we discuss in Section 3.2.3, this
is the normal fan of a zonotope: the sweep polytope SP (A) (mentionned under the name
of shellotope by Gritzmann and Sturmfels in [GS93]).

Posets of sweeps of point configurations are the high-dimensional analogue of realiz-
able allowable sequences. However, there is no purely combinatorial description of these
objects. Indeed, Hoffmann and Merckx recently adapted the classical Universality Theo-
rem for oriented matroids by Mnëv [Mnë88] to give a Universality Theorem for allowable
sequences [HM18]. This shows that already in the plane the problem of deciding whether
an allowable sequence arises from a point configuration is very hard (equivalent to the
“existential theory of the reals”, and in particular NP-hard).

Our main goal is to give a purely combinatorial high-dimensional generalization of
allowable sequences that abstracts and encompasses the posets of sweeps of point config-
urations. We present two strongly related approaches with two levels of generality (sweep
oriented matroids and sweep acycloids). As we will see, the objects that we introduce fill
a gap connecting several topics studied by different communities, providing a new and
unified point of view. We also hope that, beside their intrinsic interest, having a purely
combinatorial framework without the rigid constraints of realizability will open the door
to new approaches to problems on discrete and combinatorial geometry, as happened in
the two-dimensional case.

Our starting point are sweep polytopes. We report alternative constructions that high-
light different points of view. On the one hand, sweep polytopes are affine projections of
permutahedra. Up to translation, every affine projection of a permutahedron is a sweep
polytope, which gives a natural combinatorial interpretation of permutahedral shadows.
Moreover, sweep polytopes can be realized as fiber polytopes, and in particular as monotone
path polytopes of zonotopes [Ede00, Sec. 5]. These are polytopes whose vertices encode
the parametric simplex paths induced by a linear functional [BS92, BKS94b]. Conversely,
every monotone path polytope of a zonotope is a sweep polytope (under mild technical
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conditions, see Proposition 3.2.10). This interpretation of sweep polytopes appears in the
study of pivot rules in linear programming [BDLLS22].

Moreover, this construction naturally reveals a decomposition of sweep polytopes as
Minkowski sums of k-set polytopes [AW03, EVW97] (see Remark 3.2.9). After the appear-
ance of the first version of this work, most of these constructions have been generalized
to lineup polytopes, which encode prefixes of sweeps and are relevant for the 1-body N -
representability problem in quantum physics, see [CLL+23] and references therein.

Inspired by the characterization of sweep polytopes as permutahedral shadows, in Sec-
tion 3.3 we define sweep oriented matroids as strong maps of the oriented matroid of the
braid arrangement. The strong link between allowable sequences, oriented matroids of
rank 3, and arrangements of pseudolines is well documented in [BLS+99, Sects. 1.10 &
6.4] and explained in terms of big and little oriented matroids. These concepts extend to
high dimensions too: each sweep oriented matroid of rank r determines a little and a big
oriented matroid of rank r + 1 (Theorem 3.4.1 and Lemma 3.4.4). For sweep oriented
matroids of rank 2, which are equivalent to allowable sequences, we recover the original
definitions. In particular, in the realizable case, the little oriented matroid is the standard
oriented matroid associated to the point configuration.

We show that, up to isomorphism, big oriented matroids are characterized by having
a tight modular hyperplane (Theorem 3.4.9). Modular flats of matroids were introduced
by Stanley [Sta71] and play a structural role for matroid constructions [Bry75]. We call a
modular hyperplane tight if it is no longer modular after the deletion of one of its elements.
The operation that determines the big oriented matroid from its sweep oriented matroid
extends to all oriented matroids equipped with certain decorations (Corollary 3.4.10), and
can be seen as an oriented matroid version of [Bon06, Thm. 2.1].

We extend the bounds from [Ede00] and [Sta15] to the non-realizable case (Theo-
rem 3.5.6). For this, we show in Section 3.5 that, at the level of the underlying unoriented
matroids, the lattice of flats of a sweep oriented matroid is (a weak map of) the first
Dilworth truncation of the lattice of flats of the little oriented matroid (Theorem 3.5.2).
When one removes all the atoms from a geometric lattice, the resulting poset is no longer
a geometric lattice. The first Dilworth truncation is a lattice obtained by adding the nec-
essary joins in the most generic way to obtain a geometric lattice [Bry86, Dil44]. We can
therefore view sufficiently generic sweep oriented matroids as an oriented version of the first
Dilworth truncation of the associated little oriented matroid. Unfortunately, in contrast
to rank 3, not every (little) oriented matroid can be extended to a big oriented matroid
(Theorem 3.4.13). The question of characterizing oriented matroids admitting such an
extension is open.

In Section 3.6, we discuss pseudo-sweeps, which correspond to sweeps in which the
sweeping hyperplane is allowed to change direction (in a controlled monotonous way).
Whereas sweeps of a point configuration correspond to the parametric (coherent) mono-
tone paths on an associated zonotope, pseudo-sweeps take into account all monotone
paths. They admit a polar formulation in terms of galleries and cellular strings of pseudo-
hyperplane arrangements, which extends to oriented matroids [Bjö92]. This way, for every
(little) oriented matroid, even those that cannot be extended to a big oriented matroid, one
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can define a poset of pseudo-sweeps. In general, an oriented matroid M can be the little
oriented matroid of several sweep oriented matroids; each with a different associated poset
of sweeps. They are all subposets of the poset of pseudo-sweeps of M. A classification of
the cases when all pseudo-sweeps are actual sweeps is given in [EJLM21].

There is a lot of literature concerning the graphs of pseudo-sweep permutations of ori-
ented matroids. Cordovil and Moreira had shown that they are connected [CM93], extend-
ing to oriented matroids results that went back to Tits [Tit69] (for reflection arrangements),
Deligne [Del72] (for simplicial arrangements), and Salvetti [Sal87] (for realizable oriented
matroids). More results concerning graphs of pseudo-sweeps can be found in [AS01, RR13].

The topology of the posets of pseudo-sweeps has been extensively studied as a special
case of the generalized Baues problem [BS92, Rei99]. Without the trivial sweep, their
order complexes have the homotopy type of, but in general are not homeomorphic to, a
sphere. In the realizable case, Billera, Kapranov, and Sturmfels proved that the poset
of sweeps is a strong deformation retract of the poset of pseudo-sweeps [BKS94b]. Their
proof uses strongly the geometry of the fiber polytope construction. Björner [Bjö92] and
Athanasiadis, Edelman, and Reiner [AER00] found combinatorial proofs that extend to
general oriented matroids, but only give the homotopy type. Nevertheless, Björner claims
that it is “undoubtedly true” that even for unrealizable oriented matroids there must be
a sphere to which the poset of pseudo-sweeps retracts [Bjö92, below Thm. 2]. However,
there were no explicit candidates for these spheres. For oriented matroids that are little
oriented matroids, we show in Theorem 3.6.6 that any of the associated sweep oriented
matroids can play this role. That is, that the poset of non-trivial sweeps (which is a
sphere) is a strong deformation retract of the poset of non-trivial pseudo-sweeps of the
little oriented matroid. This highlights the fact that sweep oriented matroids should be
seen as combinatorial analogues of monotone path polytopes of zonotopes; that is, sweep
polytopes. Unfortunately, the existence of oriented matroids that are not little oriented
matroids leaves some cases where Björner’s observation remains open.

In Section 3.7 we present a further generalization of sweep oriented matroids in terms
of allowable graphs of permutations, which are closer to the original formulation of allow-
able sequences. Allowable graphs of permutations are graphs whose vertex sets are sets
of permutations closed under taking reverses in which every pair of permutations is con-
nected through a sequence of permutations fulfilling conditions (i) and (ii) above (plus
some technical conditions when the moves are not simple). In the simple case, these are
antipodal isometric subgraphs of the permutahedron. Translating back to sign-vectors, we
obtain sweep acycloids (Theorem 3.7.12), which have the structure of acycloids [Han90],
also known as antipodal partial cubes [FH93]. Again, sweep acycloids (and thus allow-
able graphs of permutations) of rank 2 are equivalent to allowable sequences. Not every
acycloid is an oriented matroid [Han93, Sec. 7], but there are characterizations of those
that are [Han93, dS95, KM20]. Since sweep acycloids that are oriented matroids are sweep
oriented matroids (Corollary 3.7.18), these give alternative characterizations of sweep ori-
ented matroids in terms of allowable graphs of permutations (Corollary 3.7.20). So far we
could not find any example of a sweep acycloid that is not a sweep oriented matroid, and
we leave this question as an open problem.
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A note concerning the terminology

The terms sweep and sweeping had already been used in the oriented matroids literature
in the context of topological sweepings of affine oriented matroids and pseudo-hyperplane
arrangements. These concepts should not be confused with the notions that we introduce
in this chapter.

The two colliding terminologies arise from the two classical dual geometric representa-
tions of realizable oriented matroids; namely, point configurations and hyperplane arrange-
ments. Both give rise to a natural definition of sweep that generalizes to non-realizable
matroids.

On the one hand, our definition of sweep is meant to model sweeps of point configu-
rations by parallel hyperplanes. Such a sweep induces an ordering of the points, which
are the elements of the underlying oriented matroid. When this picture is polarized, the
point configuration gives rise to a hyperplane arrangement, but the collection of sweep-
ing hyperplanes becomes a point that travels in a linear direction (the associated sweep
permutation records the order in which the point crosses the hyperplanes). This is the
formulation studied by Edelman [Ede00] and Stanley [Sta15].

On the other hand, one can consider sweeps of hyperplane arrangements by parallel
hyperplanes. Such a sweep induces an ordering of the vertices of the arrangement, which are
the cocircuits of the underlying oriented matroid. This is the point of view of the literature
on topological sweepings of pseudo-hyperplane arrangements and oriented matroids (see, for
example, [BLS+99, p.172], [EG89], [EOS86], [Hoc16] and [FW01]), which concerns mostly
the rank 3 case (pseudoline arrangements).

In rank 3, the two notions are strongly related. Indeed, the allowable sequence of a
planar point configuration (which is a collection of sweeps in our terminology), can be
interpreted as a topological sweep of the dual arrangement of lines. This correspondence
exists in rank 3 but completely fails in higher rank, as it only works because in an oriented
matroid of rank 3 the lines (flats of rank 2) coincide with the hyperplanes (flats of corank 1).

It is worth to note that in this second setup there exist other approaches to generalize
allowable sequences to higher dimensions. For example, the signotopes described in [FW01]
(see also [Fel04]). These are strongly related to higher Bruhat orders [MS89] and single-
element extensions of cyclic hyperplane arrangements [FZ01, Zie93]. However, as these
generalizations are meant to model (topological) sweeps of hyperplane arrangements with
a (pseudo) hyperplane, they do not cover the spherical complexes that Goodman and
Pollack alluded to in [GP93] as the natural way to generalize allowable sequences to higher
dimensions.

Structure of this chapter

This chapter gravitates around the concept of sweep oriented matroid, which lies in the
intersection of the theories of allowable sequences, valid order arrangements, and the gen-
eralized Baues problem for cellular strings. Our hope is to provide a unified reference
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that reflects all these connections. To this end, we give a broad overview of the topic, as
we expect readers with diverse backgrounds and motivations to be interested in different
aspects. In particular, most of the sections can be read independently.

Section 3.2 serves as an introduction and focuses in the realizable case. We present
polytopal constructions that serve as motivation for the upcoming definitions. Sweep ori-
ented matroids are defined in Section 3.3. In Section 3.4 we show how the structural results
on allowable sequences from [BLS+99] generalize to sweep oriented matroids of arbitrary
rank. Section 3.5 demonstrates that the results in [Ede00, Sta15] do not require realizabil-
ity. Section 3.6 depicts sweep oriented matroids as highlighted spheres inside the poset of
cellular strings of oriented matroids whose existence was conjectured by [Bjö92]. A pre-
sentation in terms of permutations, akin to Goodman and Pollack’s original formulation of
allowable sequences [GP93], is given in Section 3.7 under the name of allowable graphs of
permutations.

We end by discussing some open problems and further directions of research in Sec-
tion 3.8.

3.2 Sweeps and sweep polytopes

3.2.1 Sweeps of point configurations

For any integer n, we use
(

[n]
2

)
= {(i, j) | 1 ≤ i < j ≤ n} to denote the set of non-repeating

sorted pairs of elements of [n]. We recall that an ordered partition of [n] is an ordered
collection of non-empty disjoint subsets (I1, . . . , Il) whose union is [n]. In some proofs, it
will be more comfortable to think of an ordered partition I = (I1, . . . , Il) as the surjection
pI from [n] to [l] such that Ik = p−1

I ({k}) for all 1 ≤ k ≤ l. Note that for a permutation σ,
the ordered partition I = ({σ(1)}, . . . , {σ(n)}) corresponds to the bijection pI = σ−1.

Let A = (a1, . . . ,an) ∈ Rd×[n] be a point configuration in Rd. For u ∈ Rd, consider the
linear form 〈u, · 〉 : Rd → R sending x to 〈u,x〉. The sweep of A associated to u is the
ordered partition Iu = (I1, . . . , Il) of [n] that verifies 〈u,ai〉 = 〈u,aj〉 for all i, j in a same
part Ik, and 〈u,ai〉 < 〈u,aj〉 if i ∈ Ir, j ∈ Is with r < s. In particular, 〈u,ai〉 ≤ 〈u,aj〉 if
and only if pIu(i) ≤ pIu(j). Note that the partition associated to the linear form 0 is the
trivial sweep ([n]).

The poset of sweeps of A, denoted Π(A), is the set of all sweeps ordered by refinement.
Its maximal elements are permutations whenever A does not contain repeated points. We
will often assume that this is the case, as we can always identify repeated points. Under
this assumption, we denote by Π(A) ⊆ Sn the set of its maximal elements, the sweep
permutations of A. If there are repeated points, we will still call the maximal elements
sweep permutations for brevity.

Sweeps induce an equivalence relation on Rd, where u ∼ v if they give the same sweep.
Its equivalence classes are the cells of the polyhedral fan induced by the sweep hyperplane
arrangement SH(A); the arrangement of the linear hyperplanes

{
u ∈ Rd

∣∣ 〈u,ai〉 = 〈u,aj〉
}
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for all (i, j) ∈
(

[n]
2

)
. Note that the face poset of SH(A) is isomorphic to the poset Π(A),

with a bijection that sends each cell C of SH(A) to the sweep I in Π(A) that verifies that
the relative interior of C is

{
u ∈ Rd

∣∣ Iu = I
}

. In particular, the cones of dimension d of
SH(A) are indexed by the sweep permutations in Π(A).

We will see in Section 3.2.3 that SH(A) is the normal fan of a polytope: the sweep
polytope of A, denoted by SP (A). Thus, the poset of sweeps Π(A) enlarged with a top
element is isomorphic to the poset opposite to the face lattice of SP (A), and is in particular
a lattice. This provides a natural labeling of the faces of SP (A) by sweeps. In particular,
the vertices of SP (A) are labeled by the sweep permutations in Π(A).

The identification of sweeps with faces of SP (A) reflects the inherent topological struc-
ture of the poset of sweeps. This can be made precise in terms of its order complex. In
our case, the order complex of Π(A)r ([n]), the poset of sweeps without the trivial sweep,
is just the barycentric subdivision of the boundary of SP (A). We will implicitly iden-
tify Π(A) with ∆

(
Π(A) r ([n])

)
whenever we make topological statements about posets

of sweeps.

3.2.2 Examples

Before providing constructions for this polytope, we will present two particular examples.

The simplex and the permutahedron

If An is the set of vertices of a standard (n − 1)-simplex 4n−1, i.e. the points ai are the
canonical basis vectors ei in Rn, then SH(An) is the braid arrangement Bn consisting of
the hyperplanes {u |uj − ui = 0} for all 1 ≤ i < j ≤ n, the set of sweep permutations is
the whole symmetric group Π(An) = Sn, and the poset of sweeps Π(An) is the poset of
all ordered partitions of [n]. Likewise for any set A of affinely independent points, up to
affine transformation of the braid arrangement. We have seen in Section 1.4.2 that Bn is
the normal fan of the standard n-permutahedron Permn.

The sweep polytope SP (A) associated to the standard simplex is the translation
of Permn centered at the origin. We will denote this translated permutahedron by P ′n

P ′n =
∑

1≤i<j≤n

[
−ei − ej

2
,
ei − ej

2

]
(3.1)

to distinguish it from the standard realization. See Figures 3.2 and 3.3 for the cases n = 3, 4.

The cross-polytope and the permutahedron of type B

Let Bn be the set of vertices of the cross-polytope ♦♦♦n, that is, the set of standard ba-
sis vectors of Rn and their opposites. It is convenient to index the points by [±n] =
{−n, . . . ,−1, 1, . . . , n}: Bn = {b−n = −en, . . . , b−1 = −e1, b1 = e1, . . . , bn = en}. Then
the sweep permutations of Bn are the centrally symmetric permutations of S[±n], which
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Figure 3.2: A3, its sweep hyperplane arrangement SH(A3) = B3 (modulo linearity), and
its sweep polytope SP (A3) = P ′3, the 3-permutahedron, where each vertex is labeled by
the corresponding sweep permutation of A3.

a1

a2

a3a4

1, 3, 2, 4

1, 2, 3, 4

2, 1, 3, 4

2, 3, 1, 4

1, 2, 4, 3

2, 1, 4, 3

1, 4, 2, 3

3, 1, 2, 4

3, 2, 1, 4

2, 4, 1, 3

1, 3, 4, 2 1, 4, 3, 2

3, 1, 4, 2

2, 3, 4, 1

3, 2, 4, 1

2, 4, 3, 1

4, 1, 2, 3

4, 2, 1, 3

4, 1, 3, 2

4, 2, 3, 1

3, 4, 1, 2

3, 4, 2, 1

4, 3, 1, 2

4, 3, 2, 1

Figure 3.3: A4 and its sweep polytope SP (A4) = P ′4, the 4-permutahedron.

satisfy σ(−i) = −σ(i) for all i ∈ [±n]. By symmetry, the first half determines the whole
permutation. This way, they can be represented by signed permutations of [n], where −k
is denoted by k. We use this notation in Figures 3.4 and 3.5.

They are the elements of the Coxeter group of type B, also called hyperoctahedral
group. See [BB05, Section 8.1] for more details on the combinatorics of this group. The
sweep hyperplane arrangement SH(Bn) is the Coxeter arrangement of type B, which con-
sists of the hyperplanes {u ∈ Rn |ui ± uj = 0} for all 1 ≤ i < j ≤ n and {u ∈ Rn |ui = 0}
for all 1 ≤ i ≤ n. The sweeps are the centrally symmetric ordered partitions of [±n]. This
complex is known as the Coxeter complex of type B, see [BLS+99, Sec. 2.3(c)]. See Fig-
ure 3.4 for an example.

The associated sweep polytope is the Coxeter permutahedron of type B, also known as
the Coxeterhedron of type B [R94]. See Figures 3.4 and 3.5 for pictures in dimensions 2
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and 3.

Figure 3.4: B2, its sweep hyperplane arrangement SH(B2), and its sweep poly-
tope SP (B2).

b1

b2

b3

b−1

b−2

b−3

1, 2, 3

1, 2, 3̄

1̄, 2̄, 3̄

1̄, 2̄, 3

1̄, 3̄, 2̄1, 3, 2

1̄, 3, 2̄

1̄, 3̄, 2
1, 3̄, 2

1̄, 3, 2

1̄, 2, 3̄

1̄, 2, 3

1, 3, 2̄

2̄, 1̄, 3̄

2̄, 1̄, 3

1, 3̄, 2̄ 3̄, 1̄, 2̄

3, 1̄, 2̄

3̄, 1̄, 2

1, 2̄, 3

1, 2̄, 3̄

3, 1̄, 2

2, 1̄, 3̄

2, 1̄, 3

2̄, 3̄, 1̄

2̄, 3, 1̄

3̄, 2̄, 1̄

3, 2̄, 1̄

3̄, 2, 1̄

3, 2, 1̄

2, 3̄, 1̄

2, 3, 1̄

2̄, 3̄, 1

2̄, 3, 1

3̄, 2̄, 1

3, 2̄, 1

3̄, 2, 1

3, 2, 1

2, 3̄, 1

2, 3, 1

2̄, 1, 3̄

2̄, 1, 3

3̄, 1, 2̄

3, 1, 2̄

3̄, 1, 2

3, 1, 2

2, 1, 3̄

2, 1, 3

Figure 3.5: B3 and its sweep polytope SP (B3), the 3-permutahedron of type B.

Sweeping with polynomial functions

Sweep polytopes can also be used to model sweeps of a point configuration A = (a1, . . . ,an) ∈
Rd×[n] by polynomial functions p ∈ R[x1, . . . , xd] of bounded degree. The polynomial sweep
of A associated to p is the ordered partition of [n] induced by the ordered level sets of p
on A.

LetM be the set of monomials of degree at most D on variables x1, . . . , xd. There are
|M| =

(
D+d
D

)
elements in M. For a point v = (v1, . . . , vd) ∈ Rd and a monomial M ∈ M,
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denote by M(v) ∈ R the evaluation of M on the values x1 = v1, . . . , xd = vd. The Veronese
mapping is defined by the map

χ :

{
Rd → RM

v 7→ (M(v))M∈M .

Then, the polynomial sweep of A induced by the polynomial p =
∑

M∈M cMM exactly
corresponds to the sweep of χ(A) induced by the linear functional 〈c, ·〉 for c = (cM)M∈M ∈
RM. In particular, the poset of sweeps of χ(A) coincides with the poset of polynomial
sweeps of A induced by polynomials of degre at most D. Note that if d = 1, the image
χ(A) is a standard cyclic polytope of dimension D with n vertices.

Variants of the Veronese mapping can be used for particular families of polynomial
sweeps. For example, the embedding

(v1, . . . , vd) 7→ (v1, . . . , vd, v
2
1 + · · ·+ v2

d)

onto the paraboloid models sweeps by families of concentric spheres.

3.2.3 Constructions for sweep polytopes

In what follows, we describe three approaches to construct the sweep polytope SP (A).
Recall that SP (A) is a polytope whose normal fan coincides with the sweep hyperplane
arrangement SH(A), and whose face poset is opposite to the poset of sweeps Π(A).

As a zonotope

The most direct realization is as the Minkowski sum of the segments with directions the
differences between the points of the configuration, which is (a translation of) the presen-
tation of sweep polytopes given in [GS93] (under the name of shellotopes).

Definition 3.2.1. The sweep polytope SP (A) associated to the configuration A = (a1, . . . ,an) ∈
Rd×[n] is the zonotope:

SP (A) =
∑

1≤i<j≤n

[
−ai − aj

2
,
ai − aj

2

]
⊂ Rd.

We saw as a consequence of Proposition 1.1.11 that the normal fan of a zonotope is the
arrangement of the hyperplanes orthogonal to its generators. Applied to sweep polytopes,
we directly get:

Proposition 3.2.2. The normal fan of SP (A) is the hyperplane arrangement SH(A).
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As a projection of the permutahedron

Our second incarnation is as a projection of the (centered) permutahedron P ′n. For a
configuration A of n points a1, . . . ,an in Rd, let MA be the linear map

MA : Rn → Rd (3.2)

ei 7→ ai.

Then it follows from Definition 3.2.1 and the description of P ′n in (3.1) that:

Proposition 3.2.3. SP (A) = MA(P ′n).

Conversely, all affine images of permutahedra are sweep polytopes, up to translation.
This provides a combinatorial interpretation, in terms of sweeps, of the face lattice of any
affine projection of a permutahedron (a permutahedral shadow).

Corollary 3.2.4. Let M : Rn → Rd be a linear map, then M(P ′n) is the sweep polytope of
the point configuration M(e1), . . . ,M(en).

Note that, given a linear map from P ′n to Rd, there is a d-dimensional family of ways to
extend it to a linear map from Rn to Rd. This amounts to the fact that point configurations
related by a translation give rise to the same sweep polytope.

Remark 3.2.5. Proposition 3.2.3 follows from the fact that Minkowski sums and linear
projections commute. This can be exploited also with other decompositions of the per-
mutahedron. For example, the permutahedron Permn can be written as the Minkowski
sum of the hypersimplices 4n,k = {x ∈ [0, 1]n |

∑
xi = k} with k ranging from 1 to n− 1

(see for example [Pos09]). Therefore, any sweep polytope can be expressed as a Minkowski
sum of projections of hypersimplices. Projections of hypersimplices are studied under the
name of k-set polytopes [AW03, EVW97], which (up to homothety) can be described as the
convex hull of the barycenters of all k-subsets of A, see [MSP21]. The sweep polytope of
A is thus the Minkowski sum of its k-set polytopes, up to translation and homothety. In
particular, because conv(A) = MA(4n,1), this shows that conv(A) is a Minkowski sum-
mand of SP (A). See Figure 3.6 for an example. Another point of view on this Minkowski
decomposition will be discussed in Remark 3.2.9.

As a monotone path polytope

Monotone path polytopes, that we presented in Section 1.3.3, give a new interpretation of
sweep polytopes and provide motivation for the definition of pseudo-sweeps, that will be
further explored in Section 3.6.

Example 3.2.6. We rephrase Proposition 1.4.4 in a translated setting that matches the
conventions of this chapter to take centered zonotopes.

Let ���′n = [−1, 1]n be the n-dimensional centered ±1-cube, and let s : Rn → R be the
linear form that sums the coordinates, i.e. the form s = 〈1n, · 〉 induced by the all-ones
vector. Then the fiber polytope Σ

(
���′n, s

)
is homothetic to the centered permutahedron P ′n:

Σ
(
���′n, s

)
= 2

n
P ′n.



3.2. SWEEPS AND SWEEP POLYTOPES 85

+ + + + =

k = 1 k = 2 k = 3 k = 4 k = 5

Figure 3.6: The sweep polytope SP (B3) = P ′3 as a Minkowski sum of the k-set polytopes
of B3 for k = 1, . . . , 5.

The following central property of fiber polytopes will be key for our purposes.

Lemma 3.2.7 ([BS92, Lem. 2.3]). Let Rn θ−→ Rm π−→ Rd be linear maps, and P ⊂ Rn a
polytope. Then Σ (θ(P ), π) = θ(Σ (P , π ◦ θ)).

We need some extra notation. Let A = (a1, . . . ,an) ∈ Rd×[n] be a point configuration,
and consider its homogenization Ā = (ā1, . . . , ān) ∈ R(d+1)×[n] consisting of the vectors
āi = (ai, 1). We define the zonotope Z(Ā) associated to A as the following Minkowski
sum of centrally symmetric segments:

Z(Ā) =
n∑
i=1

[−āi, āi].

Let h : Rd+1 → R denote the map that returns the last coordinate of a point, that we call
its height.

This gives us another point of view on sweep polytopes.

Proposition 3.2.8. For any point configuration A we have

Σ
(
n
2
Z(Ā), h

)
= SP (A)× {0},

and hence SP (A) is affinely isomorphic to the monotone path polytope Σ
(
Z(Ā), h

)
.

Proof. The projection MĀ : Rn → Rd+1 that maps ei to āi = (ai, 1) is such that Z(Ā) =
MĀ(���′n) and s = h ◦MĀ, where s is the linear form that sums the coordinates and ���′n
is the cube [−1, 1]n. Hence, by Lemma 3.2.7 and Example 3.2.6 we have Σ

(
Z(Ā), h

)
=

MĀ(Σ
(
���′n, s

)
) = MĀ( 2

n
P ′n). Now, P ′n lies in s−1

(
1

volEucl(���
′
n)

∫
���′n

ydy
)

= s−1(0n), and

thus MĀ( 2
n
P ′n) lies in the kernel of h, which means that Σ

(
Z(Ā), h

)
= 2

n
MA(P ′n) × {0}.

Finally, by Proposition 3.2.3, we have MA(P ′n) = SP (A), and therefore Σ
(
Z(Ā), h

)
=

2
n
SP (A)× {0}.
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Remark 3.2.9. If we intersect Z(Ā) with the hyperplane of height equal to −n + 2, we
obtain

conv(−
n∑
i=1

āi + 2āj, j ∈ [n]) = conv(−
n∑
i=1

ai + 2A)× {−n+ 2},

which is an embedding of a dilation of the convex hull of A in Rd+1. Similarly, for any
k ∈ [n] the slice at height −n + 2k is an embedding of a dilation of the projection of the
hypersimplex4n,k under the map MA. This is the k-set polytope of A, see Remark 3.2.5.
The fiber polytope realization reflects the decomposition of the sweep polytope as a sum
of k-set polytopes.

b̄1

b̄2

b̄−1

b̄−2

h

Figure 3.7: The zonotope Z(B̄2). Three fibers of the height function h are highlighted,
representing a copy of the convex hull of B2, and of its 2-set and 3-set polytopes. The
lower (blue) path represents the coherent monotone path associated to the permutation
(2̄, 1̄, 1, 2) (which can be read off the directions of the steps in the path). The upper (red)
path is a monotone path that is not coherent. It is associated to the permutation (1̄, 2, 1, 2̄),
which is not a sweep permutation, but a pseudo-sweep permutation, see Section 3.6.

Conversely, monotone path polytopes of zonotopes for nondegenerate functionals are
sweep polytopes, up to normal equivalence.

Proposition 3.2.10. Let Z ⊂ Rd be a zonotope, π : Rd → R a linear map, and Z↓π the face
of Z minimizing π. Then the monotone path polytope Σ (Z, π) is normally equivalent to
the Minkowski sum of Z↓π with the sweep polytope SP (A), where A consists of the points

1
π(zi)

zi for the generators zi of Z such that π(zi) 6= 0.

Proof. Let c, z1 . . . , zm ∈ Rd be such that

Z = c +
m∑
i=1

[−zi, zi] ⊂ Rd.
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Then Z is normally equivalent to any zonotope Z ′ = c′ +
∑m

i=1 [−λizi, λizi], where c′ is a
vector in Rd and the λi are non-zero scalars.

Up to relabeling the zi, one can suppose that {i |π(zi) = 0} = {n + 1, . . . ,m} for a
certain n ∈ {0, . . . ,m}. Let Z1 and Z2 be the zonotopes:

Z1 =
n∑
i=1

[
− 1

π(zi)
zi,

1

π(zi)
zi

]
, Z2 =

m∑
i=n+1

[−zi, zi] .

Note that the face Z↓π is a translation of Z2.
Since Z is normally equivalent to the Minkowski sum Z1 + Z2, we have that its

monotone path polytope Σ (Z, π) is normally equivalent to the monotone path polytope
Σ (Z1 + Z2, π) by [McM03, Cor. 4.4].

Moreover, Σ (Z1 + Z2, π) = Σ (Z1, π) + Z2 because π(Z2) = {0}, thus (Z1 + Z2) ∩
π−1({y}) = Z1 ∩ π−1({y}) + Z2 for any y ∈ R. If we denote the configuration of points
a1 = 1

π(z1)
z1, . . . ,an = 1

π(zn)
zn in Rd by A, we have exactly s = π◦MA and Z1 = MA(���′n),

with the same notations as in Proposition 3.2.3 and Example 3.2.6. Hence, Lemma 3.2.7
and Example 3.2.6 give Σ (Z1, π) = MA(Σ

(
���′n, s

)
) = MA( 2

n
P ′n) = 2

n
SP (A).

Hence Σ (Z, π) is normally equivalent to the Minkowski sum SP (A) + Z↓π.

3.3 Sweep oriented matroids

The goal of this section is to provide a purely combinatorial definition of posets of sweeps
generalizing allowable sequences to higher dimensions. Since already in the plane not all
allowable sequences arise from point configurations, it is clear that our definition has to
go beyond the realizable case. We will do it in terms of oriented matroids, which do
have enough expressive power to completely describe allowable sequences. However, to
motivate our definition, we will start by discussing some oriented matroids associated to
point configurations, inspired by [BLS+99, Sects. 1.10 & 6.4]. While we will introduce
the basic definitions in oriented matroid theory, we refer the reader not familiar with
the topic to the introduction in [Zie95, Lec. 6], and to the classical book [BLS+99] for a
comprehensive source.

3.3.1 Basic notions and notation on oriented matroids

There are several cryptomorphic approaches to oriented matroids. We will use the pre-
sentation in terms of the covector axioms, which describe oriented matroids in terms of
collections of sign-vectors M ⊆ {+,−, 0}E, called covectors, labeled by a finite ground
set E.

For X ∈M and e ∈ E, Xe denotes the value of X at the coordinate e. The opposite −X
of X ∈M is the sign-vector obtained by switching + and − in X; that is, (−X)e = −(Xe).
For X, Y ∈ M, the composition of X and Y is the sign-vector X ◦ Y ∈ {+,−, 0}E such
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that (X ◦ Y )e = Xe if Xe 6= 0; and (X ◦ Y )e = Ye otherwise. The separation set of X and
Y , denoted S(X, Y ), is the set of elements e ∈ E such that (Xe, Ye) ∈ {(+,−), (−,+)}.

Definition 3.3.1 (cf. [BLS+99, Def. 4.1.1]). A collection of sign-vectors M⊆ {+,−, 0}E is
the set of covectors of an oriented matroid if it satisfies the following axioms:

(V0) 0 ∈M,

(V1) X ∈M implies −X ∈M,

(V2) X, Y ∈M implies X ◦ Y ∈M,

(V3) if X, Y ∈ M and e ∈ S(X, Y ) then there exists Z ∈ M such that Ze = 0 and
Zf = (X ◦ Y )f for all f /∈ S(X, Y ).

The set of covectors of an oriented matroid, with the product partial order induced by
0 ≺ +,− componentwise, forms a poset. It has the structure of a lattice, called the big
face lattice of the oriented matroid, if a top element 1̂ is adjoined. The rank of the oriented
matroid is the length of the maximal chains in the poset of covectors. The minimal non-zero
covectors are called cocircuits, and they determine the oriented matroid as every non-zero
covector is a composition of cocircuits. The maximal covectors for this partial order are
called the topes of the oriented matroid. They also determine the oriented matroid, as X
is a covector of M if and only if X ◦ T is a tope for every tope T . In fact, the tope-graph
of M, whose vertices are the topes and whose edges are given by the covectors covered
by exactly two topes, already determines the oriented matroid up to FL-isomorphism, see
[BEZ90, Theorem 6.14] and [BLS+99, Theorem 4.2.14].

There are several standard notions of oriented matroid isomorphism. By FL-isomorphism,
we mean the coarsest, induced by isomorphism of the big face lattices. FL-isomorphism,
called just isomorphism in [FF02], is the equivalence relation induced by reorientation,
relabeling, and introduction/deletion of loops and parallel elements.

To understand the concepts used in the definition of FL-isomorphism, we need some
extra notation. For X ∈ {+,−, 0}E and F ⊆ E, we denote by −FX the signed vector Z
such that: Zf = −Xf for f ∈ F and Ze = Xe for e ∈ E \F , which we call the reorientation
of X on F . IfM is an oriented matroid on the ground set E, its reorientation on F is the
oriented matroid −FM with covectors −FX for X ∈M. The support of a sign-vector X is
X = {e ∈ E |Xe 6= 0}. A loop is an element e ∈ E that does not belong to the support of
any covector. Two elements e, f ∈ E are said to be parallel if Xf = Xe for all X ∈ M or
Xf = −Xe for all X ∈ M. This defines an equivalence relation on E, whose equivalence
classes are called parallelism classes. The parallelism class of e ∈ E is denoted e. An
oriented matroid is called simple if it does not contain loops or distinct parallel elements.

For X ∈ {+,−, 0}E and F ⊆ E, the restriction of X to F , denoted X
∣∣
F

is the covector

Z ∈ {+,−, 0}F such that Zf = Xf for all f ∈ F . IfM is an oriented matroid on the ground
set E, the set

{
X
∣∣
F

∣∣X ∈M} forms an oriented matroid, denoted M
∣∣
F

and called the

restriction of M to F . The set
{
X
∣∣
E\F

∣∣∣X ∈M, Xf = 0∀f ∈ F
}

also forms an oriented

matroid, denoted M/F and called the contraction of M along F .
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An oriented matroid is called acyclic if the all-positive sign-vector +n is a tope.
The standard way to associate an oriented matroid to a real vector configuration V =

(v1, . . . ,vn) ∈ Rd×[n] is to consider the set of covectors on the ground set [n] induced by
the signs of the evaluations of linear functionals on the elements of V :

M(V ) = {(sign(〈u,v1〉, . . . , sign(〈u,vn〉) |u ∈ Rn} ⊆ {+,−, 0}n, (3.3)

where sign(x) =


+ if x > 0

− if x < 0

0 if x = 0.
That is, to each linear oriented hyperplane, we record which vectors of the configuration

lie on the hyperplane, and which lie at the positive and negative sides, respectively. The
covectors M(V ) label the regions of the hyperplane arrangement HV consisting of the
hyperplanes orthogonal to the vectors of V . Under this labeling, the big face lattice is
consistent with the inclusion order of the regions, the topes labeling the maximal cells
of the arrangement. Thus, the big face lattice on M(V ) is isomorphic to (the opposite
of) the face lattice of the zonotope

∑
i∈[n][0,vi]. The rank of M(V ) coincides with the

dimension of the linear hull of V . We will call this oriented matroid the oriented matroid
associated to V . Oriented matroids that arise this way are called realizable. Note that
even non-realizable oriented matroids can be geometrically realized by arrangements of
pseudo-spheres, see [BLS+99, Sec. 1.4.1 & 5.2].

3.3.2 Three realizable oriented matroids associated to a point con-

figuration

The construction above extends directly to affine point configurations, by considering eval-
uations of affine functionals instead. (Or, equivalently, linear functionals on the homoge-
nization Ā.) Although this is the standard way to associate an oriented matroid to a point
configuration A, we will call it the little oriented matroid of A, which is consistent with
the notation in [BLS+99, Sect. 1.10] for planar configurations. This is to avoid confusion
with the other alternative notions of oriented matroid associated to a point configuration
that we will introduce. The big oriented matroid, which contains more information than
the little oriented matroid, is also inspired by [BLS+99, Sect. 1.10]. We will prefer a more
compact presentation, the sweep oriented matroid, which was not explicitly introduced
there.

Definition 3.3.2. Let A = (a1, . . . ,an) ∈ Rd×[n] be a full-dimensional point configuration
(i.e. its affine span is the whole space Rd):

(i) The little oriented matroid of A, denotedMlit(Ā), is the oriented matroid of rank d+1
with ground set [n] associated to the (d+ 1)-dimensional homogenized vector config-
uration Ā = (ā1, . . . , ān) ∈ R(d+1)×[n], where āi = (ai, 1) ∈ Rd+1. This is always an
acyclic oriented matroid.
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(ii) The sweep oriented matroid of A, denotedMsw(Ā), is the oriented matroid of rank d
with ground set

(
[n]
2

)
= {(i, j) | 1 ≤ i < j ≤ n} associated to the d-dimensional vector

configuration {
a(i,j) = aj − ai

∣∣∣ (i, j) ∈ ([n]
2

)}
∈ Rd×([n]

2 ).

(iii) The big oriented matroid1 of A, denotedMbig(Ā), is the oriented matroid of rank d+1
on the ground set [n]∪

(
[n]
2

)
associated to the (d+1)-dimensional vector configuration

Ā ∪
{

(a(i,j), 0)
∣∣∣ (i, j) ∈ ([n]

2

)}
∈ R(d+1)×([n]∪([n]

2 )).

Figure 3.8: A big oriented matroid (with collinearities indicated). The points in the upper
line, which represents the line at infinity, give rise to a sweep oriented matroid, whereas
the points below give rise to the associated little oriented matroid.

Little, sweep and big oriented matroids obtained this way from a point configuration will
be called realizable. In Sections 3.3.3 and 3.4.1, we give definitions for abstract sweep, little
and big oriented matroids not necessarily arising from point configurations. We explain
below how these structures are related to each other and to the poset of sweeps and the
set of sweep permutations.

For a sweep I = (I1, . . . , Il) ∈ Π(A), corresponding to the surjection pI : [n] → [l], we

define the sign-vector XI ∈ {+,−, 0}(
[n]
2 ) such that

XI
(i,j) =


+ if pI(i) < pI(j),

− if pI(i) > pI(j),

0 if pI(i) = pI(j);

(3.4)

for (i, j) ∈
(

[n]
2

)
.

1Our definition differs slightly from that in [BLS+99, Sect. 1.10]. We admit parallel vectors when the
configuration is not generic, whereas in [BLS+99, Sect. 1.10] all parallel vectors of the form aj − ai are
merged into a single element of the oriented matroid.
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For example, if I is the sweep ({1, 3}, {2}), we have pI(1) = pI(3) = 1, pI(2) = 2,
and the corresponding covector on the ground set {(1, 2), (1, 3), (2, 3)} is XI = (+, 0,−).
Compare Figures 3.2 and 3.9 to see other examples. As the figures illustrate, this map
induces an isomorphism at the level of posets.

Figure 3.9: The vector configuration
{
a(1,2),a(1,3),a(2,3)

}
associated to the point configura-

tion A3 from Figure 3.2. The covectors associated to the regions of the sweep hyperplane
are indicated by sign-vectors of length 3 containing the sign of the scalar product of a
vector in the region with a(1,2), a(1,3), and a(2,3), respectively. This should be compared
with the labeling of the regions of the sweep hyperplane arrangement in terms of partitions
in Figure 3.2.

Lemma 3.3.3. The map I 7→ XI induces a poset isomorphism between the poset of sweeps
Π(A) and the poset of covectors of the sweep oriented matroid Msw(Ā).

In particular, Π(A) ∪ 1̂, where 1̂ is an additional top element, is isomorphic to the big
face lattice of Msw(Ā), which is the opposite of the face lattice of the zonotope SP (A)
(cf. [Zie95, Cor. 7.17.]).

Proof. Let I be an ordered partition in Π(A), with corresponding surjection pI , and asso-
ciated to the linear form u ∈ Rd. This linear form u is also associated to a covector X of
Msw(Ā) that is exactly the image of I by the above bijection:

X(i,j) = 0 ⇔ 〈u, aj − ai〉 = 0 ⇔ pI(i) = pI(j),

X(i,j) = + ⇔ 〈u, aj − ai〉 > 0 ⇔ pI(i) < pI(j),

X(i,j) = − ⇔ 〈u, aj − ai〉 < 0 ⇔ pI(i) > pI(j).

Hence both the sweeps of Π(A) and the covectors ofMsw(Ā) are in bijection with the
cells of the hyperplane arrangement SH(A) and the bijections induce poset isomorphisms.
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It follows from the previous lemma that the set of sweep permutations Π(A) is in
bijection with the topes of the sweep oriented matroid Msw(Ā). Since the topes of an
oriented matroid completely determine it (cf. [BLS+99, Proposition 3.8.2]), this implies:

Corollary 3.3.4. The set of sweep permutations Π(A) determines the whole poset of sweeps Π(A).

The structures we have introduced are related by the following hierarchy (whose proof
depends on the upcoming Proposition 3.4.3):

Theorem 3.3.5. Let A ∈ Rd×[n] be a point configuration. Then the set of sweep permutations
Π(A), the poset of sweeps Π(A), the sweep oriented matroid Msw(Ā) and the big oriented
matroid Mbig(Ā) (cryptomorphically) determine each other. They determine the little
oriented matroid Mlit(Ā), which does not always determine them.

In particular, the sweep oriented matroid is a combinatorial invariant of a point config-
uration that is finer than the order type (given by the little oriented matroid).

Proof. The fact that Π(A) and Π(A) determine each other follows from Corollary 3.3.4.
The equivalence between Π(A) and Msw(Ā) follows from Lemma 3.3.3. The equivalence
between Msw(Ā) and Mbig(Ā) will be proved later, as a consequence of Definition 3.4.2
and Proposition 3.4.3.

Finally, Mbig(Ā) determines Mlit(Ā) by restriction to the ground set [n] but this
operation is not injective. Examples of planar configurations with different sets of sweep
permutations but the same little oriented matroid can be found in [BLS+99, Section 1.10].

3.3.3 Sweep oriented matroids

The main insight for expanding the notion of sweep oriented matroids from Definition 3.3.2
beyond the realizable case is to note that a configuration of vectors of the form aj − ai
for (i, j) ∈

(
[n]
2

)
is just the projection of the braid configuration {ej − ei

∣∣ (i, j) ∈
(

[n]
2

)
} ∈

Rn×([n]
2 ) (the set of positive roots of the Coxeter root system An−1) under the linear map MA

defined in (3.2).
Consider the oriented matroid Bn associated to the braid configuration, that is, the

graphic oriented matroid of the complete graph Kn with the acyclic orientation induced by
the usual order on [n]. We will use the same notation Bn as with the hyperplane arrange-
ment, as it will be always clear from the context whether we are considering the hyperplane
arrangement or the associated oriented matroid. Note that, since the configuration of the
aj − ai is a linear projection of the braid configuration, every covector of Msw(Ā) is a
covector of the braid oriented matroid, as we can pull back linear forms with M∗

A.
The oriented matroid analogues of linear projections are strong maps. For two oriented

matroidsM1 andM2 on the same ground set, we say that there is a strong map fromM1

to M2, denoted M1 → M2, if every covector of M2 is a covector of M1 (see [BLS+99,
Sec. 7.7]). This will be the starting point for our definition.
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Definition 3.3.6. An oriented matroidM on the ground set
(

[n]
2

)
is a sweep oriented matroid

if there is a strong map Bn →M from Bn to M, i.e. if all covectors of M are covectors
of Bn.

Remark 3.3.7. Note that, if M is a sweep oriented matroid, then we can interpret its
covectors as covectors of the braid arrangement, and hence each covector can be uniquely
identified with an ordered partition via the bijection inverse to (3.4). For a covector X ∈M
of a sweep oriented matroid, we will denote by IX the associated ordered partition.

Our next result characterizes sweep oriented matroids via a 3-term orthogonality condi-
tion on covectors (c.f. [BLS+99, Sec. 3.4]) that provides an explicit test for deciding whether
an oriented matroid is a sweep oriented matroid. It will be relevant later in the context of
sweep acycloids in Section 3.7.

Recall that the support of a sign-vector X ∈ {+,−, 0}E is X = {e ∈ E |Xe 6= 0}. Two
sign-vectors X, Y ∈ {+,−, 0}E are said to be orthogonal if either X ∩ Y = ∅, or the
restrictions of X and Y to X ∩ Y are neither equal nor opposite (i.e., there are i, j with
Xi = Yi 6= 0 and Xj = −Yj 6= 0).

Lemma 3.3.8. An oriented matroid M on
(

[n]
2

)
is a sweep oriented matroid if and only if

for every covector X and every choice of 1 ≤ i < j < k ≤ n, the triple (X(i,j), X(j,k), X(i,k))
is orthogonal to the sign vector (+,+,−).

Equivalently, M is a sweep oriented matroid if and only if for any covector X, and for
1 ≤ i < j < k ≤ n, the triple (X(i,j), X(j,k), X(i,k)) does not belong to the following list of
forbidden patterns:{

(+,+,−), (−,−,+), (0,+,−), (0,−,+), (+, 0,−), (−, 0,+), (+,+, 0),
(−,−, 0), (0, 0,−), (0, 0,+), (0,+, 0), (0,−, 0), (+, 0, 0), (−, 0, 0)

}
.

Proof. There is a strong map Bn →M if and only if all the covectors of M are covectors
of Bn, which is equivalent to the condition that all the covectors of M are orthogonal to
all circuits of Bn (see [BLS+99, Prop. 7.7.1]).

The circuits of Bn are induced by cycles of Kn. They are of the form Ci1,...,ir for any
collection i1, . . . , ir of at least 3 distinct elements of [n], with Ci1,...,ir

(ik,ik+1) = + if ik < ik+1 and

Ci1,...,ir
(ik+1,ik) = − if ik > ik+1 for all 1 ≤ k ≤ r (with the convention ir+1 = i1), and Ci1,...,ir

(h,l) = 0
for any other pair.

An easy induction shows that the orthogonality to the circuit Ci1,...,ir is implied by
the orthogonality to all circuits Ci1,ik,ik+1 for 2 ≤ k ≤ r − 1, which is equivalent to our
statement.

This condition is actually a reformulation of the transitivity of the partial order induced
by an ordered partition I (namely i � j if and only if pI(i) ≤ pI(j)). For example,
forbidding the patterns (+,+,−) and (+,+, 0) is equivalent to stating that i ≺ j ≺ k
implies i ≺ k, and so on. This is why we refer to it as the transitivity condition on sweep
oriented matroids.
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The poset of sweeps of a sweep oriented matroid M is the partially ordered set Π(M)
of the ordered partitions IX for the covectors X ∈ M, ordered by refinement. Enlarged
with a top element 1̂, this poset is isomorphic to the big face lattice of M. The topology
of such complexes is well known [BLS+99, Thm. 4.3.3]. We describe it in the following
proposition. Note that there is some ambiguity in the literature concerning the definition
of the poset of faces of cell complexes, in particular whether it should be augmented by
a bottom element or not (compare [Bjö84, Fig. 2] and [Bjö95, Fig. 2]). We follow [Bjö95]
and [BLS+99] and do not include an additional bottom element in the definition of the face
poset of a cell complex.

Proposition 3.3.9 ([BLS+99, Thm. 4.3.3]). The poset of sweeps Π(M) r ([n]) of a sweep
oriented matroid M of rank r without the trivial sweep is isomorphic to the face poset of a
shellable regular cell decomposition of the (r − 1)-sphere. In particular, the order complex
∆
(
Π(M) r ([n])

)
triangulates the (r − 1)-sphere.

3.4 Big and little oriented matroids

In this section we show how the big and little oriented matroids of a point configuration
(Definition 3.3.2) are completely determined by its sweep oriented matroid. Actually, the
construction of these matroids can be extended to any abstract sweep oriented matroid,
providing definitions beyond the realizable case. This generalizes the results for rank 3
proved in [BLS+99, Sec. 1.10].

3.4.1 Big and little oriented matroids associated to sweep oriented

matroids

First, we will show how to extend any sweep oriented matroid to what will be called a big
oriented matroid. For a covector X of a sweep oriented matroid, let pX : [n]→ [lX ] be the
surjection associated to the corresponding ordered partition. For each 1 ≤ k ≤ 2lX + 1, let

Xk ∈ {+,−, 0}[n]∪([n]
2 ) be the sign-vector:

Xk
i =


− if pX(i) ≤ bk−1

2
c,

+ if pX(i) > bk
2
c,

0 if k is even and pX(i) = k
2
.

for 1 ≤ i ≤ n;

Xk
(i,j) = X(i,j) for all 1 ≤ i < j ≤ n.

Theorem 3.4.1. If M is the set of covectors of a sweep oriented matroid, then

Mbig =
{
Xk
∣∣X ∈M, 1 ≤ k ≤ 2lX + 1

}
is the set of covectors of an oriented matroid.
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Proof. We have to check that M satisfies the axioms of Definition 3.3.1, namely:

(V0) 0 ∈Mbig,

(V1) X ∈Mbig implies −X ∈Mbig,

(V2) X, Y ∈Mbig implies X ◦ Y ∈Mbig,

(V3) if X, Y ∈ Mbig and e ∈ S(X, Y ) then there exists Z ∈ Mbig such that Ze = 0 and
Zf = (X ◦ Y )f for all f /∈ S(X, Y ).

(V 0) 0n ∈ M, associated to the one part ordered partition ({1, 2, . . . , n}). Then (0n)2

is the zero vector and it is in Mbig.
(V 1) Let Xk be an element of Mbig. Then, −Xk = (−X)2lX+2−k, so it is still in Mbig.
(V 2) Let Xk, Y h be two elements of Mbig. Then Xk ◦ Y h = (X ◦ Y )t, where t =

2(r1 + . . . + r k−1
2
−1) + 1 if k is odd (with the same notations as in the definition of the

composition between two ordered partitions), t = 2(r1 + . . .+ r k
2
−1) + j if k is even and j is

the index corresponding to h when the elements of Ik are ordered according to Y (that is to
say, for all i ∈ Ik, pX◦Y (i) ≤ b t−1

2
c ⇔ pY (i) ≤ bh−1

2
c and pX◦Y (i) > b t

2
c ⇔ bpY (i)c > bh

2
c).

(V 3) Let Xk, Y h be two elements of Mbig, and e ∈ S(Xk, Y h). It remains to find
Z ∈ M and r ∈ {1, . . . , 2lZ + 1} such that (Zr)e = 0 and (Zr)f = (Xk ◦ Y h)f for any
f /∈ S(Xk, Y h). e can be of two types: e = (i, j) or e = i.

In both cases, it will be convenient to define

E− =
{
p | 1 ≤ p ≤ n and {(Xk)p, (Y

h)p} ∈ {{−,−}, {0,−}}
}

=
{
p ∈ {1, . . . , n} \ S(Xk, Y h) | (Xk ◦ Y h)p = −

}
,

E+ =
{
p | 1 ≤ p ≤ n and {(Xk)p, (Y

h)p} ∈ {{+,+}, {0,+}
}
,

E0 =
{
p | 1 ≤ p ≤ n and {(Xk)p, (Y

h)p} = {0, 0}
}
.

Then E−∪E+∪E0 = {1, . . . , n}\S(Xk, Y h) and part of the condition is that (Zr)p = ε
for all p ∈ Eε, ε ∈ {−,+, 0}.

1) If e = (i, j), up to exchanging Xk and Y h, one can suppose that X(i,j) = − and
Y(i,j) = +. Let Z ∈M be given by (V 3) onM. For any r we will have that (Zr)e = 0 and
(Zr)f = (Xk ◦Y h)f for any f /∈ S(Xk, Y h) of the form f = (p, q), because in that case, f is
an index for X and Y that is not in S(X, Y ). Can we find r such that (Zr)p = (Xk ◦ Y h)p
for any 1 ≤ p ≤ n such that p /∈ S(Xk, Y h) ? It is sufficient to check that pZ(p) < pZ(q)
for all (p, q) ∈ E− × E+ ∪ E− × E0 ∪ E0 × E+ and pZ(p) = pZ(q) for all (p, q) ∈ E0 × E0.
(p, q) ∈ E0 × E0 and p < q implies that X(p,q) = Y(p,q) = 0, hence Z(p,q) = 0 and pZ(p) =
pZ(q).

If E0 6= ∅, we take r = 2pZ(q) for any q ∈ E0. Then, we treat the case (p, q) ∈
E− × E0, since the case (p, q) ∈ E0 × E+ is similar. If p < q, then {(Xk)(p,q), (Y

h)(p,q)} ∈
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{{+,+}, {+, 0}} and Z(p,q) = +. If p > q, then {(Xk)(q,p), (Y
h)(q,p)} ∈ {{−,−}, {−, 0}}

and Z(q,p) = −. In any case, pZ(p) < pZ(q), thus (Zr)p = −.
If E0 = ∅, there may be several possibilities for r. The same reasoning as precedently

shows that for any (p, q) ∈ E−×E+, pZ(p) < pZ(q). Hence there is at least one appropriate
r which separates the parts that contain elements in E− from parts that contain elements
in E+.

2) If e = i for some 1 ≤ i ≤ n, up to exchanging Xk and Y h, one can suppose that
(Xk)i = − and (Y h)i = +.

First, we consider the case where E0 = ∅. We take Z = X ◦ Y and r = 2pX◦Y (i)
(corresponding to the part of i in Z). It only remains to check that if p ∈ E− (resp. E+),
than (Zr)p = − (resp. +).

p ∈ E− ⇒ pY (p) < pY (i)⇒ pZ(p) < pZ(i)⇒ (Zr)p = −,
p ∈ E+ ⇒ pX(p) > pX(i)⇒ pZ(p) > pZ(i)⇒ (Zr)p = +.
If E0 6= ∅, let j be the smallest element of E0. Than pX(i) < pX(j) and pY (i) > pY (j),

thus (i, j) ∈ S(X, Y ). Let Z ∈ M be given by axiom (V 3) applied to M with X, Y and
(i, j). Than, for any k ∈ E0 other than j, Z(j,k) = 0 because X(j,k) = 0 and Y(j,k) = 0
(resp. Z(k,j) = 0 because X(k,j) = 0 and Y(k,j) = 0), and thus Z(i,k) = 0 (resp. Z(k,i) = 0),
because Z(i,j) = 0 andM satisfies the transitivity condition from Lemma 3.3.8. We choose
r = 2pZ(i) (corresponding to the part of Z that contains i and all k ∈ E0). Then:

p ∈ E− ⇒

{
pX(p) < pX(j)

pY (p) ≤ pY (j)
or

{
pX(p) = pX(j)

pY (p) < pY (j)
⇒ pZ(p) < pZ(j) ⇒ (Zr)p = −,

p ∈ E+ ⇒

{
pX(p) > pX(i)

pY (p) ≥ pY (j)
or

{
pX(p) = pX(i)

pY (p) > pY (j)
⇒ pZ(p) > pZ(j) ⇒ (Zr)p = +.

Definition 3.4.2. Let M be a sweep oriented matroid. The oriented matroid Mbig is the
big oriented matroid of M; and the oriented matroid Mlit obtained by deleting all pairs
(i, j) from Mbig is the little oriented matroid of M.

These definitions are indeed coherent with the realizable case, as the following proposi-
tion shows. This proves that the sweep oriented matroid of a point configuration determines
its big and little oriented matroids, concluding the proof of Theorem 3.3.5.

Proposition 3.4.3. The big and little oriented matroids of a point configuration are the big
and little oriented matroids associated to its sweep oriented matroid.

Proof. Let A = (a1, . . . ,an) ∈ Rd×[n] be a d-dimensional point configuration. Every vector
u ∈ Rd induces an ordering of A, which is encoded in a covector X ofMsw(Ā). For c ∈ R,
the partition

{i | 〈u,ai〉 < c} , {i | 〈u,ai〉 = c} , {i | 〈u,ai〉 > c}
only depends on which, or between which pair, of the lX values attained by 〈pu, · 〉 on A
does c lie. These 2lX + 1 distinct partitions are precisely those encoded by the covectors
Xk defining the big oriented matroid of Msw(Ā).
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Note that, by the definition of the big oriented matroid of M, the zero covector 0 of
M induces the all-positive tope +n in Mlit, which is hence an acyclic oriented matroid.

The following lemma concerning the ranks of the big and little oriented matroids will
be needed later.

Lemma 3.4.4. If the sweep oriented matroid M is of rank r, then Mbig and Mlit are of
rank r + 1.

Proof. To justify thatMbig has rank r+1, it is sufficient to notice that if 0([n]
2 ) = Y 0 ≺ Y 1 ≺

· · · ≺ Y r is a maximal chain of covectors ofM, then 0
[n]∪([n]

2 ) = Z−1 ≺ Z0 ≺ Z1 ≺ · · · ≺ Zr

is a maximal chain of covectors of Mbig, where for any k ∈ {0, . . . , r}, we define Zk by
Zk
∣∣
([n]

2 ) = Y k and Zk
∣∣
[n]

= +n. Indeed, we cannot add a covector Z in the big oriented

matroid between Z−1 and Z0 because if Zi = 0 and Zj = + we necessarily have Z(i,j) 6= 0
since i and j are not in the same part of the ordered partition lZ . We cannot add a covector
strictly between Zk and Zk+1 either because its restriction to

(
[n]
2

)
would give a covector

of M strictly between Y k and Y k+1.
We prove that Mlit also has rank r + 1 by induction on r. If M is of rank r = 0, then

0([n]
2 ) is its only covector. It induces the little oriented matroid of rank 1 consisting of the

covectors −n, 0n, and +n.
Now, suppose thatM is a sweep oriented matroid on ground set

(
[n]
2

)
that has rank r ≥

1. Up to relabelling, we can suppose that (n−1, n) is not a loop. Then the contraction ofM
along {(n−1, n)} has rank r−1. Under the bijection (3.4), the covectors of this contraction
M/{(n−1,n)} correspond to the partitions associated to covectors ofM such that n− 1 and
n are in the same part. This implies that for all i ≤ n − 2, the pairs (i, n − 1) and (i, n)
are parallel. By deleting all the pairs (i, n) we obtain an oriented matroid M′ on

(
[n−1]

2

)
isomorphic toM/{(n−1,n)}. The transitivity condition from Lemma 3.3.8 is preserved, and

hence M′ is a sweep oriented matroid of rank r − 1 and M′lit has rank r, by induction.
A maximal chain of the contraction M′lit/(n − 1) induces a chain 0n = X0 ≺ · · · ≺ Xr−1

of Mlit in which (X i)n−1 = (X i)n = 0 for all 0 ≤ i ≤ r − 1 and that is maximal with
this property. Since n − 1 and n are not parallel (because (n − 1, n) is not a loop), there
is a covector Y of Mlit such that Yn−1 = + and Yn = 0. Setting Xr = Xr−1 ◦ Y , and
Xr+1 = Xr ◦+n, we obtain a chain

0n = X0 ≺ · · · ≺ Xr−1 ≺ Xr ≺ Xr+1

of lenght r+1 of covectors ofMlit. Moreover, the restriction operation on oriented matroids
cannot increase the rank, thus the rank of Mlit cannot be bigger than the rank of Mbig.
Hence Mlit also has rank r + 1.

Example 3.4.5 (The braid oriented matroids in types A and B). The study of big oriented
matroids of Coxeter hyperplane arrangements in types A and B unveils a recursive decom-
position that, in view of the upcoming Section 3.4.2, explains the existence of a maximal
chain of modular flats. This important property was first studied by Stanley under the
name of supersolvability [Sta72].
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Type A. The big oriented matroid of the braid oriented matroid Bn is the braid
oriented matroid Bn+1. More precisely, if we relabel the elements i ∈ [n] by (1, i + 1) and
the elements (i, j) ∈

(
[n]
2

)
by (i+1, j+1), then we recover the braid oriented matroid Bn+1.

Indeed, the topes of Bnbig are of the form X2k+1 where X is a tope of Bn and 0 ≤ k ≤ n. If
X corresponds to the permutation (σ(1), . . . , σ(n)) ∈ Sn, then X2k+1 corresponds to the
permutation in Sn+1:

(σ(1) + 1, . . . , σ(k) + 1, 1, σ(k + 1) + 1, . . . , σ(n) + 1).

Type B. Consider the type B braid oriented matroid BBn from Section 3.2.2, indexed
by the elements in

(
[±n]

2

)
. That is, BBn is the sweep oriented matroid of the vertex set of the

cross-polytope. Then its big oriented matroid (BBn )
big

is FL-isomorphic to BBn+1 without
one element (of those of the form (−i, i)).

To see it, it is easier to consider first an enlarged version, with base elements

[−n, n] = {−n, . . . ,−1, 0, 1, . . . , n}

corresponding to the point configuration

B̃n = (−en, . . . ,−e1,0, e1, . . . , en)

that contains the vertices of the cross-polytope together with the origin. The FL-isomorphism
class of the sweep oriented matroid does not change, but we get some new parallel ele-
ments. Namely, the elements labeled (−i, i), (−i, 0), and (0, i) become parallel (with the

same orientation) in the enlarged sweep oriented matroid B̃
B

n = Msw(B̃n). Now, relabel
the elements [−n, n]∪

(
[−n,n]

2

)
to
(

[−n−1,n+1]
2

)
by sending each i ∈ [±n] to the pair of parallel

elements (−n− 1,−i), (i, n+ 1); 0 to the triple of parallel elements (−n− 1, n+ 1), (−n−
1, 0), (0, n + 1); and leaving the pairs in

(
[−n,n]

2

)
unchanged. Each tope X of the sweep

oriented matroid B̃
B

n is represented by a centrally symmetric permutation σ of [−n, n]:

(−σ(n), . . . ,−σ(1), 0, σ(1), . . . , σ(n)).

Under the relabeling we can read the topes X2k+1 of the big oriented matroid (B̃
B

n )
big

as

centrally symmetric permutations of [−n− 1, n+ 1] representing topes of B̃
B

n+1. Namely,
for 0 ≤ k ≤ n+ 1, the tope X2k+1 corresponds to the centrally symmetric permutation:

(−σ(n), . . . ,−σ(n− k + 1),−n−1,−σ(n− k), . . . , σ(n− k), n+ 1, σ(n+ 1− k), . . . σ(n)).

whereas for n+ 2 ≤ k ≤ 2n+ 2 it corresponds to:

(−σ(n), . . . ,−σ(n− k + 1), n+ 1,−σ(n− k), . . . , σ(n− k),−n−1, σ(n+ 1− k), . . . σ(n)).

This shows that (B̃
B

n )
big

is FL-isomorphic to B̃
B

n+1, and hence to BBn+1.
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If we want to consider the original configuration without the origin, we simply need to
remove all the elements of the big oriented matroid that involve a label using 0. Every
parallelism class conserves at least one representative except for the singleton 0, which was
sent to the triple (−n − 1, n + 1), (−n − 1, 0), (0, n + 1) with our relabeling. This shows

that (BBn )
big

is FL-isomorphic to BBn+1 r (−n− 1, n+ 1).

Remark 3.4.6 (On labeling and isomorphism). The labeling plays an important role in the
definition of a sweep oriented matroid and in Theorem 3.3.5. Indeed, non-isomorphic big
oriented matroids might arise from isomorphic sweep oriented matroids. (Here, we mean
FL-isomorphism, but the statement is also true for the other standard notions of oriented
matroid isomorphism.) For example, all sufficiently generic planar n-point configurations
give rise to FL-isomorphic sweep oriented matroids but their big oriented matroids are not
FL-isomorphic.

Remark 3.4.7 (On realizability). Note that, for a big oriented matroid M, realizability
as an oriented matroid (i.e. in the sense of (3.3)) is equivalent to realizability as a big
oriented matroid (i.e. in the sense of Definition 3.3.2). Indeed, any point configuration A
such that Mbig(Ā) = M can be extended (with the corresponding points at infinity) to
an oriented matroid realization of M. And reciprocally, the restriction of any oriented
matroid realization of M to the elements indexed by [n] can be sent, after a suitable
projective transformation and dehomogenization, to a point configuration A such that
Mbig(Ā) =M.

Figure 3.10: The allowable sequence (1, 2, 3, 4, 5) → (1, 2, 4, 3, 5) → (2, 1, 4, 3, 5) →
(2, 1, 4, 5, 3) → (2, 4, 1, 5, 3) → (2, 4, 5, 1, 3) → (4, 2, 5, 1, 3) → (4, 5, 2, 1, 3) →
(4, 5, 2, 3, 1) → (4, 5, 3, 2, 1) → (5, 4, 3, 2, 1) cannot be realized by a point configuration,
because it would necessarily be a pentagon whose sides and “parallel diagonals” meet as in
the above picture, which is geometrically impossible [GP80a].

In contrast, there are sweep oriented matroids that are realizable as an oriented matroid
but that are not of the form Msw(Ā) for any point configuration A. Indeed, the non-
realizable pentagon of [GP80a] (see Figure 3.10) gives rise to a non-realizable allowable
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sequence; that is, to a non-realizable big oriented matroid of rank 3. The associated sweep
oriented matroid is an oriented matroid of rank 2, and thus realizable (as an oriented
matroid) [BLS+99, Cor. 8.2.3]. However, it is not the sweep oriented matroid of a point
configuration, because the corresponding big oriented matroid is not realizable.

We end this remark by noting that the Universality Theorem for allowable sequences of
Hoffmann and Merckx [HM18] implies that it is (∃R)-hard to decide whether a big oriented
matroid is realizable.

3.4.2 Big oriented matroids and tight modular hyperplanes

In this section we provide an alternative characterization of the FL-isomorphism classes
of big oriented matroids, and hence of sweep oriented matroids. It is purely structural,
without relying on the labeling of the elements. We show that they are closely related to
the concept of modular hyperplanes.

According to our definition, every big oriented matroidMbig on [n]∪
(

[n]
2

)
contains the

cocircuit Z = (+n,0(n2)
). Moreover, X(i,j) = 0 for any covector X such that Xi = Xj = 0;

which is equivalent to the fact that for any i, j not in the same parallelism class, the
restriction of Mbig to the set {i, j, (i, j)} ⊂ E has rank 2. These two properties show that
the set of indices

(
[n]
2

)
form a modular hyperplane.

The flats of an oriented matroid M of rank r on E are the flats of its underlying
(unoriented) matroid M; that is, the zero-sets of its covectors. The poset of flats ordered
by inclusion forms a geometric lattice [BLS+99, 4.1.13]. The hyperplanes are the flats
of rank r − 1, and they arise as zero-sets of cocircuits. A flat F is called modular if
rk(F ) + rk(G) = rk(F ∧ G) + rk(F ∨ G) for any other flat G, where rk(·) is the rank
function of the geometric lattice (for a flat F , rk(F ) coincides with the rank of the oriented
matroid M

∣∣
F

). Modular flats have many interesting properties, and play an important
role in the theory of matroids, see [Sta71] and [Bry75].

Hence, a modular hyperplane is a hyperplane F ⊂ E such that rk(F ∧G) = rk(F ∩G) =
rk(G)−1 for any flat G not contained in F . Said differently, F ∩G is a hyperplane inM

∣∣
F

.
In [Bry75, Cor. 3.4] it is shown that a hyperplane is modular if and only if it intersects
every line (flat G with rk(G) = 2). Equivalently, if for every pair of elements x, y ∈ E rF
that are not parallel nor a loop, there is some element z ∈ F such that for every covector
X with Xx = Xy = 0 we have Xz = 0. We will say that a modular hyperplane F is tight
if there is no z ∈ F such that F r z is a modular hyperplane of M

∣∣
Erz.

The following result gives a characterization of big oriented matroids similar to the one
given in [BLS+99, Sect. 6.4] for the rank 3 case.

Proposition 3.4.8. Let M be an oriented matroid on ground set E = [n] ∪
(

[n]
2

)
such that:

1. there exists a cocircuit Z of M such that {e ∈ E |Ze = 0} =
(

[n]
2

)
(i.e. Z = [n]),

2. for any (i, j) ∈
(

[n]
2

)
, for any covector X of M, if two coordinates among Xi, Xj,

X(i,j) are zero, then the third one is zero too.
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Then, up to reorientation, M is the big oriented matroid of the sweep oriented matroid
M
∣∣
([n]

2 ).

In a realizable setting, and without parallel elements and loops, the conditions on M
amount to asking that the real vector representing (i, j) is in the intersection of the 2-
plane spanned by the real vectors representing i and j and the hyperplane given by the
cocircuit Z (which contains all the vectors corresponding to elements in

(
[n]
2

)
). One can

check that the example depicted in Figure 3.8 satisfies this condition.

Proof. We need to prove that, after the reorientation of some elements of the ground set,
the restriction M

∣∣
([n]

2 ) is a sweep oriented matroid, i.e. it satisfies Lemma 3.3.8, and the

covectors ofM are exactly those obtained from the covectors ofM
∣∣
([n]

2 ) as in Theorem 3.4.1.

We can assume that, after a suitable reorientation ofM we have that Z = (+n,0([n]
2 )).

Note that M
∣∣
[n]

cannot have loops, as witnessed by Z; and that if i and j are parallel,

then (i, j) must be a loop. We will from now on assume that M does not have parallel
elements, as it simplifies the exposition.

Let us show that for any two covectors X, Y ∈M such that Xi = Yi = −, Xj = Yj = +
we have X(i,j) = Y(i,j) 6= 0. Assume the contrary. Then the axiom 3.3.1 on oriented
matroids would imply the existence of a covector T ∈ M such that Ti = −, Tj = +
and T(i,j) = 0. A second application of the axiom 3.3.1 between T and Z would give the
existence of a covector T ′ ∈ M such that T ′i = T ′(i,j) = 0 and T ′j = +, which contradicts

the second assumption on M. Hence, we can reorient (i, j) so that for any covector X of
M with Xi = − and Xj = +, we have X(i,j) = +.

To check that M
∣∣
([n]

2 ) is a sweep oriented matroid, it suffices to look at all restrictions

of the form

M
∣∣
{i,j,k,(i,j),(j,k),(i,k)}

for 1 ≤ i < j < k ≤ n. This gives an oriented matroid of rank at most 3. One can easily
check that with our conditions there are only three possible configurations, none of which
violates the condition from Lemma 3.3.8.

Moreover, it is clear that any covector X of M can be obtained from the covector
X
∣∣
([n]

2 ) of M
∣∣
([n]

2 ) by the method described at the beginning of Section 3.4.1. Indeed, our

reorientation on
(

[n]
2

)
implies that the ordered partition of [n] given by (I− = {i |Xi =

−}, I0 = {i |Xi = 0}, I+ = {i |Xi = +}) is refined by the ordered partition J induced by
X
∣∣
([n]

2 ), in such a way that either I0 = ∅ or I0 is an entire part of J . Thus X is of the form

(X
∣∣
([n]

2 ))k for some k.

It remains to check that, for every covector Y ∈ M
∣∣
([n]

2 ), all covectors Y k obtained by

the method described in Section 3.4.1 are indeed covectors of M. We do it by induction
on k. Observe first that Y 1 = Z ◦ Ỹ , where Ỹ is any covector in M whose restriction to(

[n]
2

)
gives Y . Thus, we have Y 1 ∈M.
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Now, for an odd k0 ∈ [2lY ], we apply the Elimination Axiom 3.3.1 to the covectors Y k0

and (−Z)◦Y k0 , and the smallest element i0 ∈ p−1
Y ({k0+1

2
}) to obtain a covector T . We claim

that T = Y k0+1. Indeed, for all i where pY (i) < k0+1
2

we have Ti = Y k0
i = (−Z)i = −.

For all i ∈ p−1
Y ({k0+1

2
}), we have Ti0 = 0 and T(i0,i) = Y k0

(i0,i)
= (−Z)(i0,i) = 0, so the

second hypothesis on M implies that Ti = 0. Let i where pY (i) > k0+1
2

. We assume that

i > i0, the other case is analogous. We have that T(i0,i) = Y k0

(i0,i)
6= 0 and Ti0 = 0, so

Ti 6= 0 by the second hypothesis. This forces that Ti = + as otherwise T ◦Z would satisfy
(T ◦Z)i0 = −(T ◦Z)i = (T ◦Z)(i0,i), which contradicts our assumption on the reorientation.

To conclude, if k0 is even, then Y k0+1 = Y k0 ◦ (−Z).

We get the following characterization as a direct corollary.

Theorem 3.4.9. A simple oriented matroid M is FL-isomorphic to a big oriented matroid
if and only if it has a tight modular hyperplane.

Proof. It is straightforward to check that in a big oriented matroid the elements indexed
by
(

[n]
2

)
form a modular hyperplane that is tight up to the simplification of parallel elements.

For the converse, let E be the ground set ofM, and F ⊆ E a tight modular hyperplane.
We will relabel the elements of ErF by [n], where n = |ErF |. Now, for each (i, j) ∈

(
[n]
2

)
there is an element z ∈ F in the line spanned by i and j by the modularity of F . We add
to M an element parallel to z labeled by (i, j) ∈

(
[n]
2

)
. We obtain this way an isomorphic

oriented matroid M′. Note that, since the modular hyperplane F ⊆ E is tight, for each
z ∈ F there are some i, j ∈ E r F such that i, j, z are collinear. Hence, z is parallel to
(i, j) and M′ r z is isomorphic to M. We conclude that M′

∣∣
[n]∪([n]

2 ) is isomorphic to M.

It satisfies the conditions of Proposition 3.4.8 and is hence isomorphic to a big oriented
matroid.

A consequence of this observation is that we can extend the process to determine the big
oriented matroid from the sweep oriented matroid to any oriented matroid with a modular
hyperplane (not necessarily tight). For sweep oriented matroids, this relies on the labeling
of the elements (see Remark 3.4.6). Arbitrary modular hyperplanes also need a similar
extra information. Let M be an oriented matroid on a ground set E with a modular
hyperplane F . To simplify the exposition, we will assume that M is simple (no loops or
parallel elements), that ErF = [n], that F ∩

(
[n]
2

)
= ∅, and that all the elements of ErF

lie in a common halfspace defined by F . (We could omit this simplification by adding
information to the decoration, but it unnecessarily complicates the notation.)

We will decorate the elements in F by constructing maps δ : F → 2([n]
2 ) and ε :

(
[n]
2

)
→

{+,−} that associate a subset of elements of
(

[n]
2

)
to each f ∈ F and a sign to each pair

in
(

[n]
2

)
. This is done with the following algorithm. We start decorating each element in F

with an empty set. For every (i, j) ∈
(

[n]
2

)
, let f ∈ F be the element of F in the flat

spanned by i and j. We add to the decoration δ(f) of f the ordered pair (i, j); and we set
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ε(i, j) = + if there is a covector X ∈M such that Xi = 0 and Xj = Xf 6= 0, or ε(i, j) = −
otherwise. We will call this information the decoration of F induced by M.

We will show that we can recover M from M′ = M
∣∣
F

, its restriction to F , and the
decoration. To state our result, we introduce valid decorations, which are those that can
be obtained with the procedure above. For any simple oriented matroidM′ on the ground

set F , we call a valid decoration a couple of maps δ : F → 2([n]
2 ) and ε :

(
[n]
2

)
→ {+,−} for

a certain n, such that:

• the decorations form a partition of
(

[n]
2

)
, with empty parts accepted:

(
[n]
2

)
=
⋃
f∈F δ(f)

with δ(f) ∩ δ(f ′) = ∅ whenever f 6= f ′; and

• the covectors X ∈M, seen as elements of {+,−, 0}(
[n]
2 ) by considering X(i,j) = ε(i, j)Xf

if (i, j) ∈ δ(f), satisfy the transitivity condition from Lemma 3.3.8.

The following result should be seen as the oriented version of [Bon06, Thm. 2.1], which
similarly characterizes when an (unoriented) matroid can be extended so that its ground
set is a modular hyperplane of the larger matroid.

Corollary 3.4.10. IfM′ is a simple oriented matroid on F with a valid decoration (δ, ε), then
M′ can be extended to a unique oriented matroid M for which F is a modular hyperplane
and (δ, ε) is the decoration of F induced by M.

In particular, an oriented matroid M with a modular hyperplane F is completely de-
termined by M

∣∣
F

together with the decoration of F induced by M.

Proof. The proof is very simple, as it relies entirely on Theorem 3.4.1, but it involves some
auxiliary oriented matroids and some cumbersome notation to identify them.

With the help of the decoration, we will first add to M′ the elements of
(

[n]
2

)
to get a

new oriented matroid M̃′ on F ∪
(

[n]
2

)
. We do this by adding for each f ∈ F the parallel

elements (i, j) = ε(i, j)f for (i, j) ∈ δ(f). The restriction of M̃′ to
(

[n]
2

)
is a sweep oriented

matroid, as it fulfills the transitivity condition from Lemma 3.3.8 by hypothesis. We want
to apply Theorem 3.4.1 to find the associated big oriented matroid. While Theorem 3.4.1
is only stated to extend a matroid from

(
[n]
2

)
to [n]∪

(
[n]
2

)
, the same proof carries on almost

verbatim to extend a matroid from F ∪
(

[n]
2

)
to F ∪ [n] ∪

(
[n]
2

)
. We associate a family of

covectors Xk on F ∪[n]∪
(

[n]
2

)
to every covector X of M̃′ in the very same way, just ignoring

the entries in F when generating the values for [n] in Xk. These are the covectors of an
oriented matroid M̃ (by the same argument as in Theorem 3.4.1), and its restriction to
[n] ∪ F is the desired oriented matroid M.

3.4.3 Not every oriented matroid is a little oriented matroid

Little oriented matroids are always acyclic, meaning that +n is a tope. A first guess could
be that all acyclic oriented matroids can be extended to a big oriented matroid. After
all, this is trivially the case for realizable oriented matroids. Moreover, it is also true for
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rank 3 oriented matroids. Although stated in a different language, this follows directly from
[BLS+99, Thm. 6.3.3] and [FW01, Lemma 1]2, which was first proved in the uniform case
in [SH91]. (Actually, their result is stronger, as the sweep oriented matroid they construct
is Dilworth in the sense of the upcoming Section 3.5.1.)

Theorem 3.4.11 ([BLS+99, Thm. 6.3.3]). Every loopless acyclic oriented matroid M of
rank 3 is the little oriented matroid of a sweep oriented matroid.

However, contrary to the rank 3 case, starting at rank 4 there exist acyclic oriented
matroids that cannot be extended to big oriented matroids. The proof of Theorem 3.4.11
in [BLS+99] uses Levi’s extension lemma, that states that every arrangement of pseudolines
can be extended with an extra pseudoline through two given points. We use a famous
counterexample to the analogous statement in rank 4 by Richter-Gebert [RG93] to present
an acyclic oriented matroid that cannot be extended to a big oriented matroid.

Theorem 3.4.12 ([RG93, Cor. 3.4]). There is an oriented matroid RG of rank 4 with ground
set [12] with two topes U and T such that no extending pseudoplane intersects U and T
simultaneously.

This means that if RG ′ is an oriented matroid on [12] ∪ {f} such that RG ′
∣∣
[12]

= RG,

then it cannot contain covectors U ′, T ′ ∈ RG ′ such that U ′
∣∣
[12]
� U and T ′

∣∣
[12]
� T but

U ′f = T ′f = 0.

Theorem 3.4.13. The reorientation of RG sending U to +12 is acyclic, but it is not the
little oriented matroid of any sweep oriented matroid.

Proof. After a suitable reorientation, assume that U = +12. Suppose that there is a big
oriented matroidM on [12]∪

(
[12]
2

)
such thatM

∣∣
[12]

= RG. It contains a cocircuit U ′ ∈M
with U ′i = Ui = + for all i ∈ [12] and U ′(i,j) = 0 for all (i, j) ∈

(
[12]
2

)
.

Let X be a covector in RG such that [X,T ] forms an interval of length 2 in the face
lattice of RG.

This means that there are 1 ≤ i0 < j0 ≤ 12 such that Xi0 = Xj0 = 0 and Xi � Ti for
all i ∈ [12] \ {i0, j0}. Let X ′ be a covector in M such that X ′

∣∣
[12]

= X. Hence, we have

X ′(i0,j0) = 0 and X ′
∣∣
[12]
� T . Hence RG ′ = M

∣∣
[12]∪{(i0,j0)} is an extension of RG whose

covectors U ′
∣∣
[12]∪{(i0,j0)} and X ′

∣∣
[12]∪{(i0,j0)} contradict the special property of RG.

2This is usually presented in the context of “topological sweepings” of arrangements of pseudolines,
for example in [FW01, Fel04]. Note that the notation in these references collides slightly with ours,
see Section 3.1.
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3.5 Lattices of flats of sweep oriented matroids

3.5.1 Dilworth sweep oriented matroids

It is also interesting to understand the underlying (unoriented) matroid Msw associated
to a sweep oriented matroid Msw. In particular, because it plays an essential role in
the enumeration of sweeps [BLS+99, Sec. 4.6]. In the realizable case, this was done by
Edelman [Ede00] and Stanley [Sta15], who showed that, under certain genericity constraint,
Msw can be obtained from Mlit via the operation of Dilworth truncation.

We will work directly with the axiomatic of (unoriented) matroids in terms of geometric
lattices of flats, which was already mentioned in Section 3.4.2. We refer to [Whi86] for a
comprehensive reference on (unoriented) matroids.

IfM is an oriented matroid on ground set E, a flat ofM is a subset F ⊆ E that is the
zero-set of a covector ofM (there is X ∈M such that F = {e ∈ E |Xe = 0}). The set FM
of all flats ofM, ordered by inclusion, has the special structure of a geometric lattice; that
is, a finite atomistic semimodular lattice. If M has no loop, its minimal element is ∅.
(Note that this order is reversed from the order on the covectors in the face lattice of
M.) Conversely, any geometric lattice can be seen as the lattice of flats of a matroid. Let
S ⊆ E. There is only one minimal flat F that contains S. The rank of S is the length
of any maximal chain from ∅ to F in FM. It is denoted rkM(S), or rkM(S). The rank
function satisfies the submodular inequality:

rkM(A) + rkM(B) ≥ rkM(A ∩B) + rkM(A ∪B).

The flats and the rank function give two cryptomorphic ways to define the underlying
(unoriented) matroid M of the oriented matroid M. If M(V ) is the matroid associated
to a real vector configuration V = (v1, . . . ,vn), the flats correspond to the sets of vectors
in a same linear subspace and the rank of S ⊆ E is the dimension of the linear subspace
generated by {vi | i ∈ S}.

The flats of the braid arrangement Bn are in correspondence with the (unordered)
partitions of [n], and the lattice of flats of Bn is just the lattice of partitions of [n]. Similarly,
each flat of a sweep oriented matroid can be associated to a partition, and the sweeps
corresponding to orderings of this partition correspond to the covectors with this zero-
pattern.

We will need the oriented and unoriented notions of weak maps, which are the matroidal
version of perturbing a configuration to a more special position. If M and M′ are two
oriented matroids on the same ground set E, we say that there is a weak map from M to
M′ if for every covector X ∈M′, there is a covector Y ∈M such that X � Y . Note that
every strong map is also a weak map, but not the other way round (the definition of strong
maps is given in Section 3.3.3). If M and M′ are two unoriented matroids on the same
ground set E, we say that there is a weak map from M to M′ if for any subset F ⊆ E
we have rkM′(F ) ≤ rkM(F ). Note that a weak map between oriented matroids induces a
weak map on the underlying unoriented matroids (cf. [BLS+99, Cor. 7.7.7]).
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The idea behind the Dilworth truncation is the following: if F is a geometric lattice
and we remove the elements of rank 1, we obtain a poset F ′ that is not necessarily a
geometric lattice. The most generic way to augment it with all the joins needed to fulfill the
semimodularity condition gives rise to a matroid called the first Dilworth truncation of F .
The construction works in more generality when the elements of rank ≤ k are removed,
giving rise to the kth Dilworth truncation, but we will not need it in such generality ([Dil44],
see also [Bry86]).

Definition 3.5.1 ([Bry86, Prop. 7.7.5]). Let M be a matroid on ground set E. The first
Dilworth truncation of M, denoted D1(M), is defined on the ground set

(
E
2

)
and its rank

function is given by:

rkD1(M)(∅) = 0,

rkD1(M)(F ) = min
S∈S(F )

rS(F ) for ∅ 6= F ⊆
(
E

2

)
,

where S (F ) is the set of (unordered) partitions S = {F1, . . . , Fl} of F (F = F1 ∪ · · · ∪ Fl,
Fk 6= ∅ for all k ∈ [l], and Fk∩Fh = ∅ for all k 6= h) and rS(F ) =

(∑l
k=1 rkM(

⋃
{i, j | (i, j) ∈

Fk})
)
− l.

The flats of rank 1 of D1(M) are exactly the flats of rank 2 (i.e. the lines) of M. As
noted by Brylawski [Bry86] and Mason [Mas77, Sec. 2.1], in the realizable case the Dilworth
truncation can be geometrically realized by intersecting all the lines of M with a generic
affine hyperplane. If A is generic enough (in the sense that incomparable flats spanned
by its subsets are never parallel), then the hyperplane at infinity fulfills this genericity
condition and Msw(Ā) is the first Dilworth truncation of Mlit(Ā). Otherwise, we only
get a weak map of D1(Mlit(Ā)), as Msw(Ā) will be in less general position. This result
extends to (not necessary realizable) sweep oriented matroids.

Theorem 3.5.2. Let M be a sweep oriented matroid on
(

[n]
2

)
. Then there is a weak map

from D1(Mlit) to M.

The proof needs an auxiliary lemma.

Lemma 3.5.3. Let Mlit be the little oriented matroid of the sweep oriented matroid M.
If I is a flat of Mlit of rank at least two, and J is the minimal flat in M that contains
{(i, j) | i, j ∈ I}, then rkM(J) = rkMlit(I)− 1.

Proof. Let I ′ = {(i, j) ∈
(

[n]
2

) ∣∣ i, j ∈ I}. Then M
∣∣
I′

is a sweep oriented matroid with

little oriented matroid Mlit
∣∣
I
, and their respective ranks are rkMlit(I)− 1 and rkMlit(I) by

Lemma 3.4.4. Therefore, rkM(J) = rkMlit(I)−1, because the rank function of a restriction
is just the restriction of the rank function, see [Bry86, Prop 7.3.1].

Proof of Theorem 3.5.2. We want to show that rkM(G) ≤ rkD1(Mlit)(G) for every G ⊆(
[n]
2

)
. Let F be a minimal flat of D1(Mlit) that contains G, so that rkD1(Mlit)(F ) =
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rkD1(Mlit)(G). Then there exists an unordered partition {I1, . . . , Il} of a subset of [n] into

flats of Mlit of rank at least two such that F =
⊔l
k=1 {(i, j) | i, j ∈ Ik} and rkD1(Mlit)(F ) =∑l

k=1(rkMlit(Ik)− 1).
Indeed, let S = {F1, . . . , Fl} be a partition of F that minimizes rS(F ), and let Ik =⋃
{i, j | (i, j) ∈ Fk}. The submodular inequality shows that rkMlit(I1∪I2)−1 ≤ rkMlit(I1)+

rkMlit(I1) − 2 whenever I1 ∩ I2 6= ∅. We can therefore assume that the Ik’s are disjoint.
Moreover, these parts Ik have to be flats ofMlit. Otherwise, if there was some e /∈ Ik such
that rkMlit(Ik) = rkMlit(Ik ∪ {e}), then we could add to F all the pairs (i, e) and (e, i) with
i ∈ Ik without augmenting its rank, but F was taken to be a flat.

Let Jk be the minimal flat in M that contains {(i, j) | i, j ∈ Ik}; and let J be the join
of all the Jk in the lattice of flats of M. The submodularity of geometric lattices implies
that rkM(J) ≤

∑l
k=1 rkM(Jk). Moreover, such a J contains all the Jk, hence it contains

F , which contains G; and therefore rkM(G) ≤ rkM(J). We conclude by Lemma 3.5.3, that
implies that for any k, rkM(Jk) = rkMlit(Ik)− 1.

In view of this result, we will say that a sweep oriented matroid M is Dilworth if the
weak map predicted by Theorem 3.5.2 is actually an equality and we haveM = D1(Mlit).

This is the case if for any flat F ofM associated to a partition I = (I1, . . . , Il) we have

rkM(F ) =

(
l∑

k=1

rkMlit(Ik)

)
− l. (3.5)

In other words, coplanarities in M are induced by coplanarities in Mlit. For sweep
oriented matroids that come from a point configuration, it prevents the case where some
subspaces spanned by disjoint subsets of points are parallel.

Note that Dilworth sweep oriented matroids provide an oriented version of the ma-
troid operation of Dilworth truncation. However, contrary to the unoriented case, such a
truncation is often not unique and may even not exist, as shown by Theorem 3.4.13.

Even if Theorem 3.5.2 only works at the level of unoriented matroids, we expect that
a stronger statement holds at the level of oriented matroids. The following conjecture
is true for sweep oriented matroids of rank 2 (by [BLS+99, Thm. 6.3.3]), and for sweep
oriented matroids arising from point configurations (it suffices to make a generic projective
perturbation that removes unwanted parallelisms).

Conjecture 3.5.4. For any sweep oriented matroid M there is a Dilworth sweep oriented
matroid M′ such that there is a weak map from M′ to M, and M and M′ have the same
little oriented matroid.

3.5.2 Bounds on the number of sweep permutations

One motivation for studying the lattice of flats of an oriented matroid is that it com-
pletely determines its f -vector, as shown by the celebrated Las Vergnas-Zaslavsky Theorem
[BLS+99, Thm 4.6.4].
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Theorem 3.5.5. The number of topes of an oriented matroid M only depends on its lattice
of flats F . More precisely, this number is:

(−1)rχF(−1),

where r is the rank of M, and χF is the characteristic polynomial of F .

We can therefore adapt [Ede00, Thm. 3.4]3 and [Sta15, Thm. 7] to oriented matroids.
As noted by Stanley in [Sta15], for fixed r the bound is a polynomial in n of degree 2(r−1).

Theorem 3.5.6. Let M be a sweep oriented matroid on
(

[n]
2

)
of rank r. Then its number of

sweep permutations is bounded from above by:

|Π(M)| ≤
b r−1

2
c∑

i=0

2c(n, n− r + 1 + 2i),

where the c(n, n− i) are the unsigned Stirling numbers of the first kind.
The equality is obtained for example for realizable sweep oriented matroids that come

from generic configurations of n points in Rr−1.

Proof. We demonstrate how the proof of [Ede00, Thm. 3.4] and [Sta15, Thm. 7] extends
to our set-up. We repeat the main ideas for the reader’s convenience and refer to these
references for more details. We denote by Grn the geometric lattice obtained by removing
all elements of rank greater than r from the Boolean lattice on [n] and adding a top
element. This is the lattice of flats of any generic point configuration of n points in Rr−1.
The computation and evaluation of the characteristic polynomial of D1(Grn) gives the right
hand side of the inequality (see [Ede00, Co. 3.2]), which is the number of topes of any
oriented matroid whose lattice of flats is D1(Grn) via Theorem 3.5.5. This is the case for
the sweep oriented matroids arising from generic configurations.

By [KN86, Cor. 9.3.7], it suffices to show that there is a weak map from D1(Grn) toM,
because this implies that the coefficients of the characteristic polynomial ofM are bounded
by those of the characteristic polynomial of D1(Grn). Note that for any subset F ⊆ [n],
we have rkGrn(F ) = min(|F |, r). Like in any matroid, Mlit satisfies rkMlit(F ) ≤ |F |, and
hence there is a weak map from Grn toMlit. It follows from Definition 3.5.1 of the Dilworth
truncation by its rank function that this induces a weak map from D1(Grn) to D1(Mlit). It
follows from Theorem 3.5.2 that there is a weak map from D1(Grn) to M.

3.6 Pseudo-sweeps

Even if the little oriented matroid does not change, the poset of sweeps of a point configu-
ration is not invariant under admissible projective transformations (in the sense of [Zie95,

3There is a small typo in the statement of [Ede00, Thm. 3.4], but the correct statement can be recovered
from [Ede00, Cor. 3.2] with d = n− k − 1.
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App. 2.6]). In this section we describe a larger poset, the poset of pseudo-sweeps, that
contains the sweeps with respect to all possible choices of “hyperplane at infinity”. It is a
poset of cellular strings, and as such it can be defined at the level of oriented matroids.
Thus it exists even for those oriented matroids that are not little oriented matroids of any
sweep oriented matroid.

3.6.1 Pseudo-sweeps

With the presentation of SP (A) as a monotone path polytope introduced in Section 3.2.3,
we know that sweep permutations of a point configuration A can be interpreted as coherent
monotone paths of the zonotope Z(Ā) with respect to a linear form (which we called the
height). Non-coherent monotone paths also give rise to permutations of the elements of A,
which we will call pseudo-sweep permutations. They can be read in terms of k-sets. A
k-set of A is a k-element subset S ⊆ A for which there is an affine hyperplane strictly
separating S from Ar S. See [Mat02, Ch. 11] for background.

For simplicity, assume that A = (a1, . . . ,an) ∈ Rd×[n] does not contain repeated points.
A pseudo-sweep permutation of A is a permutation σ ∈ Sn such that

{
aσ(i)

∣∣ 1 ≤ i ≤ k
}

is
a k-set for all 1 ≤ k ≤ n. Note that we are still sweeping with a hyperplane, although we
are allowed to slightly change its direction every time the hyperplane hits a point, as long
as the new hyperplane does not cross one of the already visited points.

This point of view can be extended to obtain ordered partitions (and lift the constraint
of not having repeated points). Consider a sequence of affine functionals γr(x) = 〈ur,x〉−cr
for 1 ≤ r ≤ m such that for each point ai ∈ A there is an r with γr(ai) = 0, γs(ai) > 0
for all s < r, and γs(ai) < 0 for all r < s; and such that for each 1 ≤ r ≤ m there is some
i such that γr(ai) = 0. The sets Ir = {i | γr(ai) = 0} with 1 ≤ r ≤ m form an ordered
partition of [n], which we call a pseudo-sweep of A.

There is another way to interpret pseudo-sweeps of A and monotone paths/cellular
strings of Z(Ā) in terms of hyperplane arrangements, which extends to oriented matroids.

A gallery of a hyperplane arrangement (without parallels) is a sequence of chambers
(topes) such that adjacent chambers are separated by exactly one hyperplane. More gen-
erally, a gallery of an oriented matroid is a collection of topes T 0, . . . , Tm+1 such that
S(T i, T i+1) is a parallelism class for all i. A gallery is minimal if no parallelism class is
crossed twice. We will work with acyclic oriented matroids and we will be interested in
their minimal galleries from +n to its opposite −n.

This definition can be relaxed to accept paths that go accross some covectors (other than
subtopes). A cellular string of M with respect to +n is a sequence of non-tope covectors
(X1, . . . , Xm) that are such that X1 ◦+n = +n, Xm ◦−n = −n, and X i ◦−n = X i+1 ◦+n

for all i. This notation is consistent with the notion of cellular string for a polytope with
respect to a linear functional given in Section 3.2.3. Indeed, for a hyperplane arrangement
which is the normal fan of a zonotope Z, its cellular strings are equivalent to the cellular
strings of Z with respect to a linear functional that is minimized at the vertex corresponding
to +n. (Minimal galleries are in correspondence with monotone paths.)
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Note that an allowable sequence is just a cellular string on the braid arrangement based
at the tope indexed by the permutation id = (1, 2, . . . , n), and that its galleries correspond
to simple allowable sequences.

The following lemma sums up the relations between these objects in the realizable
case. It is illustrated in Figure 3.11, where the example of B2 from Figures 3.4 and 3.7 is
revisited.

Figure 3.11: The hyperplane arrangementHB̄2
. To depict the arrangement, it is intersected

with the unit sphere and stereographically projected from the south pole (0, 0,−1). We ob-
tain an arrangement of circles, oriented so that the positive side is the interior. Two sweeps,
corresponding to the permutation 2̄, 1̄, 1, 2 and the ordered partition 2̄1, 1̄2 are depicted;
and also the pseudo-sweep that is not a sweep corresponding to the permutation 1̄, 2, 1, 2̄.
(This resumes the example of Figure 3.7, where the monotone paths corresponding to these
two permutations were depicted.) To represent these pseudo-sweeps, an oriented ray from
the all-positive tope (containing the origin) to its opposite (at infinity) is depicted. The
order in which the circles are crossed gives the corresponding permutation. If the ray meets
more than one circle at the same time, then one recovers an ordered partition. Note that
this gives an alternative method to construct the sweep hyperplane arrangement SH(B2).
Indeed, it is not hard to see that when one does this procedure (intersection of HĀ with
the unit sphere plus stereographic projection), the hyperplanes spanned by the origin and
the intersections of all possible pairs of spheres are precisely those of SH(A). This is why,
under this representation, sweeps correspond to straight rays emanating from the origin.

Lemma 3.6.1. Let A = (a1, . . . ,an) ∈ Rd×[n] be a point configuration; let HĀ be the hyper-
plane arrangement in Rd+1 composed of the linear hyperplanes Hi =

{
x ∈ Rd+1

∣∣ 〈x, āi〉 = 0
}

(oriented towards āi) for ai ∈ A, where ā = (a, 1); and let Z(Ā) =
∑n

i=1[−āi, āi] be the
associated zonotope.

There is a bijection between:

(i) pseudo-sweeps of A,
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(ii) cellular strings of HĀ with respect to the all-positive tope +n, and

(iii) h-monotone cellular strings of Z(Ā) (h-coherent subdivisions of h(Z(Ā)));

and if moreover A does not have repeated points, then there is a bijection between:

(i) pseudo-sweep permutations of A,

(ii) minimal galleries of HĀ from the tope +n to its opposite −n, and

(iii) h-monotone paths of Z(Ā).

Proof. The proof amounts simply to translate between definitions (the definition of cellular
strings induced by a projection was given in Section 3.2.3). We omit the details and only
give some indications.

To a sequence of affine functionals γr(x) = 〈ur,x〉 − cr for 1 ≤ r ≤ m such that for
each point ai ∈ A there is an r with γr(ai) = 0, γs(ai) > 0 for all s < r, and γs(ai) < 0
for all r < s; we can associate

(i) the ordered partition I1, . . . , Im of [n] given by Ir = {i | γr(ai) = 0},

(ii) the sequence of non-tope covectors X1, . . . , Xm obtained by considering the sign of
evaluating γr on each of the points of A, and

(iii) the sequence F1, . . . ,Fm of faces of Z(Ā), where Fr is the face of Z(Ā) minimized
by the linear functional `r : Rd+1 → R given by (x, xd+1) 7→ 〈ur,x〉 − crxd+1.

One can easily check that the conditions imposed on γ1, . . . , γm imply that these sequences
are a pseudo-sweep of A, a cellular string of HĀ with respect to the all-positive tope +n,
and a h-monotone cellular string of Z(Ā), respectively. And conversely, for any pseudo-
sweep or cellular string of HĀ or Z(Ā), one can find such a sequence of affine functionals.
This is direct for pseudo-sweeps and cellular strings ofHĀ. For cellular strings F1, . . . ,Fm
of Z(Ā), we associate to each face Fr an affine map γr obtained by restricting the linear
functional minimized by Fr in Z(Ā) to the hyperplane xd+1 = 1.

The map that associates the partition I1, . . . , Im to the sequence X1, . . . , Xm with
(Xr)i = 0 if i ∈ Ir, (Xr)i = − if i ∈ Is with s < r and (Xr)i = + if i ∈ Is with s > r,
is hence a bijection between pseudo-sweeps and cellular strings of HĀ. And similarly the
map that sends a cellular string X1, . . . , Xm of HĀ to the cellular string F1, . . . ,Fm of
Z(Ā) given by

Fr =
∑

(Xr)i=+

{−āi}+
∑

(Xr)i=−

{āi}+
∑

(Xr)i=0

[−āi, āi]

is also a bijection.
The second part of the statement arises from the observation that these bijections are

order-preserving.

In particular, we can define pseudo-sweeps of a realizable oriented matroid in terms of
its cellular strings. We extend this definition to abstract oriented matroids.
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Definition 3.6.2. A pseudo-sweep of an acyclic oriented matroidM is an ordered partition
(I1, . . . , Im) arising from a cellular string (X1, . . . , Xm) ofM via Ii = S(X i ◦+n, X

i ◦−n),
that is, Ii is the set of zeros of X i.
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1̄,2̄,1,2

1̄,2̄,2,1

1̄,2,2̄,1

1̄,2,1,2̄

1,2̄,1̄,2

1,2̄,2,1̄

1,2,2̄,1̄

1,2,1̄,2̄

2,1̄,2̄,1

2,1̄,1,2̄

2,1,2̄,1̄

2,1,1̄,2̄

2̄,1̄,12

2̄,1̄1,2

2̄1̄,1,2

2̄1̄,2,1

2̄,1,1̄2

2̄1,1̄,2

2̄1,2,1̄

1̄,2̄,12

1̄,2̄2,1

1̄,2,2̄1

1̄2,2̄,1

1̄2,1,2̄

1,2̄,1̄2
1,2̄2,1̄

1,2,2̄1̄ 12,2̄,1̄

12,1̄,2̄

2,1̄,2̄1
2,1̄1,2̄

2,1,2̄1̄

2̄1̄,12

1̄2,2̄1

12,2̄1̄

2̄1,1̄2

2̄1̄12

Figure 3.12: The pseudo-sweeps of the point configuration B2. Without the trivial sweep,
they index a non-pure cellular complex that retracts to the boundary of the sweep polytope
SP (B2) from Figure 3.4, a 1-sphere.

Remark 3.6.3. If A′ is a (full-dimensional) admissible projective transformation of A, then
any sweep of A′ gives rise to a pseudo-sweep of A. Indeed, under an admissible projective
transformation a pencil of parallel hyperplanes is mapped into a pencil of hyperplanes
containing a codimension 2 flat that does not intersect conv(A). The k-sets defined by
these hyperplanes clearly give rise to a pseudo-sweep. However, not all pseudo-sweeps
arise this way. For example, if {a1, . . . ,a6} are the vertices of a regular hexagon in cyclic
order, then [1, 2, 3, 6, 5, 4] is a pseudo-sweep permutation that is not a sweep of any of its
projective transformations. (Because in every realization the vector a6 − a3 is a positive
linear combination of the vectors a1 − a2 and a5 − a4.)

Remark 3.6.4 (Pseudo-sweeps and shellings). One of Stanley’s motivations for studying
sweep permutations in [Sta15] is that they are in correspondence with Bruggesser-Mani
line-shelling orders of polytopes [BM71]. For a convex polytope P and a line L through
its interior, this is the order in which the facets of P become visible to a point following L
from the interior of P to infinity, plus the order in which the remaining facets lose visibility
when the point returns from the opposite side to the interior of P along L. Now, let P ◦

be the polar of P with respect to an interior point p of P , and let L be a line through p.
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(Here, we are considering the usual projective polarity, as in [Mat02, Sec. 5.1], but after
a translation by −p.) Since L contains p, which is mapped to the hyperplane at infinity
by polarity, the set of points in L corresponds to a family of parallel affine hyperplanes
orthogonal to a common direction. The shelling order given by L coincides with the sweep
permutation of the vertices of P ◦ with respect to this direction. Thus, sweep permutations
of a point configuration in convex position are in bijection with line shelling orders of the
polar polyhedron for lines that go through the center of polarity (here, the origin, which
is the image of the hyperplane at infinity).

Actually, not only sweeps, but all pseudo-sweeps, give rise to shelling orders. And
this is true in the more general level of oriented matroids. Indeed, every pseudo-sweep of
M induces a shelling order of the (Edmonds-Mandel) face lattice of the tope +n [EM82,
Sec. 3.VI], see also [BLS+99, Sec. 4.3]. (To the best of our knowledge, it is still an open prob-
lem whether the opposite of this lattice, called the Las Vergnas face lattice, is shellable.)
Pseudo-sweep shellings have been recently rediscovered by Heaton and Samper in the spe-
cial case of matroid polytopes under the name of broken line shellings [HS20].

3.6.2 The poset of pseudo-sweeps and the generalized Baues prob-

lem

Just like sweeps, pseudo-sweeps can be naturally ordered by refinement. We denote by
Π̃(M, T ) the poset of pseudo-sweeps ofM. Topological properties of this poset have been
studied in the context of a special case of the generalized Baues problem (GBP), that we
presented in Section 1.3.4. We recall that by the topology of a poset X we mean the
topology of its order complex ∆ (X): the simplicial complex whose simplices are the chains
of X (see [Bjö95] or [BLS+99, Sec. 4.7]).

Billera, Kapranov and Sturmfels [BKS94b, Thm. 2.3] showed that the strong version
of the GBP holds for monotone paths of polytopes. This implies that, in the realizable
case, the poset of sweeps of a point configuration is a deformation retract of the poset of
pseudo-sweeps. For the case of zonotopes, Björner [Bjö92, Thm. 2] gave an alternative
combinatorial proof for the weak version of the GBP (in the sense of [Rei99, Q. 2.2])
that extends to oriented matroids. Namely, he proved that the poset of pseudo-sweeps
of an oriented matroid is homotopy equivalent to a sphere (once the trivial sweep ([n]) is
removed). A further generalization to shellable CW-spheres, for an appropriate definition
of cellular strings induced by shellings, was proven in [AER00].

Theorem 3.6.5 ([Bjö92, Thm. 2]). The poset of pseudo-sweeps of an oriented matroid M
of rank r with respect to a tope T without the trivial sweep has the homotopy type of an
(r − 2)-sphere.

Note that, by Proposition 3.3.9, for oriented matroids that admit a sweep oriented
matroid (in the sense that they are the little oriented matroid of some sweep oriented
matroid) the poset of sweeps is an explicit (r−2)-sphere embedded in the poset of pseudo-
sweeps. We will show that it is in fact a deformation retract; thus proving the strong GBP
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for cellular strings of little oriented matroids. In the realizable case, this holds by [BKS94b,
Thm. 2.3]. In the more general case, Björner also remarks that he expects the poset of
pseudo-sweeps to retract to a subcomplex homeomorphic to a (r− 2)-sphere [Bjö92, below
Thm. 2], but does not provide a candidate subcomplex.

Theorem 3.6.6. Let Mlit be the little oriented matroid of a sweep oriented matroid Msw.
Then the poset of sweeps of Msw is a strong deformation retract of the poset of pseudo-
sweeps of Mlit; and the poset of non-trivial sweeps is a strong deformation retract of the
poset of non-trivial pseudo-sweeps.

The proof of Theorem 3.6.6 needs some auxiliary results concerning (combinatorial)
homotopy theorems. We refer to [Bjö95] for a very good introduction to the topic. First, we
present a result that allows us to weaken the statement to prove, as a consequence of the fact
that the homotopy extension property holds for order complexes of subposets (c.f. [Hat02,
Ch. 0]). Then we recall three results on the homotopy type of posets: the Carrier Lemma,
Quillen’s Fiber Theorem and Babson’s Lemma (the last two being corollaries of the first
one). Next, inspired by [AER00], we use the function that returns the first part of an
ordered partition to show the contractibility of some subsets of pseudo-sweeps and sweeps,
thanks to Babson’s Lemma. Finally, we combine all these results to prove that the inclusion
induces a homotopy equivalence.

The first result that we need shows that it suffices to prove a weaker statement, namely
that the inclusion is a homotopy equivalence. A CW pair of a cell complex (such as a
simplicial complex) is a pair (X,A) consisting of a cell complex X and a subcomplex A.
In particular, if S is a subposet of P , then (∆ (P ) ,∆ (S)) is a CW pair.

Lemma 3.6.7 ([Hat02, Prop. 0.16 and Cor. 0.20]). If (X,A) is a CW pair and the inclusion
A ↪→ X is a homotopy equivalence, then A is a strong deformation retract of X.

We will use the following version of the Carrier Lemma, from [Bjö95]. For a simplicial
complex ∆ and a space T , let C : ∆ → 2T be an order-preserving map (C(σ) ⊆ C(τ) for
all σ ⊆ τ). A mapping f : ‖∆‖ → T is carried by C if f(‖σ‖) ⊆ C(σ) for all σ ∈ ∆, where
‖·‖ denotes the associated geometric realization of the simplicial complex.

Lemma 3.6.8 (Carrier Lemma [Bjö95, Lem. 10.1]). Let C : ∆→ 2T be an order-preserving
map such that C(σ) is contractible for all σ ∈ ∆. If f, g : ‖∆‖ → T are both carried by C,
then f and g are homotopy equivalent, f ∼ g.

We will also need Quillen’s Fiber Theorem [Qui78]. For a poset Q and x ∈ Q, let
Q≥x = {y ∈ Q | y ≥ x}. For the claim about the carrier, see the proof in [Bjö95, Thm. 10.5].

Theorem 3.6.9 (Quillen’s Fiber Theorem [Qui78]). Let f : P → Q be an order-preserving
map of posets. If f−1(Q≥x) is contractible for all x ∈ Q, then f induces a homotopy equiva-
lence between ∆ (P ) and ∆ (Q) whose homotopy inverse is carried by C(σ) = f−1(Q≥minσ).

For this variant of Quillen’s Fiber Theorem, known as Babson’s Lemma [Bab94, Lem. 1
in Sec. 0.4.3], see also [SZ93, Lem. 3.2].
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Lemma 3.6.10 (Babson’s Lemma [Bab94]). If an order-preserving map of posets f : P → Q
fulfills

(i) f−1(x) is contractible for all x ∈ Q, and

(ii) f−1(x) ∩ P≥y is contractible for all x ∈ Q and y ∈ P with f(y) ≤ x,

then f induces a homotopy equivalence between ∆ (P ) and ∆ (Q).

Moreover, we will need the following lemmas certifying the contractibility of certain
subsets of pseudo-sweeps and sweeps. If F ⊆ [n] is the zero-set of a non-negative covector Z
of Mlit, we denote by Π(Msw)⊆F the sets of sweeps (I1, . . . , Im) with I1 ⊆ F . Similarly,

we denote by Π̃(Mlit,+n)⊆F the sets of pseudo-sweeps (I1, . . . , Im) with I1 ⊆ F .

Lemma 3.6.11. Let F ⊆ [n] be the zero-set of a non-negative covector Z of Mlit, then

Π̃(Mlit,+n)⊆F is contractible.

Proof. The proof of [AER00, Lem. 5.5] can be adapted to prove that Π̃(Mlit,+n)⊆F is
contractible. First, we note that with the same proof we can make a slightly stronger
statement. Namely, they define a map f : ω(P,O, a)→ D(P,O, a), between certain posets
ω(P,O, a) and D(P,O, a) that we describe below, and show that it induces a homotopy
equivalence. However, the exact same proof also shows that f : ω(P,O, a) ∩ f−1(I) → I
induces a homotopy equivalence for any order ideal (lower set) I of D(P,O, a).

To match their notations, we call P the poset opposite to the big face lattice ofMlit (the
atoms of P are the topes ofMlit and its 1-skeleton is the tope graph) and O the orientation
of the tope graph that goes from −n to +n. For a tope a, the poset ω(P,O, a) is the poset
of partial cellular strings ending at a (i.e. sequences of non-tope covectors (X1, . . . , Xm)
such that X1 ◦−n = −n, Xm ◦+n = a, and X i ◦+n = X i+1 ◦−n for all i). Therefore
taking a = amax = +n we have that ω(P,O, amax) = ω(P,O) is exactly the poset of cellular

strings of Mlit with respect to −n, which is in bijection with Π̃(Mlit,+n). However, their
partial order is the opposite of our refinement order and the cellular strings have to be read
in reverse order. The poset D(P,O, a) is the poset of the non-tope covectors X such that
X ◦+n = a. Therefore, D(P,O, amax) corresponds to the half-interval [0,+n) in the face
lattice of Mlit.

If we take I the lower set of D(P,O, amax) corresponding to the interval [Z,+n), their
function f : ω(P,O, amax)∩f−1(I)→ I corresponds to the function that sends the pseudo-

sweep (I1, . . . , Im) ∈ Π̃(Mlit,+n)⊆F to the non-negative covector Y ∈ [Z,+n) with zero-set

I1. Hence it induces a homotopy equivalence from Π̃(Mlit,+n)⊆F to [Z,+n), which has a
contractible order poset because it has a unique minimal element.

We wish to prove the same when restricted to sweeps. For this, we use an auxil-
iary result from [BCK18]. Let M ⊆ {+,−, 0}E be the set of covectors of an oriented
matroid on E. Then, each element e ∈ E defines two halfspaces {X ∈M|Xe = +}
and {X ∈M|Xe = −}, and a hyperplane {X ∈M|Xe = 0}.
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Lemma 3.6.12. Let M be the set of covectors of an oriented matroid. Then, any non-
empty intersection of one or more halfspaces and hyperplanes, seen as a subposet of the
face lattice, is contractible.

Proof. This is a consequence of [BCK18, Prop. 15]. Indeed, an intersection of halfspaces
and hyperplanes is a COM, because it satisfies Face symmetry and Strong elimination,
see [BCK18, Def. 1].

Lemma 3.6.13. Let F ⊆ [n] be the zero-set of a non-negative covector Z of Mlit, then
Π(Msw)⊆F is contractible.

Proof. Inspired by the proof of [AER00, Lem. 5.5], we apply Babson’s Lemma 3.6.10 with
the function f from the subposet of sweeps Π(Msw)⊆F to the half-open interval of the face
lattice [Z,+n) that sends a sweep (I1, . . . , Im) to the non-negative covector with zero-set
I1.

Let Y be a covector in [Z,+n), with zero-set G ⊆ F .

(i) f−1(Y ) is the set of sweeps whose first part is G. It is not empty because Y must
be of the form Ỹ 1 for a covector Ỹ ∈ Msw (in the sense of Definition 3.4.2), and
such Ỹ corresponds to a sweep with first part G. Moreover, f−1(Y ) is the inter-
section of halfspaces

{
X ∈Msw

∣∣X(i,j) = +
}

for all i ∈ G, j /∈ G and i < j, and{
X ∈Msw

∣∣X(i,j) = −
}

for all i ∈ G, j /∈ G and i > j. By Lemma 3.6.12 it is
contractible.

(ii) Let J = (J1, . . . , Jr) be a sweep in Π(Msw)⊆F such that f(J) ≤ Y , i.e. G ⊆ J1. The
intersection f−1(Y )∩(Π(Msw)⊆F )≥J is the set of sweeps that refine J and whose first
part is G. As for f−1(Y ), this set is an intersection of halfspaces. It is not empty
because it contains the sweep corresponding to J ◦ Ỹ . Hence it is contractible.

It follows from Babson’s Lemma that Π(Msw)⊆F is homotopy equivalent to [Z,+n),
which has a contractible order poset because it has a unique minimal element.

Proof of Theorem 3.6.6. To simplify the exposition, we denote by P = Π̃(Mlit,+n) the
poset of pseudo-sweeps of Mlit with respect to +n, by S = Π(Msw) the poset of sweeps
of Msw, and by Q = [0,+n) the half-open interval between 0 and +n in the face lattice
of Mlit (this is its Edmonds-Mandel lattice without the top element).

By Lemma 3.6.7 it suffices to show that the inclusion map ι : S ↪→ P induces a
homotopy equivalence. As in the proof of Lemmas 3.6.11 and 3.6.13, let f : P → Q be the
map that sends a pseudo-sweep (I1, . . . , Im) to the non-negative covector with zero-set I1.

S = Π(Msw) P = Π̃(Mlit,+n)

Q = [0,+n)

ι

f
g
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For any covector Z ∈ Q with zero-set F , we have that (f ◦ ι)−1(Q≥Z) = Π(Msw)⊆F ,
which is contractible by Lemma 3.6.13.

We conclude by Quillen’s Theorem 3.6.9 that f ◦ ι : S → Q induces a homotopy
equivalence with a homotopy inverse g : Q→ S carried by C(σ) = (f ◦ ι)−1(Q≥minσ).

We will show that g ◦ f : P → S is a homotopy inverse of the inclusion map ι : S ↪→ P .
We trivially have that g ◦f ◦ ι ∼ idS from the fact that (f ◦ ι) and g are homotopy inverses.

It remains to show that ι ◦ g ◦ f ∼ idP . Now, for σ in the order complex of P , let
C ′(σ) =

∥∥f−1(Q≥min f(σ))
∥∥. Note that f−1(Q≥min f(σ)) is of the form Π̃(Mlit,+n)⊆F where

F is the first part of the smallest ordered partition in σ. It is therefore contractible by
Lemma 3.6.11. We claim that idp and ι ◦ g ◦ f are both carried by C ′, and thus that they
must be homotopy equivalent by Lemma 3.6.8. Indeed, idP is trivially carried by C ′; and
so is ι ◦ g ◦ f because g is carried by C.

The same proof works if we restrict to non-trivial sweeps in S and P .

3.7 Allowable graphs of permutations and sweep
acycloids

In this section we present an alternative generalization of allowable sequences to high
dimensions that is closer to the original formulation, in terms of moves between permuta-
tions. As we will see, the resulting objects naturally have the structure of acycloids, and
we recover sweep oriented matroids as a special case.

3.7.1 Allowable graphs of permutations

In this setting it is useful to see a permutation σ ∈ Sn as the word [σ(1), . . . , σ(n)] on
the alphabet [n]. A substring of σ is then a contiguous sequence of characters, of the form
[σ(j), σ(j+1), . . . , σ(k)] for certain 1 ≤ j < k ≤ n. Such a substring is said to be increasing
if σ(j) < σ(j + 1) < . . . < σ(k).

Definition 3.7.1. Let Π ⊆ Sn be a set of permutations, and σ, σ′ ∈ Π. We define an
allowable sequence in Π from σ to σ′ as a sequence of permutations of Π: σ = σ0, . . . , σl = σ′

such that

(M1) for each 1 ≤ k ≤ l the move from σk−1 to σk consists of reversing a set mk of one or
more disjoint substrings of σk−1;

(M2) each pair i, j is reversed at most once along the path. In other words, there is at
most one move mk such that i and j are in the same substring of mk.

A move is simple if it consists of a single substring of two elements; and an allowable
sequence is simple if all its moves are.
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For example, (1, 3, 2, 6, 5, 4)
[3,2],[6,5,4]−−−−−−→ (1, 2, 3, 4, 5, 6) and (6, 5, 4, 3, 1, 2)

[1,2]−−→ (6, 5, 4, 3, 2, 1)
are valid moves, the second being moreover simple. The sequence

(1, 2, 3, 4, 5)
[1,2,3]−−−→ (3, 2, 1, 4, 5)

[1,4]−−→ (3, 2, 4, 1, 5)
[2,4],[1,5]−−−−−→ (3, 4, 2, 5, 1)

is an allowable sequence from (1, 2, 3, 4, 5) to (3, 4, 2, 5, 1) in S5; whereas

(1, 2, 3, 4, 5)
[1,2,3]−−−→ (3, 2, 1, 4, 5)

[1,4]−−→ (3, 2, 4, 1, 5)
[3,2,4],[1,5]−−−−−−→ (4, 2, 3, 5, 1)

is not an allowable sequence in S5, because the pair {2, 3} is reversed twice. In fact, in
an allowable sequence from the identity permutation, only increasing substrings can be
reversed. Note that if there is a move m from σ to γ, then from γ to σ there is the reverse
move m whose substrings are s = [sk, . . . , s0] for each substring s = [s0, . . . , sk] of m. This
way, every allowable sequence can be reversed.

Another way to describe allowable sequences is by looking at the set of pairs that are
reversed at each move. For a permutation σ, we denote by inv(σ) its set of inversions; that
is, the set of pairs (σ(i), σ(j)) ∈

(
[n]
2

)
such that i < j and σ(i) > σ(j). We denote by 4

the symmetric difference operation on sets.

Definition 3.7.2. If there is a move m from a permutation σ to a permutation γ, we define
the set of inversions of the move m by invm= inv(σ)4 inv(γ).

For example, for the move (1, 3, 2, 6, 5, 4)
[3,2],[6,5,4]−−−−−−→ (1, 2, 3, 4, 5, 6) we obtain the set of

inversions {(2, 3), (4, 5), (4, 6), (5, 6)}.
The conditions defining allowable sequences become:

(M1’) if (a, b) or (b, a) is in invmk and (b, c) or (c, b) is in invmk , then (a, c) or (c, a) is in
invmk ;

(M2’) the inversion sets invmk are pairwise disjoint.

Note also that invm = invm.

Remark 3.7.3. An allowable sequence in the sense of Goodman and Pollack in [GP80a,
GP82, GP84, GP93] is exactly what we call an allowable sequence from id = (1, 2, . . . , n)
to id = (n, n− 1, . . . , 1) in Sn.

We need to introduce another concept before our main definition.

Definition 3.7.4. A set of permutations Π ⊆ Sn is symmetric if σ ∈ Π for all σ ∈ Π, where
σ is the reverse of σ, defined by σ(t) = σ(n− t+ 1) for all t ∈ [n].

Definition 3.7.5. Consider a set of permutations Π ⊆ Sn and a set L of moves such that:

(P1) Π is symmetric,

(P2) for any σ, σ′ ∈ Π, there is an allowable sequence from σ to σ′ whose moves belong
to L,
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(P3) for m, s ∈ L, either invm = invs or invm ∩ invs = ∅.

The graph with vertex set Π and whose edges are the pairs of permutations differing by a
move in L is an allowable graph of permutations.

An allowable graph of permutations is simple if L consists only of simple moves.

Lemma 3.7.6. The graph is completely determined by Π and does not depend on L. More
precisely, σ, σ′ ∈ Π form an edge if and only if there is no σ′′ ∈ Π \ {σ} such that
inv(σ)4 inv(σ′′) ( inv(σ)4 inv(σ′).

Proof. Suppose that σ, σ′ ∈ Π form an edge. It means that there is a move m in L
with inversion set inv(σ)4 inv(σ′). Suppose that σ′′ ∈ L satisfies inv(σ)4 inv(σ′′) ⊆
inv(σ)4 inv(σ′). For any move m′ in L along an allowable sequence from σ to σ′′ we
have invm′ ⊆ inv(σ)4 inv(σ′′), thus invm′ ∩ invm 6= ∅. We deduce from Condition (P3) of
Definition 3.7.5 that invm′ = invm, thus inv(σ)4 inv(σ′′) = inv(σ)4 inv(σ′).

Reciprocally, suppose that σ, σ′ ∈ Π do not form an edge and let σ′′ ∈ Π \ {σ} be the
neighbor of σ on an allowable sequence from σ to σ′. By Condition (P3) of Definition 3.7.5,
we have inv(σ)4 inv(σ′′) ⊆ inv(σ)4 inv(σ′), as if there was a pair in inv(σ)4 inv(σ′′) \
inv(σ)4 inv(σ′), then it would be reversed twice in the allowable sequence: first between
σ and σ′′ and later between σ′′ and σ′. Moreover, σ′ 6= σ′′ because σ and σ′′ form an edge,
and thus inv(σ)4 inv(σ′′) 6= inv(σ)4 inv(σ′).

We will therefore usually identify Π with the corresponding allowable graph, and directly
call Π an allowable graph of permutations.

Remark 3.7.7. The set of moves can be recovered from the graph by gathering all moves
between adjacent permutations in the graph.

Remark 3.7.8. If Π forms an allowable graph of permutations and ω ∈ Sn, then ω ◦ Π =
{ω ◦ σ |σ ∈ Π} is still an allowable graph of permutations. Sometimes it is convenient to
suppose that the identity permutation id belongs to Π, as Goodman and Pollack did, which
can always be obtained by multiplying by an ω that is the inverse of a permutation in Π.

Remark 3.7.9. Note that in the case of a simple allowable graph of permutations Condi-
tion (P3) of Definition 3.7.5 is redundant. However, the example of Figure 3.13 shows
that it is necessary in the general case and this is why we needed to fix a set of moves in
Definition 3.7.5.

In this example, a valid set of moves L would necessarily contain all the moves rep-
resented with the arrows (and their reverse), which are all the singletons {[i, j]} for
(i, j) ∈

(
[n]
2

)
. However, in order to satisfy Condition (P2) of Definition 3.7.5, L also has

to contain the move {[1, 2], [3, 4]} represented by the dashed segment joining permutations
(3, 4, 5, 2, 1) and (4, 3, 5, 1, 2), since there is no other allowable sequence between these two
permutations. Indeed, we can see that the edges adjacent to (3, 4, 5, 2, 1) are labeled [2, 5]
and [4, 5] but those pairs should not be reversed on an allowable sequence to (4, 3, 5, 1, 2).
Thus, both conditions (P3) and (P2) of Definition 3.7.5 cannot be satisfied simultaneously.

We need to have both conditions in order to have the structure of acycloids, as stated
in Theorem 3.7.12.



120 CHAPTER 3. SWEEP POLYTOPES AND SWEEP ORIENTED MATROIDS

1,2,3,4,5

1,2,4,3,5

1,2,4,5,3

1,2,5,4,3

1,4,2,3,5

1,4,2,5,3

1,4,3,2,5 1,4,3,5,2

1,4,5,2,3

1,4,5,3,2

1,5,2,4,3

1,5,4,2,3

1,5,4,3,2

2,1,3,4,5

2,1,3,5,4

2,1,5,3,4

2,3,1,4,5

2,3,1,5,4

2,3,4,1,5 2,3,4,5,1

2,3,5,1,4

2,3,5,4,1

2,5,1,3,4

2,5,3,1,4

2,5,3,4,1

3,2,4,1,5 3,2,4,5,1

3,2,5,4,1

3,4,2,1,5 3,4,2,5,1 3,4,5,2,1

3,5,2,4,1

3,5,4,2,1

4,1,3,2,5 4,1,3,5,2

4,1,5,3,2

4,3,1,2,5 4,3,1,5,2 4,3,5,1,2

4,5,1,3,2

4,5,3,1,2

5,1,2,4,3

5,1,4,2,3

5,1,4,3,2

5,2,1,3,4

5,2,3,1,4

5,2,3,4,1

5,3,2,4,1

5,3,4,2,1

5,4,1,3,2

5,4,3,1,2

5,4,3,2,1

3
,4

1
,2

3,5

2,
4

4,5

2,
4

2,5

3,5

2,
3

2,5

2,5

1,
4

3,5

1,
4

2,
3

4,5

4,5

1,
4

2,
4

1,5

2,
3

1,5

1,5

4,
5

1,3

3,
5

1,3

1,5

4,
5

1,4

1,5

1,5

2,3

4,
5

2,3

1,4

3,
5

3,
5

2,3

1,3

2,5

1,4

2,5

2,5

1,5

2,4

4,
5

2,4

2,5

1,5 2,5

4,
5

2,4

3,
5

3,
5

2,5

1,
3

3,5

1,
3

1,5

2,5 1,5

3,5

1,
3

4,5

4,5

2,
4

2,
3

1,
4

1,3

1,4

2,3

2,4

3
,4

1,
3

1
,2

1,2 3,4

Figure 3.13: Example of a set of permutations that do not satisfy the definition of allowable
graph of permutations. Neither graphs with or without the dashed segment are partial
cubes.



3.7. ALLOWABLE GRAPHS OF PERMUTATIONS AND SWEEP ACYCLOIDS 121

3.7.2 Sweep acycloids

Acycloids are combinatorial objects widely studied in connection with the characterization
of tope sets of oriented matroids, c.f. [Han90, FH93]. They are equivalent to antipodal
partial cubes (see [KM20]), a concept well-studied in metric graph theory. A graph is a
partial cube if it is (isomorphic to) an isometric subgraph of a hypercube graph, and it is
antipodal (also called symmetric even [BK88]) if for every vertex v there exists exactly one
vertex ṽ, called the antipode of v, such that the distance from v to ṽ is larger than the
distance from v to any neighbor of ṽ.

Following [Han90], we introduce acycloids in terms of its topes, which are subsets of
sign-vectors. We use the same notation for the notions of reorientation, support and
parallelism classes of oriented matroids from Section 3.3.1, which carry on verbatim to
arbitrary subsets of sign vectors.

Definition 3.7.10. A collection of sign-vectors T ⊆ {+,−, 0}E is the set of topes of an
acycloid if and only if it satisfies the following axioms4:

(T1) X, Y ∈ T implies X = Y (this set is called the support of the acycloid),

(T2) X ∈ T implies −X ∈ T ,

(T3) if X 6= Y ∈ T then there exists f ∈ S(X, Y ) such that −fX ∈ T .

These three axioms are satisfied by the topes of an oriented matroid but they are
not sufficient; there are examples of acycloids that are not oriented matroids, see [Han93,
Sec. 7].

To describe the link between allowable graphs of permutations and acycloids, we asso-

ciate a sign-vector Xσ in {+,−}(
[n]
2 ) to each permutation σ ∈ Sn via the map (3.4). For

simplicity, we will sometimes implicitly identify permutations and sign-vectors when it is
clear from the context. For a set of permutations Π ⊆ Sn, we denote TΠ = {Xσ |σ ∈ Π} ⊆
{+,−}(

[n]
2 ).

Lemma 3.7.11. Let Π ⊆ Sn form an allowable graph of permutations, and let TΠ ⊆
{+,−}(

[n]
2 ) be the set of sign-vectors associated to its permutations. Then the inversion

sets of the moves in L coincide with the parallelism classes of TΠ.

Proof. First, the fact that Π is symmetric and the existence of a valid path between σ and
σ for any σ ∈ Π implies that any pair {i, j} is in the inversion set of at least one move
in L, which is necessarily unique by the disjointness condition (P3) of Definition 3.7.5 .
Hence, the inversion sets of the moves in L define equivalence classes on the pairs

(
[n]
2

)
. It

is straightforward to check that these coincide with the parallelism classes of TΠ.

4Recall that the parallelism class f of f is the set of elements e ∈ E such that Xf = Xe for all covectors
X or Xf = −Xe for all covectors X. The reorientation −FX is the signed vector Z such that Zf = −Xf

for all f ∈ F and Zf = Xf otherwise. The separation set S(X,Y ) of covectors X,Y are the elements
e ∈ E such that (Xe, Ye) ∈ {(+,−), (−,+)}.
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Theorem 3.7.12. Let Π ⊆ Sn form an allowable graph of permutations. Then TΠ ⊂
{+,−, 0}(

[n]
2 ) is the set of topes of an acycloid.

Proof. The support of all the covectors is
(

[n]
2

)
, and we have symmetry by definition. Hence,

it suffices to verify that TΠ satisfies the reorientation property (T3) from Definition 3.7.10.
Let X, Y ∈ TΠ and σ, γ ∈ Π be the associated permutations. Let σ = γ0, . . . , γl = γ be
an allowable sequence from σ to γ. S(X, Y ) corresponds to the pairs reversed along this
path. Let Z be the sign-vector associated to γ1 by the map (3.4). Then Z is in TΠ and
Z =− invm X where m is the move from σ to γ1. Lemma 3.7.11 shows that invm is the
parallelism class of any pair {i, j} reversed by m.

We can characterize which acycloids arise from allowable graphs of permutations. We
do it in a slightly more general context.

Definition 3.7.13. A sweep acycloid is an acycloid on the ground set
(

[n]
2

)
such that

(i) its topes fulfill the transitivity condition from Lemma 3.3.8; namely for every cov-
ector X and every choice of 1 ≤ i < j < k ≤ n, the triple (X(i,j), X(j,k), X(i,k)) is
orthogonal to the sign vector (+,+,−), and

(ii) its parallelism classes verify the transitivity condition (M1’) (after Definition 3.7.2);

namely, if (i, j) or (j, i) coincides with (j, k) or (k, j), then it also coincides with (i, k)

or (k, i).

As we show in Theorem 3.7.15 below, sweep acycloids are essentially equivalent to
allowable graphs of permutations. The only nuance is that sweep acycloids might have
some elements outside its support, which under the map (3.4) would give rise to some
partitions that are not permutations. In this case, there would be pairs of elements that
belong to the same part in all the partitions. However, up to merging non-singleton parts
and relabeling, one can suppose that these maximal ordered partitions are permutations.
We recover then an allowable graph of permutations.

These operations of merging and relabeling do not affect the tope-graphs.

Lemma 3.7.14. Let T ⊆ {+,−, 0}(
[n]
2 ) be a sweep acycloid with support S ⊆

(
[n]
2

)
. For

1 ≤ i < j ≤ n, if (i, j) /∈ S, then the restriction of T to
(

[n]r{j}
2

)
is a sweep acycloid with

isomorphic tope-graph.

Proof. That this restriction is a sweep acycloid is straigthforward from the definition.
Moreover, from the characterization in Lemma 3.3.8 one sees that for X ∈ T and k 6= i, j,
the values of X on the pairs (i, k) (resp. (k, i)) and (j, k) (resp. (k, j)) determine each
other uniquely (the sign depending on the relative order of i, j, k), because X(i,j) = 0.
Therefore, there is a bijection between topes (resp. parallelism classes) of T and topes
(resp. parallelism classes) of the restriction.

If T is the tope set of a sweep acycloid, we denote by ΠT = {IX |X ∈ T } the set of
associated ordered partitions.
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Theorem 3.7.15. If Π ⊆ Sn forms an allowable graph of permutations, then TΠ is the set
of topes of a sweep acycloid. Conversely, if T is the tope set of a sweep acycloid of full
support

(
[n]
2

)
, then ΠT forms an allowable graph of permutations.

Proof. The first claim follows directly from Theorem 3.7.12. Indeed, the topes of the
form Xσ for a permutation σ ∈ Sn fulfill the transitivity condition from Lemma 3.3.8 by
construction. Moreover, the parallelism classes of TΠ are the moves of Π by Lemma 3.7.11,
and they fulfill condition (M1’) (after Definition 3.7.2) by definition.

For the second claim, note first that ΠT is clearly symmetric by 3.7.10. Following
Lemma 3.7.11, we set L to be the moves whose inversion sets are parallelism classes of the
topes. By construction, two distinct moves in this family are either disjoint, or they are
reverse to each other and have the same set of inversions.

Finally, let σX , σY ∈ ΠT be the permutations associated to the topes X, Y ∈ T . We
will prove that they are joined by an allowable sequence by induction on the cardinality
of the symmetric difference of their inversion sets. By the reorientation property (T3)
of Definition 3.7.10, there is an element f ∈ S(X, Y ) such that Z =−f X ∈ T . The

parallelism class f corresponds to a move m ∈ L such that invm ⊆ invσX 4 invσY . Hence,
Z is associated to a permutation σZ such that invσZ 4 invσY = (invσX 4 invσY ) \ invm.
By induction there is an allowable sequence σZ → · · · → σY with labels in L. Note that m
is not a label of this path because its inversion set is disjoint from invσZ 4 invσY . Then,

σX
m−→ σZ → · · · → σY is an allowable sequence from σX to σY .

3.7.3 Sweeps and potential sweeps of sweep acycloids

With Handa’s notation from [Han93], a face of an acycloid T ⊆ {+,−, 0}E is a sign-vector
X ∈ {+,−, 0}E such that X ◦ T ∈ T for all T ∈ T ; and a coboundary of T is a sign-vector
X ∈ {+,−, 0}E that conforms to a tope (which means that there is a tope that refines it)
and such that, for every T ∈ T with X ◦ T = T we have X ◦ (−T ) ∈ T . In the language
of partial cubes, faces correspond to gated subgraphs, and coboundaries are antipodal
subgraphs. In an acycloid, every gated subgraph is antipodal, which shows that every face
is a coboundary (see [KM20] for definitions and details). In general, the converse is not
true. However, if T is the set of topes of an oriented matroid, then faces and coboundaries
coincide, and correspond to the covectors of the oriented matroid.

Augmented with a top element, the set of faces of an acycloid forms a lattice, the big
face lattice of the acycloid [Han93]. Face lattices of acycloids lack many nice properties of
those of oriented matroids. In particular, they are not always graded.

We can translate these concepts to sweeps. To this end, define the composition I ◦ J of
two ordered partitions I = (I1, . . . , Il) and J = (J1, . . . , Jl′) of [n] as

I ◦ J = (I1,1, . . . , I1,r1 , . . . , Il,1, Il,rl),

where for any k ∈ {1, . . . , l}, (Ik,1, . . . , Ik,rk) is the sequence (Ik ∩ J1, Ik ∩ J2, . . . , Ik ∩ Jl′)
where the empty parts are removed. That is, the ordered partition of the elements of Ik
induced by J .
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Definition 3.7.16. Let Π ⊆ Sn be an allowable graph of permutations.

• A sweep of Π is an ordered partition I such that I ◦ σ ∈ Π for all σ ∈ Π.

• A potential sweep of Π is an ordered partition I of [n] refined by some permutation
in Π and such that any sweep permutation σ ∈ Π that refines I satisfies I ◦ σ ∈ Π.

Lemma 3.7.17. Let Π ⊆ Sn form an allowable graph of permutations and let TΠ be its
associated sweep acycloid. Then the sweeps of Π are in bijection with the faces of TΠ and
the potential sweeps of Π are in bijection with the coboundaries of TΠ.

Proof. We prove first the equivalence between potential sweeps and coboundaries. It is
clear that XI is a coboundary of TΠ for any potential sweep I of Π. Indeed, if σ refines I,
it implies that XI conforms to Xσ, i.e. XI ◦Xσ = Xσ. Moreover, I ◦ σ ∈ Π implies that
XI ◦ (−Xσ) = XI ◦Xσ = XI◦σ is in TΠ.

For the converse statement, let Y be a coboundary of TΠ. We need to show that it
is of the form XI for an ordered partition I of [n]. Then it is clear from the definitions
that I is a potential sweep of Π. Suppose that there are 1 ≤ i < j < k ≤ n such that
(Y(i,j), Y(j,k), Y(i,k)) is one of the forbidden patterns in Lemma 3.3.8. Let σ ∈ Π be a sweep
permutation such that Z := Y ◦Xσ = Xσ. We denote σ̃ the permutation in Π such that
Z̃ := Y ◦ (−Xσ) = X σ̃. The fact that Z and Z̃ satisfy the transitivity condition implies
that the forbidden pattern of Y must be one of the last six ones (with two zeroes). We
consider the case (Y(i,j), Y(j,k), Y(i,k)) = (0, 0,−), the other ones are similar. Then we must

have {(Z(i,j), Z(j,k), Z(i,k)), (Z̃(i,j), Z̃(j,k), Z̃(i,k))} = {(+,−,−), (−,+,−)}, i.e. the elements
i, j, k are ordered k, i, j and j, k, i in σ and σ̃. As a consequence of condition 3.7.1, in any
allowable sequence in Π from σ to σ̃, there must be a permutation where the elements
i, j, k are ordered k, j, i. Such τ satisfies Y ◦ Xτ = Xτ . Indeed, any pair (k, l) with
Y(k,l) 6= 0 satisfies Z(k,l) = Z̃(k,l), thus it cannot be reversed in an allowable sequence from
σ to σ̃. But then the covector Y ◦ (−Xτ ) should belong to TΠ while it has the forbidden
pattern (+,+,−). We conclude that any coboundary satisfies the transitivity condition
from Lemma 3.3.8.

To finish, it is clear that any sweep I of Π gives a covector XI ∈ {+,−, 0}(
[n]
2 ) such

that for any σ ∈ Π, XI ◦Xσ = XI◦σ ∈ TΠ, thus XI is a face of TΠ. For the converse, note
that any face Y of TΠ is a coboundary, and hence it must be of the form XI associated
to a potential sweep I. The condition of being a face shows that this potential sweep is
indeed a sweep.

Note in particular that the poset of sweeps of an allowable graph of permutations,
augmented with a top element, is always a lattice, as it is isomorphic to the big face lattice
of an acycloid.
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3.7.4 Sweep oriented matroids from sweep acycloids and allowable

graphs of permutations

The set of topes of an oriented matroid is always an acycloid, but the converse statement
is not true. However, the conditions in the definition of sweep acycloid guarantee that,
whenever they correspond to an oriented matroid, it is a sweep oriented matroid.

Note that, for this, the transitivity condition 3.7.1 on the parallelism classes of sweep
acycloids is necessary. Indeed, (+,+,+), (−,−,−), (−,+,+), (+,−,−) satisfy the condi-
tions of Lemma 3.3.8 (they are orthogonal to (+,+,−)) and they are the topes of an
oriented matroid, but not a sweep oriented matroid. This gives an acycloid whose topes
fulfill the transitivity condition from Lemma 3.3.8 and that arises from an oriented ma-
troid, but that is not a sweep oriented matroid. However, thanks to Lemma 3.7.17, we
know that the conditions on topes and subtopes in the definition of sweep acycloids extend
to the whole set of covectors.

Corollary 3.7.18. The set of topes of a sweep oriented matroid is a sweep acycloid. Con-
versely, if a sweep acycloid is the set of topes of an oriented matroid, then it is a sweep
oriented matroid.

The following hierarchy summarizes our current knowledge:

Theorem 3.7.19. {
Posets of sweeps of point configurations

}

({
Posets of sweeps of sweep oriented matroids

}

⊆{
Posets of sweeps of sweep acycloids

}
Goodman and Pollack’s unrealizable pentagon proves that the first inclusion is strict.

For the second inclusion, it is known that there are acycloids that are not oriented ma-
troids, but we do not know of any example that has the additional structure given by the
transitivity condition from Lemma 3.3.8.

Corollary 3.7.18 allows us to use characterizations of acycloids arising from oriented
matroids to characterize which allowable graphs of permutations arise from sweep ori-
ented matroids. We know three families of such characterizations, summarized in [KM20,
Cor. 7.2]. In the language of permutations, da Silva’s characterization [dS95, Thm. 4.1]
concerns sweeps and potential sweeps. Handa’s characterization is stated in terms of con-
tractions. If Π is an allowable graph of permutations, and m ∈ L is one of its moves,
the elementary contraction Π/m is obtained by taking all permutations γ ∈ Π that are
separated from another permutation of Π by m, and replacing the substring m by its
minimal element. One obtains this way a new set of permutations on the ground set
[n] rm ∪ {min(m)}. For a collection of moves M = {m1, . . . ,ml}, the contraction Π/M ,
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is defined inductively by Π/M = (((Π/m1)/m2) · · · )/ml. The characterization by Knauer
and Marc [KM20, Cor. 7.2] is in terms of excluded partial cube minors. This operation
goes outside the scope of allowable graphs of permutations. We will hence not present its
details and refer the reader to the source [KM20].

Corollary 3.7.20. Let Π form an allowable graph of permutations. The following conditions
are equivalent:

(i) Π arises from a sweep oriented matroid,

(ii) every potential sweep of Π is a sweep,

(iii) all its contractions are allowable graphs of permutations,

(iv) the graph is in F(Q−) in the sense of [KM20].

These characterizations might be useful to answer the question whether all sweep acy-
cloids are sweep oriented matroids. We have not been able to construct any counterex-
ample, but we do not have any evidence on why the properties defining sweep acycloids
should force these conditions to be satisfied.

Question 3.7.21. Is every sweep acycloid an oriented matroid?

3.8 Further directions

Elementary homotopies between sweep oriented matroids

In [Fel04, FW01] it is proven that if an allowable sequence has two consecutive moves
with disjoint support, then these can be merged into a single move and the result is still
an allowable sequence; and that conversely, if a move consists of more than one disjoint
substrings, these can be split into two disjoint moves. These operations induce an equiv-
alence relation among sweep oriented matroids of rank 2 whose equivalence classes are in
correspondence with the associated little oriented matroids.

Extending this result to higher rank is closely related to some of the open questions
indicated in the chapter. First of all, the higher analogue of the operation of merging would
consist in collapsing some flats of a sweep oriented matroid to get a flat whose rank is lower
than the one expected by (3.5). The reverse operation would break a flat with unexpected
low rank into pieces fulfilling (3.5). Understanding this procedure would provide a method
to prove Conjecture 3.5.4.

Even if the operations were well described, it is not clear that one could find a con-
nectivity result analogous to that by Felsner and Weil in rank 2 [FW01]. Note that, even
if Theorem 3.6.6 goes in this direction, as it shows that all sweep oriented matroids are
homotopy equivalent in the complex of pseudo-sweeps, it is not clear that there is a way
to do this where all the intermediate steps are also sweep oriented matroids.
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Are all sweep acycloids oriented matroids?

Another natural problem that is left open is Question 3.7.21, which asks whether every
sweep acycloid is an oriented matroid. The answer would be very interesting in either
direction. If it is affirmative, then the two categories of sweep acycloids and sweep ori-
ented matroids would collapse into a single concept. This would make allowable graphs
of permutations a useful alternative characterization of sweep oriented matroids. If, on
the contrary, the answer is negative, then it would be interesting to understand the gap
between the two categories.

We do not have any good reason to conjecture that every sweep acycloid is an oriented
matroid, beyond the fact that we could not find any counter-example. This does not tell
much, because the naive approaches to computationally generate all allowable graphs of
permutations of a certain size fail badly very soon because of the rapid growth of these
objects.

Allowable graphs in Coxeter groups

We already saw the hyperoctahedral group Bn naturally appear before. First, in Sec-
tion 3.2.2, because the permutahedron of type B is the sweep polytope of the crosspolytope.
Then also in Example 3.4.5 to explain the supersolvability of the associated matroid. In
fact, the definition of allowable graph extends naturally to any Coxeter group, specially in
the simple case; namely, a simple allowable graph of Coxeter permutations is a symmetric
set Π of elements of the Coxeter group, in which for every pair of elements w,w′ ∈ Π there
is a path from w to w′ following a reduced decomposition of w−1w′. For the non-simple
case one has to partition the generators into a collection of disjoint subsets to define the
allowable moves.

Higher sweep oriented matroids and permutahedra

As we saw in Section 3.5.1, sweep oriented matroids are closely related to the first Dilworth
truncation. What about higher truncations? In the realizable case, instead of studying
the intersection of the lines spanned by the points of A with a hyperplane (at infinity), we
would study the intersection of a flat F of codimension k (playing the role of hyperplane
at infinity) with every flat spanned by k + 1 points of A. In [Sta15, Thm. 8], Stanley
states (in the polar formulation) that for a sufficiently generic choice of the flat, this
gives rise to an arrangement whose lattice of flats is the kth Dilworth truncation of the
original arrangement. Let’s call this operation the kth Dilworth truncation of A with
respect to F . Doing the kth Dilworth truncation of an standard (n − 1)-simplex gives
rise to “higher” analogues of braid arrangements, which are the normal fans of the kth
higher n-permutahedra. However, in comparison with the k = 1 case, there is no Sn-
invariant subspace that gives a canonical choice for F . Indeed, different choices for F
can give rise to different combinatorial types of hyperplane arrangements and zonotopes,
even if the flats are sufficiently generic in the sense of Stanley. See Figure 3.14 for some



128 CHAPTER 3. SWEEP POLYTOPES AND SWEEP ORIENTED MATROIDS

(a) A generic 2nd higher 5-permutahedron. (b) A degenerate 2nd higher 5-permutahedron.

(c) A generic 3rd higher 6-permutahedron.
(d) Another generic 3rd higher 6-
permutahedron.

Figure 3.14: The first row shows a generic and a degenerate 2nd higher 5-permutahedra.
The second row depicts two combinatorially different generic 3rd higher 6-permutahedra.
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examples. Nevertheless, every zonotope associated to a kth Dilworth truncation of a point
configuration still arises as the projection of some kth higher permutahedron.

Which matroids are little oriented matroids?

In Section 3.4.3 we proved that not every oriented matroid is a little oriented matroid. This
begs the question of which are the oriented matroids that are sweepable, in the sense that
they can be extended to a big oriented matroid. Or, at least, to find sufficient conditions.
For example, we know that realizable oriented matroids are sweepable, and also all oriented
matroids of rank 3, by Theorem 3.4.11.

As shown in [Hoc16], Euclidean oriented matroids (see [BLS+99, Section 10.5]) always
admit topological sweepings (see Section 3.1). Is there a relation between being Euclidean
and being sweepable? Our example of non-sweepable oriented matroid in Section 3.4.3 is
based on a well-known example of non-Euclidean oriented matroid.





Chapter 4
Geometric realizations of the s-weak order

and its quotients

This chapter includes joint work with Rafael S. González D’León, Alejandro H. Morales,
Daniel Tamayo Jiménez and Martha Yip which gave rise to the preprint Realizing the s-
permutahedron via flow polytopes [GDMP+23], and recent joint work with Vincent Pilaud
which gave rise to the preprint Geometric realizations of the s-weak order and its lattice
quotients [PP24]. We also include a few new results and sketch lines of research that are
currently developed with the same collaborators plus Matias von Bell and Yannic Vargas.

Ceballos and Pons introduced the s-weak order on s-decreasing trees, for any weak
composition s. They proved that it has a semidistributive lattice structure and that the
s-Tamari lattice can be recovered from it as a lattice quotient. They further conjectured
that the s-weak order can be realized as the 1-skeleton of a polytopal subdivision of a
polytope, and that the s-associahedron can be recovered from it by removing facets.

We answer the first conjecture in the case where s is a strict composition by providing
three geometric realizations of the s-permutahedron. The first one is the dual graph of a
triangulation of a flow polytope of high dimension. Along the way, we prove a few new
results about the dual graph of DKK triangulations of flow polytopes in general. The second
realization of the s-permutahedron, obtained using the Cayley trick, is the dual graph of
a fine mixed subdivision of a sum of cubes that has the conjectured dimension. The third
one, obtained using tropical geometry, is the 1-skeleton of a polytopal complex for which
we can provide explicit coordinates of the vertices and whose support is a permutahedron
as conjectured.

We give some elements on the study of all quotients of the s-weak order and related
geometric realizations. In particular, this allows us to answer Ceballos and Pons second
conjecture.

131



132 CHAPTER 4. REALIZATIONS OF THE s-WEAK ORDER

4.1 Introduction

The starting point of this work is a conjecture of Ceballos and Pons ([CP20, Conjec-
ture 1] and [CP23, Conjecture 3.1.2], also Conjecture 4.1.1 below) stating that a certain
combinatorial complex on s-decreasing trees can be geometrically realized as a polytopal
subdivision of a polytope. The family of s-decreasing trees is parameterized by weak com-
positions s = (s1, . . . , sn) where si are non-negative integers for i = 1, 2, . . . , n. Ceballos
and Pons [CP20, CP22] showed that for every s, the set of s-decreasing trees admits a
lattice structure called the s-weak order. In the special case when s = (1, . . . , 1), the set of
s-decreasing trees is in bijection with the set of permutations of [n], and the s-weak order
is the classical (right) weak order on the permutations of [n].

It turns out that when s is a (strict) composition, that is si > 0 for all i, the properties
of the s-weak order and the s-permutahedron can also be described in terms of Stirling
s-permutations. These are multipermutations of [n] avoiding the pattern 121 (a number
j somewhere in between two occurrences i with i < j) and with si occurrences of i for
each i ∈ [n]. These multipermutations generalize the family of permutations (the case
when s = (1, . . . , 1)) and the family of Stirling permutations (the case when s = (2, . . . , 2))
initially introduced by Gessel and Stanley in [GS78b]. A further generalization of Stirling
permutations (to the case when s = (m, . . . ,m)) was studied by Park in [Par94c, Par94b,
Par94a]. Further study of combinatorial formulas and statistics on Stirling s-permutations
such as descents, ascents and plateaux have been carried out by many other authors (see
for example [Bón09, JKP11, KP11]). We refer the reader to Gessel’s note in [Ges20] which
includes a list of articles on the family of Stirling s-permutations.

Figure 4.1 shows the Hasse diagram of the s-weak order for the case s = (1, 2, 1). The
vertices are indexed by s-decreasing trees and Stirling s-permutations. From this figure the
reader can already appreciate how the s-permutahedron may be geometrically realizable.
Ceballos and Pons posed the following conjecture on realizations of Perms, that they could
prove for the cases n ≤ 4 ([CP23, Section 3.3]).

Conjecture 4.1.1 ([CP20, Conjecture 1]). Let s be a weak composition. The s-permutahedron
Perms can be realized as a polyhedral subdivision of a polytope which is combinatorially iso-
morphic to the zonotope

∑
1≤i<j≤n sj[ei, ej]

In the same way that the weak order on permutations restricts to the lattice on Cata-
lan objects introduced by Tamari in [Tam62] (as implied by a classical bijection of Stanley
[Sta12, Section 1.5]), Ceballos and Pons show in [CP22, Theorem 2.2] that the s-weak
order restricts to the s-Tamari lattice. They also show that when s is a (strict) compo-
sition the s-Tamari lattice is a lattice quotient of the s-weak order. The s-Tamari lattice
was first introduced by Préville–Ratelle and Viennot [PRV17] as the ν-Tamari lattice on
grid paths weakly above the path ν = NEsn . . . NEs1 (see [CP20, Theorem 3.5] for the
isomorphism between the ν-Tamari and the s-Tamari lattices). It is a further general-
ization of the m-Tamari lattice, recovered with s = (m, . . . ,m), which was introduced
by Bergeron and Préville–Ratelle in [BPR12] to study the Frobenius characteristic of the
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Figure 4.1: Hasse diagram of the s-weak order (1-skeleton of the s-permutahedron) for
the case s = (1, 2, 1). The vertices are indexed by s-decreasing trees and Stirling s-
permutations.

space of higher diagonal coinvariant spaces in representation theory. Ceballos, Padrol and
Sarmiento provided a geometric realization of the ν-Tamari lattice as the 1-skeleton of a
polytopal complex called the ν-associahedron [CPS19].

Inspired by the fact that certain realizations of the associahedron can be obtained by
removing facets from the standard permutahedron (as we saw in Section 1.4.6), Ceballos
and Pons conjectured that similar geometric relations hold between the s-associahedron and
the s-permutahedron when s is a composition. They could prove the following conjecture
for n ≤ 4 ([CP23, Section 3.3]). See Figure 4.2 for an example.

Conjecture 4.1.2 ([CP20, Conjecture 2]). Let s be a strict composition. There exists a
geometric realization of the s-permutahedron such that the s-associahedron can be obtained
from it by removing certain facets.

4.1.1 Geometric realizations of the s-permutahedron

Our main goal is to provide solutions to Conjecture 4.1.1 in the case when s is a strict
composition (see Theorem 4.1.3). We will use techniques similar to those that were previ-
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Figure 4.2: Realizations of the s-permutahedron (left), of the s-associahedron (right), and
the superposition of both (below), for s = (1, 2, 2, 2). Figure from [CP20].

ously employed for realizing the s-associahedron. Ceballos, Padrol and Sarmiento [CPS19]
realized the Hasse diagram of the s-Tamari lattice as the graph dual to a triangulation
of a subpolytope of a product of simplices called UI,J and as the graph dual to a fine
mixed subdivision of a generalized permutahedron. They could dualize these subdivisions
to obtain the s-associahedron as a subdivision of the usual associahedron induced by an
arrangement of tropical hyperplanes. Another realization of the s-Tamari lattice was given
by von Bell, González D’León, Mayorga Cetina and Yip [BGMY23] via flow polytopes.
This construction is related to the Ceballos-Padrol-Sarmiento one since von Bell and Yip
[BY23] showed that the polytopes UI,J are integrally equivalent to flow polytopes.

A flow polytope FG is the set of valid flows on a directed acyclic graph G. Geometric
information about this polytope can be recovered from combinatorial information of the
graph, for example computing the volume or constructing certain triangulations. In the
recent literature there has been an increased interest in developing techniques in this di-
rection, see for example [CKM17, JK19, MM15, MM19, MMS19]. In particular, Danilov,
Karzanov and Koshevoy [DKK12] described a method for obtaining regular unimodular
triangulations for FG by placing a structure on G called a framing (see Section 4.2.2). Von
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Bell et al. [BGMY23] used the method of Danilov, Karzanov and Koshevoy to show that
the flow polytope of the s-caracol graph Car(s) (see the left side of Figure 4.3) has a DKK
triangulation whose dual graph is the s-Tamari lattice.

car(s) oru(s)

sn

sn−1

s2

sn − 1

sn−1 − 1

s2 − 1

Figure 4.3: The s-caracol and s-oruga graphs.

In a similar vein, we introduce the graph Oru(s) which we call the s-oruga graph (see
Definition 4.4.1 and the right side of Figure 4.3). Its associated flow polytope possesses a
DKK triangulation which allows us to answer Conjecture 4.1.1 as follows.

Theorem 4.1.3 (Geometric realizations). Let s = (s1, . . . , sn) be a composition. The face
poset of the (combinatorial) s-permutahedron Perms is isomorphic to

1. (Theorem 4.4.15) The dual of the poset of internal faces of a DKK triangulation of
the flow polytope FOru(s) of dimension

∑n
i=1 si.

2. (Theorem 4.4.22) The dual of the poset of internal faces of a mixed subdivision of a
sum of cubes in Rn.

3. (Theorem 4.4.30) The poset of bounded faces of a polyhedral complex induced by an
arrangement of tropical hypersurfaces in Rn. The support of the polyhedral complex
is combinatorially equivalent to the (n− 1)-dimensional permutahedron.

We are able to provide explicit coordinates for the third realization. 3d-examples of
this realization are available on this webpage1 and code can be found on this webpage2.

Structure of this chapter

We first provide in Section 4.2 some background on flow polytopes and their Danilov-
Karzanov-Koshevoy (DKK) triangulations, which allow for a nice interplay between cells
of a triangulation and combinatorial objects. Sections 4.2.3 and 4.2.4 contain new results

1https://sites.google.com/view/danieltamayo22/gallery-of-s-permutahedra
2https://cocalc.com/ahmorales/s-permutahedron-flows/demo-realizations

https://sites.google.com/view/danieltamayo22/gallery-of-s-permutahedra
https://cocalc.com/ahmorales/s-permutahedron-flows/demo-realizations
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about the structure of the dual graphs of these triangulations. In particular, Theorem 4.2.22
provides a geometric decomposition of DKK triangulations that reflects a Baldoni-Vergne-
Lidskii formula on volumes of flow polytopes.

In Section 4.3 we present the combinatorial structures that are at the heart of this
chapter: the s-weak order and the s-permutahedron. In Section 4.3.1, we first give the
initial definitions of Ceballos and Pons ([CP20],[CP22]) in terms of s-decreasing trees.
In Section 4.3.2 we restrict to the case where s is a (strict) composition and translate
the definitions of the s-weak order and the s-permutahedron to the language of Stirling
s-permutations. Indeed, this is the setting we use for our geometric realizations.

Section 4.4 is the main section of this chapter. In Section 4.4.1 we introduce the s-
oruga graph Oru(s) and present our first geometric realization of the s-permutahedron as
the dual of a DKK triangulation of the flow polytope FOru(s). In Section 4.4.2 we show
how the Cayley trick gives us a second geometric realization of the s-permutahedron as
the dual of a fine mixed subdivision of a sum of cubes. In Section 4.4.3 we dualize the
previous construction and realize the s-permutahedron as the collection of bounded faces
of an arrangement of tropical hypersurfaces. This third realization provides a complete
answer to Ceballos and Pons conjecture in the case where s is a composition.

In Section 4.5 we give some context about lattice quotients of the s-weak order and
their realizations as quotientopes via shards and shard polytopes. We sketch how these
constructions can be adapted to the lattice quotients of the s-weak order. This allows us to
give a new answer to Conjecture 4.1.1 which also works when s is a weak composition, and
to answer Conjecture 4.1.2. We also give some elements on another way to obtain geometric
realizations of a specific family of quotients of the s-weak order, via flow polytopes and a
graph operation on the s-oruga graph.

4.2 Background on subdivisions of flow polytopes

4.2.1 Flow polytopes

Let G = (V,E) be a loopless connected oriented multigraph on vertices V = {v0, . . . , vn}
with each edge on vertices (vi, vj) oriented from vi to vj if i < j and such that v0 (re-
spectively vn) is the only source (respectively sink) of G. Since we allow multiple edges
between pairs of vertices, we will sometimes abuse notations and write e = (vi, vj) to mean
that the edge e has vertices (vi, vj) (but then we could have f = (vi, vj) and yet e 6= f).
In what follows we will always assume that these conditions are fulfilled (see for example
Figures 4.3 or 4.5). A vertex is an inner vertex if it is not a source nor a sink. For any
vertex vi we denote by Ini its set of incoming edges and by Outi its set of outgoing edges.
We also denote indegG(vi):= |Ini| and outdegG(vi):= |Outi|.

A netflow for G is a vector a = (a0, a1 . . . , an−1,−
∑n−1

i=0 ai) such that ai ∈ Z≥0 for all
i ∈ {0, . . . , n − 1}. A flow of G with netflow a is a vector (fe)e∈E ∈ (R≥0)E such that:∑

e∈Ini fe + ai =
∑

e∈Outi
fe for all i ∈ [0, n]. A flow (fe)e∈E of G is called an integer flow if
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all fe are integers. We denote by FZ
G(a) the set of integer flows of G with netflow a.

The flow polytope of G is

FG(a) =
{

(fe)e∈E flow of G with netflow a
}
⊆ RE.

When the netflow is not specified, i.e. when we write FG, it is assumed to be a =
(1, 0, . . . , 0,−1). In this case, FG is a polytope of dimension |E| − |V | + 1, and the
vertices of FG correspond exactly to indicator vectors of the routes of G ([GS78a, Corollary
3.1]). A route of G is a path from v0 to vn i.e. a sequence of edges (e0, . . . , el) such that
ei = (vki , vki+1

) with 0 = k0 < k1 < k2 < . . . < kl < n = kl+1. The corresponding indicator
vector is the vector in RE with coordinates 1 at edges ei and 0 on all other edges.

See Figure 4.4 for an example of flow polytope of dimension 3.

1 0 0 −1

e2e3

e1

e3 e1

e2

Figure 4.4: A graph G with netflow (1, 0, 0,−1) (left) and its flow polytope FG embedded
in the space of edges e1, e2, e3 of G (right). Each vertex of the flow polytope is labeled by
the route of G it corresponds to. Figure adapted from [TJ23, Figure 5.4].

4.2.2 Danilov-Karzanov-Koshevoy triangulations

Flow polytopes admit several nice subdivisions that can be understood via combinatorial
properties of the graphG, in particular the triangulations defined by Danilov, Karzanov and
Koshevoy in [DKK12] in the case of the netflow a = (1, 0, . . . , 0,−1). These triangulations
will be our main tool for obtaining geometric realizations of s-permutahedra.

Let P be a route of G that contains vertices vi and vj. We denote by Pvi the prefix of
P that ends at vi, viP the suffix of P that starts at vi and viPvj the subroute of P that
starts at vi and ends at vj.

A framing � of G is a choice of total orders �Ini and �Outi on the sets of incoming and
outgoing edges for each inner vertex vi. This induces a total order on the set of partial
routes from v0 to vi (respectively from vi to vn) by taking Pvi � Qvi if eP �Inj eQ where vj
is the first vertex after which the two partial routes coincide, and eP , eQ are the edges of
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P and Q that end at vj (respectively viP � viQ if eP �Outj eQ where vj is the last vertex
before which the two partial routes coincide, and eP , eQ are the edges of P and Q that
start at vj). When G is endowed with such a framing �, we say that G is framed. See
Figure 4.5 for an example. From now on, we will always draw the framed graphs in such
a way that the framing is obtained by reading the incoming or outgoing edges of a vertex
from top to bottom.

v0 v1 v2 v3 v4 v5 v6

1
2

1
2

2
1

1
2

2
3
1

4
1
3
2

v0 v1 v2 v3 v4 v5 v6

Figure 4.5: Example of a framed graph. On the top figure the framing is depicted with
numbers in brown that indicate the ordering. The bottom figure represents the same
framed graph, the framing is obtained by reading the incoming and outgoing edges of a
vertex from top to bottom. This is the convention we will use in the rest of the figures.

Let P and Q be routes of G with a common subroute between inner vertices vi and vj
(possibly with vi = vj). We say that P and Q are in conflict at [vi, vj] if the initial parts
Pvi and Qvi are ordered differently than the final parts vjP, vjQ. Otherwise we say that
P and Q are coherent at [vi, vj]. We say that P and Q are coherent if they are coherent
at each common inner subroute. See Figure 4.6 for an example of routes in conflict, and
Figure 4.8 for an example of coherent routes. Note that with our convention of drawing, a
conflict at a subroute corresponds visually to a crossing at this subroute.

The relation on routes being coherent is reflexive and symmetric and we can consider
sets of mutually coherent routes which are called the cliques of (G,�). We denote by
Cliques(G,�) the set of cliques of (G,�), and MaxCliques(G,�) the subset of cliques that
are maximal under inclusion. For a set of routes C, let ∆C be the convex hull of the vertices
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v0 v1 v2 v3 v4 v5 v6

P

Q

Figure 4.6: The routes P (in bold orange) and Q (in blue) are in conflicts at subroutes
[v2, v3] and [v4, v4].

of the flow polytope FG corresponding to the elements in C:

∆C := conv

({ ∑
f edge of P

ef

∣∣∣∣∣P ∈ C
})
⊂ RE.

Theorem 4.2.1 ([DKK12, Theorem 1 & 2]). The simplices {∆C |C ∈ MaxCliques(G,�)}
are the maximal cells of a regular triangulation of FG.

Proof. We do not repeat here the proof of [DKK12, Theorem 1 & 2]. The formulation there
is in terms of the cone F+ of flows with any netflow a = (λ, 0, . . . , 0,−λ), for λ ∈ R+. To
obtain the theorem in our formulation for the flow polytope FG, we only need to intersect
this cone with the affine hyperplane corresponding to taking λ = 1.

The triangulation obtained this way is the DKK triangulation of FG with respect to
the framing � and we denote it by TriangDKK(G,�).

Figure 4.7 depicts the DKK triangulation of the flow polytope from Figure 4.4. One
can see that in this graph G, only two routes are in conflict.

4.2.3 Dual graphs of DKK triangulations

We are interested in studying the graph dual to the DKK triangulation. Such graph has
one vertex for each maximal clique C ∈ MaxCliques(G,�) and an edge between maximal
cliques C and C ′ if the corresponding simplices ∆C and ∆C′ of TriangDKK(G,�) share a
common facet, which is equivalent to say that C and C ′ differ in exactly one route P ∈ C
and Q ∈ C ′.

We first introduce the following new notions.

Definition 4.2.2. Let P and Q be a pair of non-coherent routes of (G,�) that are in
conflict at subroutes [x1, y1], . . . , [xk, yk], where x1 ≤ y1 < x2 ≤ y2 . . . < xk ≤ yk and
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1 0 0 −1

e2e3

e1

e2

e3 e1

Figure 4.7: A graph G with framing from top to bottom (left) and the corresponding DKK
triangulation of its flow polytope FG embedded in the space of edges e1, e2, e3 of G (right).
Figure adapted from [TJ23, Figure 5.4].

the subroutes [xi, yi] are as long as possible. We define the route P ′ as the alternated
concatenation of subroutes Px1, x1Qx2, x2Px3, . . . , that we denote Px1Qx2Px3 . . . and
Q′ the concatenation Qx1Px2Qx3 . . . . We call P ′ and Q′ the resolvents of P and Q.

It is clear that P + Q = P ′ + Q′ (where P + Q denotes the union of edges in P and
edges in Q) and P ′ and Q′ are coherent.

Figure 4.8 depicts the resolvents P ′ and Q′ of routes P and Q from Figure 4.6.

v0 v1 v2 v3 v4 v5 v6

P ′

Q′

Figure 4.8: P ′ (in bold orange) and Q′ (in blue) are the resolvents of P and Q from
Figure 4.6.

Definition 4.2.3. We say that there is a minimal conflict between two routes P and Q of
(G,�) if the following conditions are satisfied:

• P and Q are in conflict at exactly one subroute [vi, vj],
• the edges of P and Q that end at vi are adjacent for the total order �Ini ,
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• the edges of P and Q that start at vj are adjacent for the total order �Outj .

See Figure 4.9 for an example of minimal conflict.

v0 v1 v2 v3 v4 v5 v6

P

Q

Figure 4.9: P (in bold orange) and Q (in blue) are in minimal conflict at [v4, v4].

Lemma 4.2.4. Let C and C ′ be maximal cliques in MaxCliques(G,�) that differ in exactly
one route P ∈ C and Q ∈ C ′. Then there is a minimal conflict between P and Q.

Proof. P and Q are not coherent, since otherwise C ∪ C ′ would be a clique that strictly
contains C and this contradicts the maximality of C. In order to prove that P and Q are
in minimal conflict, we show that if it were not the case we could add two distinct routes R
and R′ to C∩C ′ that are not coherent with both P and Q (hence they are not contained in
C∩C ′), and such that (C∩C ′)∪{R,R′} is a clique. This would contradict the maximality
of C, since all maximal cliques have the same cardinality.

Assume that P and Q are in conflict at k > 1 subroutes [x1, y1], . . . , [xk, yk] with
x1 ≤ y1 < . . . < xk ≤ yk and the subroutes [xi, yi] are as long as possible. In a similar way
that we defined the resolvents, we set

R :=

{
Px1Qx2 . . . QxkQ if k is even,

Px1Qx2 . . . PxkP if k is odd,

R′ :=

{
Px1Px2Qx3 . . . PxkQ if k is even,

Px1Px2Qx3 . . . QxkP if k is odd.

(The idea is that we almost resolve all conflicts except the last one in R and the first one
in R′.) Then, R is in conflict with P at [xk, yk] if k is even or with Q at [xk, yk] if k is
odd, and R′ is in conflict with Q at [x1, y1]. It is clear that R and R′ are coherent. Let us
show by contradiction that (C ∩ C ′) ∪ {R,R′} is a clique. Let T be a route in C ∩ C ′ and
assume that it is not coherent with R (the arguments would be very similar for R′). We
show that this implies that T is in conflict with either P or Q, which is a contradiction
with T ∈ C ∩ C ′. Let [a, b] be a subroute where T and R are in conflict. We denote by
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i, j ∈ [0, k − 1] the indices such that xi < a ≤ xi+1 (or xk−1 < a ≤ vn if i = k − 1) and
xj ≤ b < xj+1 (or xk−1 ≤ b < vn if j = k − 1), where the ordering on the vertices of G is
given by the ordering of their labels, and we set x0 := v0. In what follows, we assume that
i is even, which means that when the route T arrives on a, it first follows edges of P . The
case of odd i can be obtained by reversing the roles of P and Q.

Case 1: If j is even, we have that the incoming edge of a in R, as well as the outgoing
edge of b in R, belong to P . Since T and R are in conflict at [a, b], we obtain that Ta and
Pa are ordered differently than bT and bP . Thus T and P must be in conflict at some
common subroute between a and b.

Case 2: If j is odd (in particular b ≥ xi+1), we distinguish the following two cases.
Case 2.1: If Ta and Pa are ordered differently than yi+1Q and yi+1P (which are

ordered similarly as yi+1T and yi+1P ), then T is in conflict with P at [a, yi+1].
Case 2.2: If Ta and Pa are ordered similarly than yi+1Q and yi+1P , then these are

ordered differently than bT and bQ (since T and R are in conflict at [a, b] and the outgoing
edge of b in R belongs to Q). Moreover, since P and Q have a conflict at [xi+1, yi+1], we
have that yi+1Q and yi+1P are ordered differently than Qxi+1 and Pxi+1, which are ordered
similarly as Qxi+1 and Txi+1. We conclude that Txi+1 and Qxi+1 are ordered differently
than bT and bQ, thus T and Q must be in conflict at some common route between xi+1

and b.
Hence, we have proved by contradiction that P and Q are in conflict at exactly one

subroute, which can be denoted by [vi, vj]. Now, we want to show that the edges of P and
Q that end at vi are adjacent for the total order �Ini , and the edges of P and Q that start
at vj, which we denote by eP and eQ, are adjacent for the total order �Outj . Assume that
it is not the case, for example that there is an edge f such that eQ ≺Outj f ≺Outj eP (the
reasoning with incoming edges of vi is the same).

We build a subpath S of G from vj to vn as follows. We start with f1 := f . Note
that any route that contains f1 has a conflict either with P or with Q, thus f1 cannot be
contained in any route of C ∩C ′. After choosing an edge fk, we look at its endpoint vik . If
ik = n we stop and define S as the concatenation of edges f1, . . . , fk. Otherwise, we look if
there is a route in C ∩C ′ that passes through vik . If it is not the case, we choose fk+1 to be
any outgoing edge of vik and we continue the process. Otherwise, we consider all routes of
C∩C ′ that pass through vik and we order them according to the ordering induced by �Inik
on their prefixes and the ordering induced by �Outik

on their suffixes (these two orderings
are compatible since these routes are coherent). The edge fk is not contained in any of
these routes (since otherwise we would have stopped the process before). The position of
fk in �Inik

gives a way to insert it between two routes R1 and R2 of C ∩ C ′ that pass
through vik and are adjacent for the previously described ordering. Then, we define S to
be the concatenation of edges f1, . . . , fk and the suffix vikR1.

Then, we set R := PvjS and R′ := QvjS. It is clear that R and Q are in conflict at
[vi, vj] and R′ and P are in conflict at [vi, vj]. To finish the argument by contradiction, we
need to justify that (C ∩C ′)∪{R,R′} is a clique. Let T be a route in C ∩C ′ that shares a
common subroute [a, b] with R. (The reasoning can be easily adapted to R′). Recall that
T cannot contain any edge fk. If a, b < vj, then T and R are coherent at [a, b] since T and
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P are. If a, b > vj, then T and R are coherent at [a, b] since T and R1 are. The last case is
a ≤ vj and b = vj. Then either Ta � Pa � Qa and vjT � vjQ � vjR (since T and Q are
coherent at [a, b]), or Pa � Qa � Ta and vjR � vjP � vjT (since T and P are coherent
at [a, b]). The case Pa ≺ Ta ≺ Qa cannot occur without creating a conflict with P or Q.
In all cases T and R are coherent at [a, b].

This finishes the proof by contradiction that eP and eQ are adjacent for �Outj .

Now, we describe a way to orient the graph dual to the triangulation TriangDKK(G,�).

Definition 4.2.5. We define the oriented graph dual to TriangDKK(G,�) to be the oriented
graph with set of vertices MaxCliques(G,�) and an edge from C to C ′ if C and C ′ are
maximal cliques of (G,�) that differ in exactly one route P ∈ C and Q ∈ C ′ such that P
and Q are in minimal conflict at [vi, vj] and Pvi � Qvi (thus vjQ � vjP ).

In fact, this oriented graph is the Hasse diagram of a poset on MaxCliques(G,�) which
is currently studied by von Bell and Ceballos ([BC2X], in preparation).

On the example of Figure 4.7, the oriented graph dual to TriangDKK(G,�) consists of
one edge from the clique corresponding to the maximal simplex in the back to the clique
corresponding to the maximal simplex in the front.

See also Figures 4.22, 4.14 and 4.15 for examples of oriented graphs dual to DKK
triangulations.

4.2.4 Baldoni-Vergne-Lidskii formulas and an associated geometric

decomposition

One of the nice features of flow polytopes is that there are formulas to express their volume
in terms of the number of integer points in other flow polytopes: the celebrated Baldoni-
Vergne-Lidskii formulas (Theorem 4.2.8). In this subsection we provide background on
these formulas and give a new geometric interpretation in terms of a coarsening of the
DKK triangulation. Our presentation relies on the articles [MM19] and [KMS21].

Volume formulas

The normalized volume volnorm(P ) of a d-dimensional polytope P ⊂ RN is the evaluation
on P of the volume form volnorm(·) that assigns a volume of 1 to any unimodular simplex
of the lattice ZN ∩ aff(P ), that is to say a lattice simplex with vertices p0, . . . ,pd ∈ aff(P )
such that the vectors p1−p0, . . . ,pd−p0 form a basis of the lattice ZN∩aff(P ). If P admits
a unimodular triangulation, i.e. a triangulation all of whose maximal cells are unimodular
simplices, then the number of maximal cells in this triangulation gives the normalized
volume of P . Moreover, if P is full-dimensional (d = N), then volnorm(P ) = d! volEucl(P ).
We will justify in Lemma 4.2.18 that DKK triangulations are unimodular.
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We say that two polytopes P ⊂ RN and Q ⊂ RM with integer coordinates are inte-
grally equivalent if there is an affine transformation φ : RN → RM that induces a bijection
between ZN ∩ aff(P ) and ZM ∩ aff(Q). Note that integrally equivalent polytopes are com-
binatorially equivalent and they have the same normalized volume.

Let G be a graph on vertices {v0, . . . , vn} with netflow a. We denote by KG(a):=
|FZ

G(a)| the number of integer points in the flow polytope FG(a). It is equal to the
number of ways to write a as a nonnegative integral combination of the vectors ei− ej for
edges (i, j) in G, which is called the generalized Kostant partition function. The classical
Kostant partition function, which was introduced in relation to representation theory, is
recovered when G is a complete graph.

Formulas relating the normalized volume of the flow polytope FG(a) to generalized
Kostant partition functions were first found by Lidskii in [Lid84] for the case where G is
a complete graph, and then generalized to any graph G by Baldoni and Vergne in [BV08,
Theorem 38] with an analytic proof relying on residue computations. Then, Mészáros and
Morales ([MM19]) and Kapoor, Mészáros and Setiabrata ([KMS21]) provided geometric
proofs of these formulas, based on a recursive procedure to subdivide flow polytopes dis-
covered by Postnikov and Stanley (unpublished: [Pos14], [Sta00]). Mészáros, Morales and
Striker ([MMS19, Section 7]) showed that the DKK triangulations could also be recovered
with this Postnikov-Stanley procedure and that this leads to the following explicit bijection
between the maximal cliques of (G,�) and the integer flows on G with the specific netflow
d = (0, d1, . . . , dn−1,−

∑
i di) where di = indegG(vi)− 1.

We define the function

ΩG,� :

{
MaxCliques(G,�) → FZ

G(d)

C 7→ (nC(e)− 1)e∈E(G)

,

where nC(e) is the number of times the edge e = (vi, vj) appears in the set of prefixes
{Pvj | P ∈ C} of the maximal clique C.

Theorem 4.2.6 ([MMS19, Theorem 7.8]). Given a framed graph (G,�), the map ΩG,� is a
bijection between maximal cliques in MaxCliques(G,�) and integer flows in FZ

G(d).

As a corollary, we recover the following special case of the Baldoni-Vergne-Lidskii for-
mulas.

Corollary 4.2.7 ([Sta00] and [BV08, Thm. 38]). For a graph G on {v0, . . . , vn} with netflow
d = (0, d1, . . . , dn−1,−

∑
i di) where di = indeg(vi)− 1, we have that

volnormFG =
∣∣FZ

G(d)
∣∣ = KG(d).

This special case allows us to reformulate the Lidskii-Baldoni-Vergne formulas, initially
stated as integer point enumerations, as volume formulas, which can be proved by enumer-
ating the number of maximal cells in a unimodular triangulation.
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Let m ∈ N. A weak composition of m of length l is a tuple j = (j1, . . . , jl) such that
ji ∈ N for all i ∈ [l] and

∑l
i=1 ji = m. The dominance order between weak compositions

is defined by (j1, . . . , jl) ≥ (j′1, . . . , j
′
l) if

∑k
t=1 jt ≥

∑k
t=1 j

′
t for all k ∈ [l]. For n, k ∈ N>0

we denote by
((
n
k

))
the binomial coefficient

((
n
k

))
:=
(
n+k−1

k

)
= (n+k−1)×...×n

k!
. We also set the

conventions
((

0
0

))
:= 1 and

((
0
k

))
:= 0 if k > 0.

Theorem 4.2.8 (Reformulation of a Lidskii-Baldoni-Vergne formula, [BV08, Thm. 38]). Let
H be a connected directed multigraph on vertices {v0, . . . , vn, vn+1} with each edge (vi, vj)
oriented from vi to vj if i < j and such that v0 (respectively vn+1) is the only source
(respectively sink) of H. For any i ∈ [n] we denote by ci the number of source-edges (v0, vi)
and oi := outdegH(vi)−1. We denote by m := |E(H)|−

∑n+1
i=1 ci the number of non-source

edges of H. Then

volnorm(FH) =
∑

j weak composition of m−n of length n
s.t. j≥(o1,...,on)

((
c1

j1

))
· · ·
((
cn
jn

))
KH((0, j1−o1, . . . , jn−on, 0)).

(4.1)

We will present the proof provided in [KMS21, Equation (1.3)], with slight adapta-
tions that will allow us to interpret Equation 4.1 with a geometric decomposition of
FH . The equivalence of notations is the following. We denote by G the restriction
of H to vertices {v1, . . . , vn+1}. Then our graph H corresponds to their graph G(c)
([KMS21, Definition 3.1]). It follows from Corollary 4.2.7 that volnorm(FH) = KG(a),
with ai = ci + indegG(vi)− 1 for all i ∈ [n].

Bipartite noncrossing trees

We present the combinatorial structure of bipartite noncrossing trees, which is helpful to
describe certain decompositions of flow polytopes.

Let L and R be disjoint sets that have linear orders �L and �R. We label their elements
by l1, . . . , l|L| and r1, . . . , r|R| such that l1 �L . . . �L l|L| and r1 �R . . . �R r|R|. We say
that a bipartite tree T on the partition of vertices (L,R) is noncrossing if it has no pair of
edges (la, rd), (lb, rc) such that la ≺L lb and rc ≺R rd. See Figure 4.10 for an example. The
number of edges in such a tree is |L|+ |R| − 1. We denote by NCTrees(�L,�R) the set of
bipartite noncrossing trees on (L,R) with linear orders �L, �R.

For two integers m, k ∈ N, we denote by
((

[m]
k

))
the collection of multisets of [m] of

size k. This collection has cardinality
((
m
k

))
. The Gale order on

((
[m]
k

))
is given by A ≤ B

if ai ≤ bi for all i ∈ [k], where a1, . . . , ak (respectively b1, . . . , bk) are the elements of A
(respectively B) ordered increasingly (see [Gal68]). We denote this partial order on

((
[m]
k

))
by Gale(k,m). Figure 4.11 depicts the Hasse diagram of Gale(k,m) for k = 2 and m = 3.

Proposition 4.2.9. If |L|, |R| ≥ 1, then NCTrees(�L,�R) is in bijection with
((

[|L|]
|R|−1

))
.
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l1

l2

l3

l4

r1

r2

r3

r4

Figure 4.10: Example of a noncrossing bipartite tree, which is associated to the multiset
{3, 3, 4} of [4].

{1, 1}

{1, 2}

{2, 2} {1, 3}

{2, 3}

{3, 3}

Figure 4.11: Hasse diagram of the poset Gale(2, 3).

Proof. Let T ∈ NCTrees(�L,�R). For i ∈ [|R| − 1], we denote by ai the greatest index
j ∈ [|L|] such that (lj, ri) ∈ E(T ). We define φ(T ) to be the multiset {a1, . . . , a|R|−1}.

Conversely, let B = {b1, . . . , b|R|−1} be a multisubset of |L|, where the bi’s are ordered
increasingly for �L. We define ψ(B) to be the bipartite graph on vertices (L,R) with edges
{(lk, ri) | i ∈ [|R|] and bi−1 ≤ k ≤ bi}, where we set b0 := 1 and b|R| := |L|. Then it is easy
to see that ψ(B) is a bipartite noncrossing tree on (L,R) with linear orders �L, �R.

Moreover, ψ◦φ(T ) = T and φ◦ψ(B) = B, so we indeed have a bijection. See Figure 4.10
for an example of this bijection.

Corollary 4.2.10. |NCTrees(�L,�R)| =

{(( |L|
|R|−1

))
if |L|, |R| ≥ 1,

1 if |L| = 0 or |R| = 0.

Moreover, the bijection allows us to endow NCTrees(�L,�R) with the order relation ≤
coming from the Gale order Gale(|R| − 1, |L|).

Proposition 4.2.11. Let T, T ′ ∈ NCtrees(�L,�R).
They form a cover relation T ≤ T ′ of the Gale order if and only if there are j ∈ [|L|−1]

and i ∈ [|R| − 1] such that:
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• (lj, ri+1) ∈ E(T ) and (lj+1, ri) ∈ E(T ′),
• E(T ) \ {(lj, ri+1)} = E(T ′) \ {(lj+1, ri)}.

Proof. Let A = {a1, . . . , a|R|−1} and B = {b1, . . . , b|R|−1} (ordered increasingly) be the two
elements of the Gale order Gale(|R| − 1, |L|) such that A = φ(T ) and B = φ(T ′) (for
the function φ defined in the proof of Proposition 4.2.9). It is clear from the definition of
the Gale order that there is a cover relation A ≤ B exactly if there is i ∈ [|R| − 1] such
that bi = ai + 1 and bk = ak for all k ∈ [|R| − 1] \ {i}. We set j = ai. Then it follows
from the definition of ψ that (lj, ri+1) ∈ E(T ) (because j = ai), (lj+1, ri) ∈ T ′ (because
j + 1 = ai + 1 = bi) and all other edges are common to T and T ′.

Conversely, it is direct to show that if these conditions are satisfied, then φ(T ) ≤ φ(T ′)
is a cover relation in the Gale order Gale(|R| − 1, |L|) (they only differ on the elements
ai = j in A = φ(T ) and bi = j + 1 in B = φ(T ′)).

Compounded reductions

We explain how a graph-operation, indexed by a set of bipartite noncrossing trees, trans-
lates into a geometric decomposition of the flow polytope of the graph.

Let G be a connected directed multigraph on vertices {v0, . . . , vn, vn+1} with each
edge (vi, vj) oriented from vi to vj if i < j and such that v0 (respectively vn+1) is the
only source (respectively sink) of G.

Let i ∈ [n]. We consider In’i a submultiset of the incoming edges of inner vertex vi. If
In’i 6= Ini we add to it the element vi. We endow this set, as well as the set of outgoing
edges Outi, with linear orders �In’i and �Outi . This is a benign difference with [KMS21,
p.3], where vi is always the last element of the order �In’i .

Let T ∈ NCTrees(�In’i ,�Outi) with set of edges E(T ) ⊆ In’i × Outi. For two edges
e = (vh, vi) ∈ In’i \ {vi} and f = (vi, vj) ∈ Outi, we denote by e + f the pair of vertices
(vh, vj) labeled by the path in G made of edges e and f . We call basic reduction of G at

vertex vi with respect to T , and denote by G
(i)
T , the graph obtained from G by removing

all edges in In’i \ {vi} ∪Outi and adding (or putting back) the multiset of edges{
{e+ f | e ∈ In’i \ {vi}, (e, f) ∈ E(T )} ∪ {f | (vi, f) ∈ E(T )} if vi ∈ In’i,

{e+ f | e ∈ In’i, (e, f) ∈ E(T )} ∪ {(vi, vn+1)} if vi /∈ In’i.

Note that in this graph, the only incoming edges of vi are the edges in Ini \ In’i. Moreover,

G
(i)
T has the same total number of edges than G.

See Figure 4.12 for an example.

Recall that the polytope FG lives in RE(G). We denote by (ef )f∈E(G) the canonical

basis of RE(G) and define the linear transformation φ : RE(G
(i)
T ) → RE(G) such that the
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G
v0 v1 v2 v3 v4

e2

e1

e3

f1

f2

v0 v1 v2 v3 v4

G2
T

e2 + f1
e1

e3 + f2

f1

e2 + f2

e3

e2

v2

f2

f1
T

v0 v1 v2 v3 v4

G2
T ′

e2 + f1e1 + f1

e3 + f2

e2 + f2

e3

e2

e1

f2

f1
T ′

Figure 4.12: Two basic reductions G2
T (bottom left) and G2

T ′ (bottom right) of a graph G
(top) at vertex v2 with respect to two noncrossing trees T and T ′ with different left sets
(respectively In’2 = {e3, e2, v2} and In’2 = {e3, e2, e1}).

image of a basis vector ef for f ∈ E(G
(i)
T ) is

φ(ef ) =


ef if f is an edge in E(G),

ef1 + ef2 if f is the sum f1 + f2 of edges f1, f2 ∈ E(G),

0 if In’i = Ini and f = (vi, vn+1).

Then, the polytopes F
G

(i)
T

and φ(F
G

(i)
T

) are integrally equivalent. Indeed, it is clear that

the routes of G
(i)
T (whose indicator vectors are the integer points of F

G
(i)
T

) are in bijection

with the routes of G whose indicator vectors are in φ(F
G

(i)
T

).

In the remainder of this work we will abuse notations and identify F
G

(i)
T

with its image

φ(F
G

(i)
T

) in RE(G).

Lemma 4.2.12 (Compounded reduction lemma, [KMS21, Lemma 2.1], [MM19, Lemma
3.4]). Let G be a connected directed multigraph on vertices {v0, . . . , vn+1}. Let i ∈ [n], In’i
a submultiset of Ini with vi adjoined if In’i 6= Ini, and let �In’i, �Outi be linear orders on
In’i and Outi. Then:

FG =
⋃

T∈NCTrees(�In’i
,�Outi

)

F
G

(i)
T
. (4.2)

Moreover, the flow polytopes
{
F
G

(i)
T

∣∣∣T ∈ NCTrees(�In’i ,�Outi)
}

are interior disjoint and

they have the same dimension as FG.
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We refer to replacing G by
{
G

(i)
T

∣∣∣T ∈ NCTrees(�In’i ,�Outi)
}

as in Lemma 4.2.12 as

a compounded reduction. The qualifying adjective compounded refers to the fact that this
operation can be obtained by repeated application of basic Postnikov-Stanley reduction,
as explained in [MM19, Section 3].

Figure 4.13 displays two compounded reductions: one on the top graph H at vertex v3

(there is only one noncrossing bipartite tree) that gives the middle graph, and one on the
middle graph at vertex v2, that gives the three bottom graphs.

Note that it is not clear that this decomposition forms a valid subdivision of FG,
because a priori there could be a face F of a certain F

G
(i)
T

and a face F ′ of another F
G

(i)

T ′

such that the intersection F ∩ F ′ is not a common face of F and F ′ and Definition 1.1.8
is not satisfied. This is why we will call this decomposition a dissection of FG.

As explained in [KMS21, Lemma 2.1] and [MM19, Lemma 3.4], we can encode a series
of reductions in a compounded reduction tree rooted at the original graph and such that the

children of a node N are the graphs
{
N

(i)
T

∣∣∣T ∈ NCTrees(�In’i ,�Outi)
}

for certain choices

of inner vertex vi of N , subset In’i and orders �In’i and �Outi .

A Lidskii-type decomposition

Now we consider a graph H as in Theorem 4.2.8 and we endow it with a framing �H such
that for any i ∈ [n], all ci source-edges (v0, vi) of H are consecutive in the order �HIni . We
define the specific compounded reduction tree RH,�H as follows.

Its root is the framed graph (H,�H) (depth 0). For a node (N,�N) at depth k ∈
[0, n − 2], its children are the framed graphs

{
(N

(i)
T ,�N

(i)
T )
∣∣∣T ∈ NCTrees(�NIn’i ,�

N
Outi

)
}

obtained from Lemma 4.2.12 where
• i = n− k,
• In’i is the set of non-source incoming edges of vi potentially adjoined with the ver-

tex vi:

In’i :=

{
{e = (vh, vi) |h ∈ [i− 1], e ∈ E(H)} ∪ {vi} if ci > 0,

{e = (vh, vi) |h ∈ [i− 1], e ∈ E(H)} if ci = 0,

• the orders �NIn’i and �NOuti
are given by �N : if ci > 0, a non-source incoming edge e

satisfies e ≺NIn’i vi (resp. e �NIn’i vi) if e ≺NIni f (resp. e �NIni f) for any source-edge f
adjacent to vi,

• for any T ∈ NCTrees(�NIn’i ,�
N
Outi

), we endow the graph N ′ := N
(i)
T with a framing �N ′

inherited from �N as follows. For a vertex vh with h ∈ [i − 1], its set of outgoing
edges Outh in N ′ contains more edges than in N . If e0, e1 + f1, e2 + f2 are outgoing
edges of vh in N ′, with e0 outgoing edge of vh in N , e1 and e2 edges of N on vertices
(vh, vi) and f1, f2 outgoing edges of vi in N such that (e1, f1), (e2, f2) ∈ E(T ), then
we set e0 ≺N

′
Outh

e1 + f1 (resp. e0 �N
′

Outh
e1 + f1) if e0 ≺NOuth

e1 (resp. e0 �NOuth
e1) and

e1 + f1 �N
′

Outh
e2 + f2 if e1 ≺NOuth

e2 or e1 = e2 and f1 �NOuti
f2.



150 CHAPTER 4. REALIZATIONS OF THE s-WEAK ORDER

Note that with this construction, a node N at depth k satisfies that for all i ∈ [n−k, n]
the only outgoing edges of vi in N are sink-edges on vertices (vi, vn+1), labeled by a path
of edges in the original graph H. Moreover, the choice of noncrossing trees with respect to
orders induced by �H implies that the paths labeling these outgoing edges of vi in N are
mutually distinct and coherent with respect to the framing �H (where we extend trivially
the notion of being coherent to paths starting at vi instead of v0).

In particular, a leaf of the compounded reduction tree is a framed graph (L,�L) on
vertices {v0, . . . , vn+1} such that for all i ∈ [n], the incoming edges at vertex vi are the
ci source-edges (v0, vi) that were already in H, and there are a certain number ji + 1 of
outgoing edges that are all sink-edges, with ji = 0 if ci = 0. (Such a graph is denoted
by G[j + 1](c) in [KMS21, Theorem 3.4, Lemma 3.7].) We say that such a leaf is of type
j = (j1, . . . , jn). Geometrically, the corresponding flow polytope FL is the join of products
of simplices 4ci−1 ×4ji for all i ∈ [n] such that ci > 0.

Example 4.2.13. Figure 4.13 depicts a framed graph (H,�H) (the framing is obtained by
reading the edges from top to bottom) and its compounded reduction tree RH,�H . Each
edge of the reduction tree from a parent N at depth k to a child N ′ at depth k+1 is labeled
by the bipartite noncrossing tree T such that N ′ = N

(3−k)
T . The types j of the leaves of

the compounded reduction tree are indicated at the bottom.

The following two results can be seen as refinements of [KMS21, Lemma 3.7] since they
unveil the geometric structure of the pieces FL, in relation with the DKK triangulation
TriangDKK(H,�H).

Lemma 4.2.14. The dissection

FH =
⋃

L is a leaf of R
H,�H

FL

coarsens the triangulation TriangDKK(H,�H) of FH .
Moreover, the number of maximal simplices of TriangDKK(H,�H) contained in FL

for a leaf L of type j is
((
c1
j1

))
· · ·
((
cn
jn

))
.

Proof. Let L be a leaf of RH,�H of type j. We define another compounded reduction tree
RL as follows. Its root is the graph L with the framing �L induced by �H along RH,�H .
For a node (N,�N) at depth k ∈ [0, n− 1], either its child is again (N,�N) if ci = 0 or its

children are the
((
ci
ji

))
framed graphs

{
(N

(i)
T ,�N

(i)
T )
∣∣∣T ∈ NCTrees(�NIn’i ,�

N
Outi

)
}

obtained

from Lemma 4.2.12 where
• i = n− k,
• In’i is the set of ci source-edges (v0, vi),
• the order �NIn’i is the initial order �HIn’i on the ci source-edges of H,
• the order �NOuti

is the order �LOuti
on the ji + 1 sink-edges (vi, vn+1) of L, which is

inherited from the order �H on paths of H that go from vi to vn+1.
It is clear that this compounded reduction tree RL has

((
c1
j1

))
· · ·
((
cn
jn

))
leaves, indexed by

NCTrees(�HIn’1 ,�
L
Out1

) × . . . × NCTrees(�HIn’n ,�
L
Outn). The compounded reduction lemma
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(H,�H)
v0 v1 v2 v3 v4

e0

e′0e′′0
e1

e2

e3

e′0
e1

e0

e′′0
v2

e2

e′0 + e1

e′0 + e0

j = (3, 0, 0)

e′′0
v2

e2

e′0 + e1

e′0 + e0

j = (2, 1, 0)

e′′0
v2

e2

e′0 + e1

e′0 + e0

j = (1, 2, 0)

Figure 4.13: Reduction tree RH,�H of the graph (H,�H) depicted at the top. See Exam-
ple 4.2.13.

(4.2.12) implies that

FL =
⋃

L′ is a leaf of RL

FL′ .

Let us show that the FL′ are maximal simplices of TriangDKK(H,�H).
By construction, a leaf L′ of RL has one sink-edge (vi, vn+1) for all i ∈ [n] and |E(H)|−n

edges (v0, vn+1), which are labeled by routes that are mutually distinct and coherent with
respect to the framing �H . Hence, these labels provide a maximal clique C of (H,�H)
and (up to compositions of integral equivalences as mentioned before Lemma 4.2.12) FL′

is exactly the simplex ∆C of TriangDKK(H,�H).
Conversely, from a maximal clique C of (H,�H), the following procedure explains how

to go from H to a leaf L of RH,�H and then from L to a leaf L′ of RL whose labels on
edges (v0, vn+1) are exactly the routes in C. We start at the root of RH,�H and follow a
downward path of RH,�H . If we are at an internal node N of depth k ∈ [0, n− 1], we build
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the bipartite graph T on vertices (In’i,Outi) with edges (e, f) for e ∈ In’i \ {vi}, f ∈ Outi
such that there is at least one route in C that ends with the path e + f and edges (vi, f)
for f ∈ Outi such that there is at least one route in C consisting of a source-edge (v0, vi)
followed by the path f . The fact that C is a clique implies that T is noncrossing, and the
fact that C is maximal implies that T is a tree. Hence, we choose N

(i)
T for the next node

on our path. When we arrive at a leaf L of RH,�H we follow a similar procedure on RL

until arriving at a leaf L′.

Figure 4.14: Oriented graph dual to the DKK triangulation of the framed graph (H,�H)
depicted on top of Figure 4.13. The bold and colored parts correspond to the three pieces
of the Lidskii-type decomposition.

Example 4.2.15. Figure 4.14 shows the oriented graph dual to the DKK triangulation of the
framed graph (H,�H) represented on Figure 4.13. The bold and colored parts correspond
to the three pieces of the dissection showcased in Lemma 4.2.14. The colors as well as the
respective positions (left, middle, right) indicate the correspondence with the leaves of the
compounded reduction tree of Figure 4.13.

Before concluding the proof of Theorem 4.2.8, we specify how the maximal simplices of
TriangDKK(H,�H) are arranged inside a piece FL.

Theorem 4.2.16. Let L be a leaf of RH,�H of type j. Then, the oriented graph dual to
the restriction of TriangDKK(H,�H) to FL is isomorphic to the Hasse diagram of the
product of Gale orders Gale(j1, c1)× . . .×Gale(jn, cn).

Proof. The proof of Lemma 4.2.14 gives a bijection between the maximal simplices of
TriangDKK(H,�H) that are in FL and the product of sets of noncrossing trees
NCTrees(�HIn’1 ,�

L
Out1

) × . . . × NCTrees(�HIn’n ,�
L
Outn). Let us show that this bijection in-

duces a directed graph isomorphism between the oriented graph dual to the restriction of
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TriangDKK(H,�H) toFL and the Hasse diagram of the product of Gale orders Gale(j1, c1)×
. . .×Gale(jn, cn) on NCTrees(�HIn’1 ,�

L
Out1

)× . . .×NCTrees(�HIn’n ,�
L
Outn). (We explained in

Section 4.2.4 how to endow each set NCTrees(�HIn’k ,�
L
Outk

) with the Gale order structure
Gale(jk, ck).)

Let C1, C2 be maximal cliques of (H,�H) such that the associated simplices ∆C1 and
∆C2 are contained in FL. This implies that for both C1 and C2, for all i ∈ [n] the set of
suffixes that follow a source-edge (v0, vi) is equal to the set of paths that label sink-edges
(vi, vn+1) in the leaf L.

Assume that there is an edge from C1 to C2 in the oriented graph dual to
TriangDKK(H,�H). It follows from Lemma 4.2.4 that P and Q are in minimal conflict at
a subroute [vi, vj]. Then the incoming edges of vi in P and Q, that we denote eP and eQ,
are source-edges (v0, vi). Indeed, if for example P started with a source-edge (v0, vi0) with
i0 < i, then the suffix vi0P would not be contained in the set of suffixes of Q that follow a
source-edge (v0, vi0) and this would contradict the fact that ∆C1 and ∆C2 are in FL.

Then we look at how the cliques C1 and C2 are obtained as leaves of the compounded
reduction tree RL introduced in the proof of Lemma 4.2.14, or in other words what are
their associated element of NCTrees(�HIn’1 ,�

L
Out1

)× . . .×NCTrees(�HIn’n ,�
L
Outn). It is clear

that we need to choose the same tree from NCTrees(�HIn’k ,�
L
Outk

) for all k ∈ [n] \ {i}. We
denote by T1 (resp. T2) the element of NCTrees(�HIn’i ,�

L
Outi

) chosen to obtain C1 (resp.
C2). Then, all edges of T1 and T2 are the same except the edges (eP , viP ) ∈ T1 and
(eQ, viQ) ∈ T2. Moreover, the fact that P and Q are in minimal conflict implies that eP
and eQ are adjacent in the ordering �HIni (with eP �HIni eQ since we assumed that the edge
of the dual graph of the DKK triangulation is oriented from C1 to C2) and viP and viQ
are adjacent in the ordering �LOuti

(with viQ �LOuti
viP since P and Q are in conflict).

It follows from Proposition 4.2.11 that T1 and T2 form a cover relation T1 ≤ T2 of the
Gale order Gale(ji, ci). Thus, they give an edge of the Hasse diagram of the product
Gale(j1, c1)× . . .×Gale(jn, cn).

Conversely, there is an edge in this Hasse diagram between two families of trees
(T 1

1 , . . . , T
n
1 ), (T 1

2 , . . . , T
n
2 ) ∈ NCTrees(�HIn’1 ,�

L
Out1

)× . . .×NCTrees(�HIn’n ,�
L
Outn) if there is

i ∈ [n] such that T k1 = T k2 for all k ∈ [n] \ {i} and T i1 ≤ T i2 is a cover relation in Gale(ji, ci).
This implies that the corresponding cliques C1 and C2 have the same elements except two
routes that are in minimal conflict.

Example 4.2.17. One can see an example of Theorem 4.2.16 on Figure 4.14. For all three
leaves of the compounded reduction tree of Figure 4.13 only the poset Gale(j1, c1) is not
reduced to a singleton, and it is always linear since j1 = 1.

See also Figures 4.15 and 4.23.

The next result is well-known in the literature even though it is not proven in Danilov-
Karzanov-Koshevoy article [DKK12]. We state it here because it is necessary to justify
that the normalized volume of the flow polytope FH is the number of maximal simplices
in its DKK triangulation.

Lemma 4.2.18. The triangulation TriangDKK(H,�H) is unimodular.
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Proof. Along the proof of Lemma 4.2.14 we have seen that the maximal simplices of
TriangDKK(H,�H) are integrally equivalent to flow polytopes FL′ where L′ is a graph
whose only routes are sink-to-source edges (v0, vn+1). It is clear that such a flow poly-
tope, seen in RE(L′), is a unimodular simplex, and this property is preserved under integral
equivalence.

Finally, the number of leaves of the reduction tree RH,�H is given by the following two
lemmas, which finish the proof of Theorem 4.2.8.

Lemma 4.2.19 ([MM19, Lemma 4.5]). If a tuple j = (j1, . . . , jn) is the type of a leaf in
RH,�H , then it is a weak composition of m − n that is greater than (o1, . . . , on) for the
dominance order. Moreover, ji = 0 for all i ∈ [n] such that ci = 0.

Lemma 4.2.20 ([MM19, Lemma 4.1]). Let j = (j1, . . . , jn) be a weak composition of m− n
that is greater than (o1, . . . , on) for the dominance order. Then the number of leaves of
RH,�H of type j is KH((0, j1 − o1, . . . , jn − on, 0)).

Example 4.2.21. One can again see an example of Lemma 4.2.19 and Lemma 4.2.20 on
Figure 4.13. Indeed, the three types (3, 0, 0), (2, 1, 0), (1, 2, 0) are weak compositions j
of 6 − 3 = 3 that are greater than (o1, o2, o3) = (1, 1, 1) and such that j3 = 0 (since
c3 = 0). Moreover, one can see that for such j there is only one flow for H with netflow
(0, j1− o1, j2− o2, j3− o3, 0), which passes only through the horizontal edges e′′0, e′0 and e0.
Indeed, the other edges of H are source or sink edges and they cannot receive a positive
flow since the first and last values of the netflow are 0.

We sum up our refinement of Theorem 4.2.8 in the following theorem.

Theorem 4.2.22. Let (H,�) be a framed graph such that for any i ∈ [n], all source-edges
(v0, vi) of H are consecutive in the order �Ini.

For any i ∈ [n + 1] we denote by ci the number of source-edges (v0, vi) and for i ∈ [n],
oi := outdegH(vi) − 1. We denote by m := |E(H)| −

∑n+1
i=1 ci the number of non-source

edges of H. Then there is a dissection of FH that coarsens TriangDKK(H,�) into pieces
such that:

• each piece has a certain type j = (j1, . . . , jn) which is a weak composition of m − n
that is greater than (o1, . . . , on) for the dominance order and satisfies ji = 0 for all
i ∈ [n] such that ci = 0,

• for each type j there are KH((0, j1 − o1, . . . , jn − on, 0)) pieces of the dissection of
type j,

• the oriented graph dual to the restriction of TriangDKK(H,�H) to any piece of type j
is isomorphic to the Hasse diagram of the product of Gale orders
Gale(j1, c1)× . . .×Gale(jn, cn).

We call such dissection FH the Lidskii-type decomposition of TriangDKK(H,�).

Remark 4.2.23. A remarkable property of the Lidskii-type decomposition is that the struc-
ture of its pieces do not depend on the framing �. This means that for a given graph H, all
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framings that satisfy the property that source-edges are adjacent will induce an oriented
graph dual to their DKK triangulation that decomposes into the same pieces. However,
the way how these pieces are related to each other varies with the framing.

An example of this property can be seen on Figure 4.15, to be compared with Fig-
ure 4.14.

(H,�′)
v0 v1 v2 v3 v4

e0

e′0e′′0
e1

e2

e3

(H,�′′)
v0 v1 v2 v3 v4

e0

e′0e′′0
e1

e2

e3

Figure 4.15: Top: Graph H from Figure 4.13 with two other framings � and �′′. Bottom:
The oriented graphs dual to the corresponding DKK triangulations, with coloured pieces
of the Lidskii decomposition.

We finish this section with two natural conjectures on the Lidskii-type decomposition
of TriangDKK(H,�).

Conjecture 4.2.24. The Lidskii-type decomposition of TriangDKK(H,�) is a valid subdi-
vision of FH .

Conjecture 4.2.25. The pieces of the Lidskii-type decomposition of TriangDKK(H,�) give
intervals of the poset structure on MaxCliques(H,�) defined by von Bell and Ceballos
([BC2X], in preparation).

4.3 Combinatorics of the s-weak order and the
s-permutahedron

The structures of the s-weak order and the s-permutahedron were first defined by Ceballos
and Pons in terms of s-decreasing trees, which allows them to deal with any weak compo-
sition s. We remind their main definitions in Section 4.3.1 but the objects that we will use
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in the rest of the chapter are the Stirling s-permutations (Section 4.3.2), which are defined
only when s is a strict composition.

4.3.1 s-decreasing trees

Let s = (s1, . . . , sn) be a weak composition. An s-decreasing tree T is a planar rooted tree
on n internal vertices (called nodes), labeled by [n], such that the node labeled a has sa+1
children and any descendant b of a satisfies b < a. We denote by T a0 , . . . , T

a
sa the subtrees

of node a from left to right. See examples on Figures 4.16 and 4.1.
We denote by Ts the set of all s-decreasing trees. It is known (see for example [CGD19,

Section 5.1] and Corollary 4.4.4) that the number of s-decreasing trees is given by

|Ts| = (1 + sn)(1 + sn + sn−1) · · · (1 + sn + sn−1 + · · ·+ s2), (4.3)

which can be viewed as a generalization of the factorial numbers since this formula reduces
to n! in the case s = (1, . . . , 1).

It can be seen in this formula that the value of s1 is inconsequential for determining
the combinatorial properties of Ts (indeed, all the children of the node 1 are leaves), so
without loss of generality we can assume that s1 = 1 throughout this thesis.

Let T be an s-decreasing tree. We denote by inv(T ) the multiset of tree-inversions of
T formed by pairs (c, a) with multiplicity (also called cardinality)

#T (c, a) =


0, if a is left of c,
i, if a ∈ T ci ,
sc, if a is right of c,

for all 1 ≤ a < c ≤ n.
In [CP20, Definition 2.5] Ceballos and Pons introduced the s-weak order E on Ts and

showed in [CP22, Theorem 1.21] that it has the structure of a lattice. For s-decreasing
trees R and T we define R E T if inv(R) ⊆ inv(T ).

Figure 4.1 depicts the Hasse diagram of the s-weak order for s = (1, 2, 1).
To understand the cover relations in the s-weak order we define the notion of ascents

and transitivity.
An ascent on an s-decreasing tree T is a pair (a, c) satisfying
1. a ∈ T ci for some 0 ≤ i < sc,
2. if a < b < c and a ∈ T bi , then i = sb,
3. if sa > 0, then T asa consists of only one leaf.
Visually, there is an ascent (a, c) if the rightmost child of a is a leaf (unless sa = 0) that

is followed by a cavern of c.
Similarly, a descent of T is a pair (a, c) such that a ∈ T ci for some 0 < i ≤ sc, if

a < b < c and a ∈ T bj then j = 0, and if sa > 0 then T a0 consists of only one leaf. The
notions of ascents and descents on s-decreasing trees generalize the same concepts from
classical permutations, see Lemma 4.3.4.
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A multiset of inversions I is transitive if for all a < b < c, either #I(b, a) = 0 or
#I(c, a) ≥ #I(c, b). This property is satisfied by all multisets of tree-inversions ([CP22,
Definition 1.5 and Lemma 1.6]). The transitive closure of a multiset set of inversion I can
be defined as the smallest multiset of inversion I ′ that contains I and that is transitive (see
also [CP22, Definition 1.14 and Lemma 1.16] for an equivalent definition).

If T is an s-decreasing tree that has an ascent (a, c), the s-tree rotation of T along the
ascent (a, c) is the s-decreasing tree T ′ whose mulitset of tree-inversions is the transitive
closure of the multiset of inversions obtained from inv(T ) after increasing #T (c, a) by 1.

Lemma 4.3.1 ([CP22, Theorem 1.32]). There is a cover relation T E T ′ in the s-weak order
exactly if T ′ is an s-tree rotation of T along a certain ascent (a, c) of T .

Example 4.3.2. Let s = (1, 1, 2, 1, 3, 1, 2) and consider the s-decreasing tree T shown on
the left of Figure 4.16. Its set of ascents is {(3, 7), (2, 5), (4, 5), (5, 7), (1, 6)} and its set of
descents is {(2, 7), (4, 5), (1, 7)}. The pair (7, 5) has multiplicity #T (7, 5) = 1.

The rotation of T along the ascent (5, 7) yields the tree T ′ represented on the right of
Figure 4.16. In T ′, the pair (7, 5) has multiplicity #T ′(7, 5) = 2. The multiplicity of the
pair (7, 4) is also augmented by one from T to T ′.

T : 7

65

4

3

2 1

T ′ : 7

6

5

4

3 2

1

Figure 4.16: Two examples of s-decreasing trees, for s = (1, 1, 2, 1, 3, 1, 2). There is an
s-tree rotation along the ascent (5, 7) between T and T ′.

If A is a subset of ascents of T , we denote by T+A the s-decreasing tree whose inversion
set is the transitive closure of inv(T ) +A (where this notation means that we add 1 to the
multiplicities #T (c, a) for all ascents (a, c) ∈ A).

Definition 4.3.3 (Definition 4.1 [CP20]). The (combinatorial) s-permutahedron, denoted
Perms, is the combinatorial complex with faces (T,A) where T is an s-decreasing tree and
A is a subset of ascents of T .

In the s-permutahedron, the face (T,A) is contained in (T ′, A′) if and only if [T, T+A] ⊆
[T ′, T ′ + A′] as intervals in the s-weak order. In particular, the vertices of Perms are the
s-decreasing trees and the edges correspond to s-tree rotations. The dimension of a face
(T,A) is the cardinality of A.

On the example of Figure 4.1, we can see two pentagonal 2-dimensional faces of the
(1, 2, 1)-permutahedron. These faces are obtained with the tree T that is the minimum
element of the face, and the set A = {(1, 2), (1, 3)}.
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4.3.2 Stirling s-permutations

We now explain how the s-weak order can be defined on Stirling s-permutations when s is
a composition, i.e. it has no zero entries. This condition is necessary for us to build the
s-oruga graph and use the flow polytope technology.

In the remainder of this section we assume that s = (s1, . . . , sn) is a composition. A
Stirling s-permutation is a word with si occurrences of the letter i for i ∈ [n] that avoids
the pattern 121, which means that there is never a letter j in between two occurrences of
i with i < j. We denote by Ws the set of all Stirling s-permutations.

The set of Stirling s-permutations is in bijection with the set of s-decreasing trees. This
bijection is obtained by reading nodes along the infix order traversal of the caverns (spaces
between consecutive siblings) of an s-decreasing tree (see Figure 4.17). Reversely, from
a Stirling s-permutation w, we can build an s-decreasing tree T (w) recursively by first
placing the node with maximal label a in w and the sa + 1 branches below it. The sa
occurrences of a split the word w into sa + 1 subwords u1, . . . , usa+1. The subtree T ai is a
leaf if the subword ui is empty, otherwise it is obtained by applying the recursive procedure
to ui. Note that this bijection induces a correspondence between the prefixes of a Stirling
s-permutation w and the leaves of its corresponding tree T (w).

4

2 3

1

1 1

2 3

4 4

Figure 4.17: A (2, 1, 1, 2)-decreasing tree with vertices labeled via in-order. The corre-
sponding Stirling s-permutation is w = 244113.

Analogous to the case of classical permutations, the cover relations in the s-weak order
can be described in terms of transpositions of substrings in Stirling s-permutations.

Let w be a Stirling s-permutation. For a ∈ [n], we define the a-block Ba of w to be the
shortest substring of w containing all sa occurrences of a. In Example 4.3.6, we see that
the 5-block of w = 33725455716 is B5 = 5455. Note that an a-block of w necessarily starts
and ends with a by minimality, and contains only letters in [a] because w is 121-avoiding.
Furthermore for a < c, w contains the consecutive substring ac if and only if it is of the
form w = u1Bacu2, where u1 and u2 denote consecutive substrings of w.

Let w be a Stirling s-permutation. A pair (a, c) with 1 ≤ a < c ≤ n is called an ascent
of w if ac is a consecutive substring of w. It is a descent of w if ca is a consecutive substring
of w. If w is of the form w = u1Bacu2 and a < c, the transposition of w along the ascent
(a, c) is the Stirling s-permutation u1cBau2. We denote by inv(w) the multiset of inversions
formed by pairs (c, a) with multiplicity #w(c, a)∈ [0, sc] the number of occurrences of c that
precede the a-block in w. As in the case of tree-rotations, if A is a subset of ascents of w,
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we denote by w+A the Stirling s-permutation whose inversion set is the transitive closure
of inv(w) + A. We have the following correspondence between concepts on the family of
s-decreasing trees and on the family of Stirling s-permutations, whose proof follows easily
from the definitions.

Lemma 4.3.4. Let w be a Stirling s-permutation and T (w) its corresponding s-decreasing
tree. Let 1 ≤ a < c ≤ n.

(a) The pair (a, c) is an ascent of T (w) if and only if it is an ascent of w.

(b) The pair (a, c) is a descent of T (w) if and only if it is a descent of w.

(c) #T (w)(c, a) = #w(c, a).

Moreover, suppose (a, c) is an ascent of T = T (w) so that w is of the form w = u1Bacu2.
Then T ′ is the s-tree rotation of T along (a, c) if and only if T ′ = T (w′) where w′ = u1cBau2.

Corollary 4.3.5. Let w and w′ be Stirling s-permutations. Then w′ covers w in the s-weak
order if and only if w′ is the transposition of w along an ascent.

Example 4.3.6. Let s = (1, 1, 2, 1, 3, 1, 2) and consider the s-permutation w = 33725455716.
The transposition of w along the ascent (5, 7) switches the 5-block of w with the 7 that
immediately follows it and yields w′ = 33727545516. The corresponding s-decreasing tree
T = T (w) is shown on the left of Figure 4.16. The rotation of T along the ascent (5, 7)
yields T ′ = T (w′).

Remark 4.3.7. If s is a composition, the s-permutahedron Perms of Definition 4.3.3 can be
alternatively defined as the combinatorial complex with faces (w,A) where w is a Stirling
s-permutation and A is a subset of ascents of w.

4.4 Geometric realizations of the s-permutahedron

4.4.1 The flow polytope realization

We introduce the s-oruga graphs along with a fixed framing, and apply the combinatorial
method of Danilov, Karzanov and Koshevoy to obtain a triangulation of the associated
flow polytope. Combining previous results, we will have bijections between s-decreasing
trees Ts, Stirling s-permutationsWs, integer d-flows on Oru(s), and maximal cliques in the
framed graph (Oru(s),�), represented in the following diagram:

Ts Ws FZ
G(d) MaxCliques(Oru(s),�)

Sec 4.3.2 Prop 4.4.3 Thm 4.2.6

Rem 4.4.5 Lem 4.4.6
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The s-oruga graph and a DKK triangulation of its flow polytope

Definition 4.4.1. Let s = (s1, . . . , sn) be a composition, and for convenience of notation we
also set sn+1 = 2. The framed graph (Oru(s),�) consists of vertices {v−1, v0, . . . , vn} and

• for i ∈ [n+ 1], there are si − 1 source-edges (v−1, vn+1−i) labeled ei1, . . . , eisi−1,
• for i ∈ [n], there are two edges (vn+1−i−1, vn+1−i) called bump and dip labeled ei0 and
eisi ,

• the incoming edges of vn+1−i are ordered eij ≺Inn+1−i e
i
k for 0 ≤ j < k ≤ si,

• the outgoing edges of vn+1−i are ordered ei−1
0 ≺Outn+1−i e

i−1
si−1

.
We call Oru(s) the s-oruga graph. We will also denote by Orun the induced subgraph of
Oru(s) with vertices {v0, . . . , vn} and call this the oruga graph of length n (it does not
depend on s).

v−1 v0 v1 v2 v3 v4

e4
0

e4
2

e3
0

e3
1

e2
0

e2
3

e1
0

e1
1

e5
1

e4
1

e2
2

e2
1

Figure 4.18: The s-oruga graph Oru(s) for s = (1, 3, 1, 2) with edge labels. The framing is
obtained by reading the ingoing or outgoing edges of a vertex from top to bottom. The
source-edges are depicted in bold green.

Figure 4.18 shows an example of this construction. We always draw the graph Oru(s)
in such a way that the framing of the incoming and outgoing edges at each inner vertex
is ordered from “top to bottom”. Note that the corresponding flow polytope FOru(s) has
dimension | s | :=

∑n
i=1 si.

The routes of Oru(s) will play a key role, thus we will describe them as R(k, t, δ)
intuitively as follows. Every route of Oru(s) starts from v−1, lands in a vertex vn+1−k via a
source-edge labeled ekt and then follows k− 1 edges that are either bumps or dips denoted
by a 01-vector δ.

Formally, for k ∈ [n + 1], t ∈ [sk − 1], and δ = (δk−1, . . . , δ1) ∈ {0, 1}k−1, we denote by
R(k, t, δ) the sequence of edges (ektk , e

k−1
tk−1

, . . . , e1
t1

) where
• tk = t,
• for all j ∈ [k − 1], tj = δjsj.
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v−1 v0 v1 v2 v3 v4 v5 v6 v7

e4
1

e3
0

e2
1 e1

1

e5
2

Figure 4.19: The s-oruga graph Oru(s) for s = (1, 1, 2, 1, 3, 1, 2). The route
R(5, 2, (1, 0, 1, 1)) is depicted in bold blue and its edge labels are indicated.

Remark 4.4.2. Although the graph Oru(s) starts with vertex v−1 instead of v0 all the
technology of Section 4.2.1 can be applied to it. To see this, we can either simply relabel
the vertices with [0, n + 1], or contract the edge en+1

1 (between v−1 and v0) to obtain a

graph Ôru(s) whose flow polytope is integrally equivalent to FOru(s) (see the left part of
Figure 4.23). In both cases the resulting graph has flows and routes directly in bijection
with the flows and routes of Oru(s).

Proposition 4.4.3. Let s be a composition and let d = (0, 0, sn, sn−1, . . . , s2,−
∑n

i=2 si). The
set of Stirling s-permutations is in bijection with the set of integer d-flows of Oru(s).

Proof. First, we notice that an integer flow (fe)e on Oru(s) with netflow d necessarily
has zero flow on every source-edge, so (fe)e is characterized by the fact that the total
flow on each pair of bump and dip edges satisfies fei0 + feisi

= sn + · · · + si+1 for all

i ∈ [n − 1]. Thus to describe an integer d-flow on Oru(s), it is enough to determine the
flow on the bump edges ei0 for all i ∈ [n− 1]. Given a Stirling s-permutation w, let fei0 be
the number of letters strictly greater than i that occur before the i-block Bi in w. This
implies 0 ≤ fei0 ≤ sn + · · ·+ si+1, and thus defines an integer d-flow on Oru(s).

Conversely, any Stirling s-permutation can be built iteratively by an insertion algorithm
associated to a choice of integers fei0 ∈ [0, sn + · · · + si+1] for i ∈ [n − 1] in the following
way. Start with a block of sn consecutive copies of n (step i = 0). At step i for i ∈ [n− 1],
there are sn + · · ·+ sn−i+1 + 1 possible positions for the next insertion. We insert a block
of sn−i consecutive copies of (n− i) in the (fen−i0

)-th position. This creates a 121-avoiding
permutation of the word 1s12s2 · · ·nsn .

See Figure 4.20 for an example illustrating the insertion algorithm described in the
proof of Proposition 4.4.3.
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v−1 v0 v1 v2 v3 v4 v5 v6 v7

Netflow d 0 0 2 1 3 1 2 1 −10

0

0

2

0

1

2

2

4

0

7

3

6

9

1

Step i Flow on edge en−i0 Construction of w
0 0 7 7
1 2 7 7 6
2 1 7 5 5 5 7 6
3 2 7 5 4 5 5 7 6
4 0 3 3 7 5 4 5 5 7 6
5 3 3 3 7 2 5 4 5 5 7 6
6 9 3 3 7 2 5 4 5 5 7 1 6

Figure 4.20: An integer d-flow of Oru((1, 1, 2, 1, 3, 1, 2)) (the flow on the non-source edges
is shown in red) and the steps of the insertion algorithm of Proposition 4.4.3 that output
the corresponding Stirling s-permutation w = 33725455716.

By Corollary 4.2.7, since the normalized volume of the flow polytope FOru(s) is the
number of integer d-flows on Oru(s), then we obtain the following as a corollary.

Corollary 4.4.4. Given a composition s, then

volnormFOru(s) = |Ts| = |Ws| =
n−1∏
i=1

(1 + sn−i+1 + sn−i+2 + · · ·+ sn) .

Proof. We only need to justify that the right hand side of this formula is the number
of d-flows on Oru(s). We have seen that a d-flow on Oru(s) is determined by its values
fei0 ∈ [0, sn + · · ·+ si+1] for i ∈ [n− 1].

Remark 4.4.5. We can also give an explicit correspondence between s-decreasing trees and
integer d-flows of Oru(s). Note that this correspondence holds in the more general setting
where s is a weak composition and we consider integer d-flows on the oruga graph Orun
since the source-edges do not play any role.
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Given an integer d-flow (fe)e of Oru(s) (note again that it is enough to know the val-
ues fei0 for i ∈ [n − 1] to determine the entire integer flow), we build an s-decreasing tree
inductively as follows. Start with the tree given by the node n and sn + 1 leaves. At step
i for i ∈ [n − 1], we have a partial s-decreasing tree with labeled nodes n to n + 1 − i,
and 1 +

∑n
k=n+1−i sk leaves that we momentarily label from 0 to

∑n
k=n+1−i sk along the

counterclockwise traversal of the partial tree. Attach the next node n − i, with sn−i + 1
pending leaves, to the leaf of the partial tree labeled fen−i0

. This procedure produces de-
creasing trees with the correct number of children at each node. Hence, after the n-th
step we obtain an s-decreasing tree. Reciprocally, any s-decreasing tree can be built iter-
atively in this way, so it is associated to a choice of integers fei0 ∈ [0,

∑n
k=n+1−i sk] for all

i ∈ [n− 1]. The interested reader can verify that this procedure applied to the flow in the
example of Figure 4.20 produces the tree T on the left of Figure 4.16.

We can now explicitly describe the DKK maximal cliques of coherent routes of Oru(s)
via Stirling s-permutations. This is an important construction for the results which follow.

Let s be a composition, and u a (possibly empty) prefix of a Stirling s-permutation.
For all a ∈ [n], we denote by ta (or ta(u) if u is not clear from the context) the number of
occurrences of a in u, and we denote by c the smallest value in [n] such that 0 < tc < sc. If
there is no such value, we set c = n + 1 and tn+1 = 1. The definition of c implies that for
all a < c, either ta = 0 or ta = sa. Then we define R[u] to be the route (ectc , e

c−1
tc−1

, . . . , e1
t1

).
For example, for the prefix u = 3372545 of w = 33725455716 in the example of Figure
4.20 we have that c = 5, t5 = 2, t4 = 1, t3 = 2, t2 = 1, t1 = 0 so R[u] = (e5

2, e
4
1, e

3
2, e

2
1, e

1
0) =

R(5, 2, (1, 1, 1, 0)).
Let w be a Stirling s-permutation. For i ∈ [| s |], we denote by wi the i-th letter of w,

and for i ∈ [0, | s |] we denote by w[i] the prefix of w of length i, with w[0] := ∅. Let ∆w be
the set of routes {R[w[i]] | i ∈ [0, | s |]} and identify it with the simplex whose vertices are
the indicator vectors of these routes.

Note that each maximal clique always contains the routes R[w[0]] = (en+1
1 , en0 , . . . , e

1
0) =

R(n+ 1, 1, (0)n) and R[w[| s |]] = (en+1
1 , ensn , . . . , e

1
s1

) = R(n+ 1, 1, (1)n). See Figure 4.21 for
the example of ∆w corresponding to the Stirling (1, 2, 1)-permutation w = 3221.

Lemma 4.4.6. The maximal simplices of TriangDKK(Oru(s),�) are exactly the simplices
∆w where w ranges over all Stirling s-permutations.

Proof. Recall that by Theorem 4.2.1 the maximal simplices of TriangDKK(Oru(s),�) are
the simplices ∆C , where C is a maximal clique of coherent routes of (Oru(s),�).

Let w be a Stirling s-permutation. We will check that ∆w is a clique of coherent routes of
(Oru(s),�). Let 1 ≤ i < i′ ≤ [| s |] index two routes R[w[i]] and R[w[i′]] in ∆w. Since i < i′,
we have that ta(w[i]) ≤ ta(w[i′]) for all a ∈ [n]. Thus, for any vertex vn+1−a that appears
in both routes R[w[i]] and R[w[i′]], we have that the incoming (respectively outgoing) edge
of R[w[i]] precedes the incoming (respectively outgoing) edge of R[w[i′]] for the order �.
Hence, the routes R[w[i]] and R[w[i′]] are coherent, and ∆w is a clique for the coherence
relation. Moreover, since ∆w has | s | + 1 = dim(FOru(s)) + 1 elements, it is a maximal
clique, and corresponds to a maximal simplex in the DKK triangulation of FOru(s).
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R[w[0]] =

R[w[1]] =

R[w[2]] =

R[w[3]] =

R[w[4]] =

Figure 4.21: The maximal clique ∆w = {R[w[0]], . . . ,R[w[| s |]]} corresponding to the Stirling
(1, 2, 1)-permutation w = 3221.

Now, suppose that w′ is a Stirling s-permutation distinct from w. We need to check
that ∆w 6= ∆w′ . Suppose that the minimal index i ∈ [| s | − 1] such that wi 6= w′i satisfies
wi < w′i. Then R[w′[i]] cannot belong to ∆w. Indeed, if we denote a the value of wi, we
have that eata(w[i])−1 is an edge of the route R[w′[i]] but for any j > i, ta(w[j]) ≥ ta(w[i]), so

the route R[w[j]] does not contain this edge. Thus, the map w 7→ ∆w is an injection from
Stirling s-permutations to maximal simplices of TriangDKK(Oru(s),�).

Then, it follows from the bijection between s-decreasing trees and maximal simplices
of TriangDKK(Oru(s),�) (Remark 4.4.5) and the bijection between s-decreasing trees and
Stirling s-permutations (Section 4.3.2) that this injection is a bijection.

The Hasse diagram of the s-weak order

We show that the oriented graph dual to the triangulation TriangDKK(Oru(s),�) coincides
with the Hasse diagram of the s-weak order.

Theorem 4.4.7. Let s = (s1, . . . , sn) be a composition. Let w and w′ be two Stirling s-
permutations. There is a cover relation between w ≤ w′ in the s-weak order if and only if
there is an edge from ∆w to ∆w′ in the oriented graph dual to TriangDKK(Oru(s),�).

Figure 4.22 shows the graph dual to the DKK triangulation of FOru(s) for s = (1, 2, 1),
which corresponds to the (unoriented) Hasse diagram of the (1, 2, 1)-weak order. Note that
in this Figure we are omitting the routes R[w[0]] and R[w[| s |]] since both appear in ∆w for
every w ∈ W(1,2,1).

Proof. Suppose that w′ is obtained from w by a transposition along the ascent (a, c). We
show that the vertices of ∆w and ∆w′ differ only in one element, and that the corresponding
edge in the oriented graph dual to TriangDKK(Oru(s),�) is oriented from ∆w to ∆w′ .
It follows from Corollary 4.3.5 that w = u1Bacu2 and w′ = u1cBau2, where Ba is the
a-block of w. We denote by `(u) the length of a word u. For all i ∈ [0, `(u1)] and
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Figure 4.22: The s-permutahedron for the case s = (1, 2, 1). The vertices are indexed by
the following combinatorial objects: s-decreasing trees, Stirling s-permutations, maximal
cliques of routes (omitting R[w[0]] and R[w[| s |]]), and integer d-flows for d = (0, 0, 1, 2,−3)
(in red on the topmost graph, omitting the edges on which the integer d-flows are always 0).
They correspond to simplices or maximal mixed cells in our first and second realizations.
The edges are oriented so that we recover the Hasse diagram of the s-weak order, or the
oriented graph dual to the DKK triangulation.

i ∈ [`(u1) + `(Ba) + 1, | s |], the routes R[w[i]] and R[w′[i]] are equal since w[i] and w′[i]
have the same letters. For all i ∈ [`(u1) + 1, `(u1) + `(Ba) − 1], the routes R[w[i]] and
R[w′[i+1]] are equal as well. Indeed, for such i we have that tb(w[i]) = tb(w

′
[i+1]) for all

b ∈ [n] \ {c} and since 0 < ta(w[i]) < sa (because we are reading the substring Ba) with
a < c, the value of tc(w[i]) (respectively tc(w

′
[i+1])) does not play a role in the route R[w[i]]

(respectively R[w′[i+1]]). Hence, the vertices of ∆w and ∆w′ differ only in one element:
R[u] ∈ ∆w corresponding to the prefix u = u1Ba of w and R[u′] ∈ ∆w′ corresponding
to the prefix u′ = u1c of w′. This means that the corresponding simplices in the DKK
triangulation of FOru(s) share a common facet. Moreover, for the prefixes u and u′ we
have that td(u) = td(u

′) for all d ∈ [a + 1, c − 1] ∪ [c + 1, n], tc(u) = tc(u
′) − 1, ta(u) = 0

and ta(u
′) = sa. Thus, we see that the routes R[u] and R[u′] are in minimal conflict at

[vn+1−c, vn−a] and the incoming edge of vn+1−c in R[u] (which is ectc(u)) comes before the
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incoming edge of vn+1−c in R[u′] (which is ectc(u′)) in the order �Inn+1−c given by the framing

on Oru(s). This means that the oriented edge of the graph dual to TriangDKK(Oru(s),�)
is oriented from ∆w to ∆w′ .

Reciprocally, suppose that the vertices of ∆w and ∆w′ differ only in one element. We
denote u1 the longest common prefix of w and w′. We denote a := w`(u1)+1, c := w′`(u1)+1

and suppose that a < c. Let Ba be the a-block of w. Then:
• The substring u1 contains no occurrence of a, because otherwise there would be a

subword aca in w′, which contradicts the 121-pattern avoidance.
• The route R[w[`(u1)+`(Ba)]], corresponding to the prefix u1Ba of w, is in ∆w but not

in ∆w′ .
• The route R[w′[`(u1)+1]], corresponding to the prefix u1c of w′, is in ∆w′ but not in

∆w.
Thus, the only possibility that ∆w and ∆w′ differ only on these elements is that w =
u1Bacu2 and w′ = u1cBau2, where u2 is their longest common suffix. This means that
there is an s-tree rotation along the ascent (a, c) between w and w′.

In this situation, we will say that the common facet of ∆w and ∆w′ is associated to
the transposition of w along (a, c). Note that such facets are exactly the interior facets
(codimension-1 simplices) of TriangDKK(Oru(s),�).

Higher faces of the s-permutahedron

We show that the faces of the s-permutahedron other than vertices and edges are also
encoded in the triangulation TriangDKK(Oru(s),�), after proving several technical results.

We say that a simplex of TriangDKK(Oru(s),�) is interior if it is not contained in the
boundary of the polytopeFOru(s). Otherwise it is in the boundary of TriangDKK(Oru(s),�).

Lemma 4.4.8. Let w be a Stirling s-permutation. Let R = R(k, t, δ) be a route of Oru(s).
Then, R is a vertex of ∆w if and only if the multiset of inversions of w satisfies the following
inequalities:

1. #w(k, i) ≥ t for all 1 ≤ i < k such that δi = 0,

2. #w(k, i) ≤ t for all 1 ≤ i < k such that δi = 1,

3. #w(j, i) = 0 for all 1 ≤ i < j < k such that (δi, δj) = (1, 0),

4. #w(j, i) = sj for all 1 ≤ i < j < k such that (δi, δj) = (0, 1).

We say that the route R implies these inequalities on inversion sets.

Proof. Suppose that R is a vertex of ∆w. It means that R = R[w[r]] for a certain r ∈ [0, | s |]
and it conveys information on the prefix u = w[r]. More precisely, t is the number of
occurrences of k in u, and for all 1 ≤ i < k, the number of occurrences of i in u is either 0
if δi = 0 or si if δi = 1. This gives the announced inequalities on the inversion set of w.
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Reciprocally, suppose that the inversion set of w satisfies these inequalities. Then there
is a prefix u = w[r] of w that contains no occurrence of i for i such that δi = 0, all si
occurrences of i for i such that δi = 1, and exactly t occurrences of k. Then this prefix is
exactly the one associated to the route R[u] = R(k, t, δ) = R.

Let w be a Stirling s-permutation, A a subset of ascents of w, and 1 ≤ a < c ≤ n such
that #w(c, a) < sc. We say that the pair (a, c) is A-dependent in w if there is a sequence
a ≤ b1 < . . . < bk < bk+1 = c such that:

(i) b1 is the greatest letter strictly smaller than c such that the a-block is contained in
the b1-block,

(ii) for all i ∈ [k − 1], the bi-block is directly followed by the bi+1-block,
(iii) the bk-block is directly followed by an occurrence of c,
(iv) (bi, bi+1) ∈ A for all i ∈ [k].

Note that in particular, every ascent (a, c) in A is A-dependent taking k = 1, b1 = a
and b2 = c.

For example for the Stirling s-permutation w = 33725455716 andA = {(2, 5), (5, 7), (1, 6)}
there is an A-dependency between 2 and 7 given by the sequence b1 = 2, b2 = 5 and b3 = 7
but there is no A-dependency between 2 and 6 since the second occurrence of 7 does not
form a block and it is followed by 1.

Proposition 4.4.9. Let w be a Stirling s-permutation, A a subset of its ascents. Then for
all 1 ≤ a < c ≤ n we have that

#w+A(c, a) =

{
#w(c, a) + 1 if (a, c) is A-dependent in w

#w(c, a) otherwise.

Example 4.4.10. If w = 33725455716 and A = {(2, 5), (5, 7), (1, 6)}, then the resulting
Stirling s-permutation is w + A = 33775245561 and the pairs whose inversion number has
been increased by 1 are (2, 5), (2, 7), (4, 7), (5, 7) and (1, 6).

Proof. Let be I the multiset of inversions defined by

#I(c, a) :=

{
#w(c, a) + 1 if (a, c) is A-dependent in w

#w(c, a) otherwise.

Note that if (a, c) is A-dependent and d > c this implies that #I(d, c) = #I(d, a).
Indeed, in this case either both (a, d) and (c, d) are A-dependent or both are not.

We will prove that I = inv(w+A) by showing that I is the smallest transitive multiset
of inversions that contains inv(w) +A. We recall that by transitivity of I we mean that if
a < b < c, then #I(b, a) = 0 or #I(c, a) ≥ #I(c, b).

First, it is clear that I contains inv(w) + A since every pair in A is A-dependent.
Let us show that any transitive multiset of inversions I ′ that contains inv(w) + A

necessarily contains I. Note that for such I ′ we have #I′(c, a) ≥ #w(c, a) for all pairs
(a, c). Let (a, c) be A-dependent with an associated sequence a ≤ b1 < . . . < bk < bk+1 = c
and we proceed by induction on k.

If k = 1, we have that:
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• either b1 = a and (a, c) is in A, and directly #I′(c, a) ≥ #w(c, a) + 1,
• or a < b1 < c, which in this case #I′(b1, a) ≥ #w(b1, a) > 0 since the a-block is

contained in the b1-block in w. We get that

#I′(c, a) ≥ #I′(c, b1) ≥ #w(c, b1) + 1 = #w(c, a) + 1 (4.4)

where the first inequality comes from transitivity, the second from the previous case
since (b1, c) ∈ A and the last equality again because the (a, b1) are A-dependent.

Suppose that k > 1. Then the induction hypothesis implies that #I′(bk, a) ≥ #w(bk, a) +
1 > 0. Just like in equation (4.4), applying transitivity to a < bk < c and using that
(bk, c) ∈ A and (a, bk) is A-dependent (so there cannot be any occurrance of c between a
and bk) gives us the inequalities #I′(c, a) ≥ #I′(c, bk) ≥ #w(c, bk) + 1 = #w(c, a) + 1.

Finally, we check that I is indeed transitive. Let 1 ≤ a < b < c ≤ n and #I(b, a) > 0.
We need to check that #I(c, a) ≥ #I(c, b).

Case 1: if #w(b, a) = 0, then (a, b) is A-dependent and #I(c, a) = #I(c, b).
Case 2: Suppose that #w(b, a) > 0.

Case 2.1: If #I(c, b) = #w(c, b), due to the inclusion inv(w) ⊂ I and the transi-
tivity of inv(w) we have that #I(c, a) ≥ #w(c, a) ≥ #w(c, b) = #I(c, b).

Case 2.2: Suppose that #I(c, b) = #w(c, b) + 1 i.e. (b, c) is A-dependent. If
#w(c, a) ≥ #w(c, b) + 1, we have #I(c, a) ≥ #w(c, a) ≥ #w(c, b) + 1 = #I(c, b). Otherwise,
we have #w(c, a) = #w(c, b) =: i. It follows from the assumption #w(b, a) > 0 that the
a-block appears in w between the first occurrence of b and the i-th occurrence of c. This
implies that (a, c) is also A-dependent, with a corresponding sequence that is included
in the one giving the the A-dependency of (b, c). The two A-dependencies together with
the transitivity of w for a < b < c imply that #I(c, a) = #w(c, a) + 1 ≥ #w(c, b) + 1 =
#I(c, b).

Let (w,A) be a face of Perms. We define ∆(w,A) to be the following intersection of facets
of ∆w:

∆(w,A) :=
⋂

(a,c)∈A

{∆w ∩∆w′ |w′ is the transposition of w along (a, c)} , (4.5)

and ∆(w,A) := ∆w if A = ∅.
Note that the |A| routes that are in ∆w and not in ∆(w,A) correspond to the prefixes of

w that end at an ascent in A.

Lemma 4.4.11. Let (w,A) be a face of Perms and w′ a Stirling s-permutation. We denote
by [w,w + A] the interval of the s-weak order defined by w and w + A.

Then, ∆(w,A) ⊆ ∆w′ if and only if w′ ∈ [w,w + A].

Proof. Recall that the inversion set of w + A is described in Proposition 4.4.9 and that
w′ ∈ [w,w + A] if and only if its inversion set satisfies that for all 1 ≤ a < c ≤ n,
#w(c, a) ≤ #w′(c, a) ≤ #w+A(c, a). We show that these inequalities are exactly the ones
implied by the union of routes that give vertices of ∆(w,A), in the sense of Lemma 4.4.8.

Let (a, c) be a pair with #w(c, a) = t.
We have to show these three inequalities:
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1. There is a route R in ∆(w,A) such that R ∈ ∆w′ implies the inequality #w′(c, a) ≥ t.
We can take the route that corresponds to the first prefix of w containing the t-th
occurrence of c that does not end at an ascent in A. Such a prefix cannot contain
any a since a < c.

2. There is a route R in ∆(w,A) such that #w′(c, a) ≤ t for all w′ with R ∈ ∆w′ if
and only if #w+A(c, a) = t, that is, the pair (a, c) is not A-dependent. Indeed, this
inequality is only implied by routes that contain the edges ect and easa . Such routes in
∆w correspond to prefixes in w that contain the a-block and the t-th occurrence of
c and that do not end inside a b-block for any b < c. The pair (a, c) is A-dependent
exactly when all such prefixes end at a descent in A, so the corresponding routes are
removed in ∆(w,A).

3. If t + 1 < sc and #w+A(c, a) = t + 1, i.e. (a, c) is an A-dependent pair, there is a
route R in ∆(w,A) such that R ∈ ∆w′ implies #w′(c, a) ≤ t + 1. Indeed, we can take
the route that corresponds to the prefix of w that ends at the (t + 1)-th occurrence
of c. Since t+ 1 < sc, c appears afterwards so this prefix does not end at an ascent.
(Note that if t+ 1 = sc there is no need to check that #w′(c, a) ≤ sc).

Lemma 4.4.11 leads to the following alternative characterization of ∆(w,A).

Corollary 4.4.12. ∆(w,A) =
⋂
w′∈[w,w+A] ∆w′.

Lemma 4.4.13. If C is a clique of routes of (Oru(s),�) that contains R(n+1, 1, (0)n),R(n+
1, 1, (1)n) and at least one route that starts with e for each source-edge e that is not (v−1, v0),
then ∆C is in the interior of TriangDKK(Oru(s),�).

Proof. Suppose that ∆C is a boundary simplex of TriangDKK(Oru(s),�). Then it is con-
tained in a facet that is in the boundary of TriangDKK(Oru(s),�). This facet corre-
sponds to a clique of the form ∆w \ R, where w is a Stirling s-permutation and R is
a route of ∆w that does not correspond to an ascent nor a descent of w. Hence, ei-
ther R ∈ {R(n + 1, 1, (0)n),R(n + 1, 1, (1)n)}, or R corresponds to a prefix w[i] such that
wi = wi+1. In this case, suppose that wi is the t-th occurrence of c in w. Then R is the
only route of ∆w that starts with the edge ect . In any case, since C ⊆ ∆w \ R, it does not
satisfy the condition of the lemma.

Corollary 4.4.14. Let w be a Stirling s-permutation and A a subset of its ascents. Then
∆(w,A) is an interior simplex of TriangDKK(Oru(s),�).

Proof. It is sufficient to show that ∆(w,A) contains R(n+ 1, 1, (0)n),R(n+ 1, 1, (1)n) and at
least one route that starts with e for each source-edge e that is not (v−1, v0).

First, it is clear that R(n + 1, 1, (0)n) and R(n + 1, 1, (1)n) are in ∆(w,A) since they do
not correspond to ascents in w.

Let c ∈ [n] and t ∈ [sc − 1]. Then the prefix of w that ends with the t-th occurrence of
c corresponds to a route R that contains the edge source-edge ect . Moreover, there cannot
be an ascent of w after this prefix since there are still occurrences of c afterwards. Thus
the route R is not removed from ∆w to ∆(w,A).
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Theorem 4.4.15. The map (w,A) 7→ ∆(w,A) induces a poset isomorphism between the face
poset of the s-permutahedron Perms and the set of interior simplices of the triangulation
TriangDKK(Oru(s),�) ordered by reverse inclusion.

Proof. The fact that all ∆(w,A) are interior simplices of TriangDKK(Oru(s),�) is stated in
Corollary 4.4.14. The injectivity follows from Lemma 4.4.11.

Let us show the surjectivity. Let F be an interior simplex of TriangDKK(Oru(s),�).
Let w be a Stirling s-permutation that is minimal for the s-weak order with respect to the
condition that F ⊆ ∆w. Then, F is an intersection of facets of ∆w. These facets correspond
to certain transpositions involving w. We denote by A the set of ascents corresponding to
these transpositions. The minimality of w implies that all elements in A are ascents (and
not descents) of w. Thus, F = ∆(w,A), and the choice of w was unique.

Finally, let w,w′ be Stirling s-permutations and A,A′ subsets of their respective ascents.
Lemma 4.4.11 implies that [w,w+A] ⊆ [w′, w′+A′] if and only if ∆(w′,A′) ⊆ ∆(w,A), which
proves that the map is a poset isomorphism.

In a similar way that the minimal elements of the face poset of Perms have a charac-
terization as the maximal cliques of TriangDKK(Oru(s),�), the maximal elements of the
face poset also have an explicit characterization in terms of cliques.

Corollary 4.4.16. A simplex ∆C of TriangDKK(Oru(s),�) corresponds with a maximal
interior face of Perms if and only if C is a clique of size | s | − n + 2 that satisfies the
following:

• R[w[0]] and R[w[| s |]] are in C, and
• each source-edge of Oru(s) that is different from (v−1, v0) is contained in exactly one

route in C.

Proof. We first note that for each i ∈ [n], the graph Oru(s) has si−1 source-edges, so Oru(s)
indeed has

∑n
i=1(si − 1) = | s | − n source-edges that are not (v−1, v0). By Lemma 4.4.13,

a clique C with the above stated properties corresponds with a maximal interior face of
Perms.

Conversely, let (w,A) be a maximal face of Perms. We will check that C = ∆(w,A)

satisfies the specified properties. Let N ⊂ [0, | s |] denote the set of non-ascent positions in
w, so that C = ∪j∈N R[w[j]].

Observe that since w is 121-avoiding, if it has n− 1 ascents, then the ascents are of the
form (i, ci) where i < ci for each i ∈ [n− 1]. Moreover, for each i ∈ [n− 1], it is the si-th
occurrence of i in w which produces an ascent pair in w. Therefore, the set N\{0, | s |}
indexes the first si − 1 occurrences of i in w.

Now suppose j ∈ N\{0, | s |} is a non-ascent position of w so that R[w[j]] ∈ C. We
denote a the letter wj. If wj is the k-th occurrence of a in w for some k ∈ [sa − 1], then
the route R[w[j]] contains the proper source-edge eak. Lastly, since |N\{0, | s |}| = | s | − n,
then C has the desired properties.
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Lidskii-type decompositions of the s-weak order

In this section, we apply Theorem 4.2.22 to provide a Lidskii-type decomposition of the
s-weak order.

In fact, we propose two Lidskii-type decompositions, depending on whether we con-

sider the graph Oru(s) or the graph Ôru(s) where the edge (v−1, v0) is contracted (See
Remark 4.4.2 and the left part of Figure 4.23).

Lemma 4.4.17. Let s = (s1, . . . , sn) be a composition. Then the s-weak order can be parti-
tioned into subposets such that:

• each subposet has a certain type j = (j1, . . . , jn) which is a weak composition of n
that is greater than (1, . . . , 1) for the dominance order and satisfies ji = 0 for all
i ∈ [2, n] such that sn+2−i = 1,

• for each type j there are
∏n

k=1(j1 + · · ·+ jk−k+ 1) pieces of the dissection of type j,
• a subposet of type j is isomorphic to the Hasse diagram of the product of Gale orders

Gale(j1, 1)×Gale(j2, sn − 1)× . . .×Gale(jn, s2 − 1).

Proof. This is a direct application of Theorem 4.2.22 on Oru(s), whose vertices can be
relabeled v0, . . . , vn+1 in order to match the notations of the theorem. Then we have that
for all i ∈ [n], ci = sn+2−i − 1 and oi = 1 (with the convention sn+1 = 2). We only need
to justify why KOru(s)((0, j1 − 1, . . . , jn − 1, 0)) =

∏n
k=1(j1 + · · · + jk − k + 1). An integer

flow on Oru(s) with netflow (0, j1 − 1, . . . , jn − 1, 0) has a value 0 on all source edges and
sink edges. Therefore it is uniquely determined by its values fek0 on edges ei0 for all k ∈ [n]

(then the value on edge eksk is determined). For all k ∈ [n], fek0 can take any integer value

in [0,
∑n+1−k

i=1 (ji − 1)]. Hence

KOru(s)((0, j1−1, . . . , jn−1, 0)) = |FZ
Gs((0, j1−1, . . . , jn−1, 0))| =

n∏
k=1

(j1 + · · ·+jk−k+1).

Lemma 4.4.18. Let s = (s1, . . . , sn) be a composition. Then the s-weak order can be parti-
tioned into subposets such that:

• each subposet has a certain type j = (j1, . . . , jn−1) which is a weak composition of
n− 1 that is greater than (1, . . . , 1) for the dominance order and satisfies ji = 0 for
all i ∈ [2, n− 1] such that sn+1−i = 1,

• for each type j there are
∏n−1

k=1(j1 + · · ·+ jk−k+ 1) pieces of the dissection of type j,
• a subposet of type j is isomorphic to the Hasse diagram of the product of Gale orders

Gale(j1, sn + 1)×Gale(j2, sn−1 − 1) . . .×Gale(jn, s2 − 1).

Proof. This time, we apply Theorem 4.2.22 to Ôru(s), whose vertices are v0, . . . , vn. In this
case we have that c1 = sn+1 and for all i ∈ [2, n−1], ci = sn+1−i−1 and for all i ∈ [n−1],
oi = 1. The justification that K

Ôru(s)
((0, j1−1, . . . , jn−1−1, 0)) =

∏n−1
k=1(j1 +· · ·+jk−k+1)

the same as in the previous lemma.
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Corollary 4.4.19. For a composition s = (s1, . . . , sn), the number of elements of the s-weak
order decomposes as

n−1∏
i=1

(
1 +

n∑
r=n−i+1

sr

)
=

∑
j weak composition of n

of length n
s.t. j≥(1,...,1)

((
1

j1

)) n∏
k=2

((
sn+2−k − 1

jk

)) n∏
k=1

(
n+1−k∑
i=1

ji − k + 1

)

(4.6)

=
∑

j weak composition of n−1
of length n−1
s.t. j≥(1,...,1)

((
sn + 1

j1

)) n−1∏
k=2

((
sn+1−k − 1

jk

)) n−1∏
k=1

(
n−k∑
i=1

ji − k + 1

)
.

(4.7)

Example 4.4.20. Figure 4.23 shows the Lidskii-type decompositions of the (1, 3, 2)-weak
order from Lemma 4.4.17 (top) and Lemma 4.4.18 (bottom). For the first one (top) there
are:

• six pieces of type (3, 0, 0) , which are singletons (represented in pink at the vertices
of the big hexagon),

• four pieces of type (2, 1, 0), which are singletons (represented in yellow on the side
edges of the big hexagon),

• two pieces of type (1, 2, 0), which are singletons (represented in green inside the big
hexagon),

• two pieces of type (2, 0, 1), which are chains of size 2 (represented in violet at the top
and bottom),

• one piece of type (1, 1, 1), which is a chain of size 2 (represented in blue in the centre).
For the second one (bottom), there are:
• two pieces of type (2, 0), which are the Hasse diagrams of Gale(2, 3) (represented in

pink on the sides),
• one piece of type (1, 1), which is the product of Gale(1, 3) and Gale(1, 2) where each

is a chain of respective sizes 3 and 2 (represented in blue in the centre).

Remark 4.4.21. In [GDMP+23, Corollary 6.2], we also present the following enumerative
formula, which comes Lidskii-Baldoni-Vergne formula that we did not present here because
it does not seem to translate into a geometric decomposition of the DKK triangulation of
the flow polytope.

n−1∏
i=1

(
1 +

n∑
r=n−i+1

sr

)
=

∑
j weak composition of n−1

of length n−1
s.t. j≥(1,...,1)

n−1∏
k=1

(
sn+1−k + 1

jk

) n−1∏
k=1

(
n−k∑
i=1

ji − k + 1

)
. (4.8)

Moreover, in this article we present a purely combinatorial proofs of the enumerative
formula 4.7 (Equation 4.6 can be recovered in a similar way), that provides good evi-
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Figure 4.23: The framed graphs Oru(s) and Ôru(s) and the associated Lidskii-type decom-
positions of the s-weak order for s = (1, 3, 2). See Example 4.4.20.

dence that the pieces of the Lidskii-type decompositions are intervals of the s-weak order
(particular case of Conjecture 4.2.25).

4.4.2 The sum of cubes realization

The Cayley trick, that we presented in Section 1.1.4, allows us to give another geometric
realization of the s-permutahedron, as a fine mixed subdivision of a n-dimensional polytope
(or even as a (n− 1)-dimensional one). The Cayley trick was applied to flow polytopes by
Mészáros and Morales in [MM19, Section 7]. We slightly adapt their work for our special
case of the flow polytope FOru(s).

To apply the Cayley trick to our triangulation TriangDKK(Oru(s),�) of the flow poly-
tope FOru(s), we need to describe it as the Cayley embedding of some lower-dimensional
polytopes. Recall that FOru(s) lives in the space of edges of the graph Oru(s). We parame-
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terize this space as Rp×R2n, where p = 1+
∑n

i=1(si−1) and Rp corresponds to the space of
source-edges and R2n to the space of bumps and dips (edges of Orun, see Definition 4.4.1).
Moreover, for all i ∈ [n] and for any point in FOru(s), (i.e. a flow of Oru(s)), we have that
the sum of its coordinates along edges ei0 and eisi is determined by the coordinates along
the source-edges ekt for k ∈ [i + 1, n + 1], t ∈ [sk − 1]. Thus, FOru(s) is affinely equivalent
to its projection on the space Rp × Rn where Rn corresponds to the space of edges ei0 for
i ∈ [n].

With this parameterization, the indicator vector of the route of Oru(s) denoted R(k, t, δ)
(as in the discussion after Definition 4.4.1) with k ∈ [n+ 1], t ∈ [sk − 1] and δ ∈ {0, 1}k−1

is:
ekt ×

∑
i∈[k−1], δi=0

ei0.

Thus, if we denote by ���k−1 these (k−1)-dimensional cubes with vertices {0, 1}k−1×0n−k+1

embedded in Rn, we see that FOru(s) is the Cayley embedding of ���n and ���k−1 repeated
sk − 1 times for k ∈ [n].

We denote by Subdiv�(s) the fine mixed subdivision of the Minkowski sum of cubes
���n+

∑n
i=1(si−1)���i−1 ⊆ Rn obtained by intersecting the triangulation TriangDKK(Oru(s),�)

(projected onto Rp × Rn) with the subspace
{

1
p

}p
× Rn.

The following theorem follows directly from the Cayley trick (Proposition 1.1.15), and
the isomorphism between the face poset of Perms and the interior simplices of the DKK
triangulation given in Theorem 4.4.15.

Theorem 4.4.22. The face poset of the s-permutahedron Perms is isomorphic to the set of
interior cells of Subdiv�(s) ordered by reverse inclusion.

In particular, the s-decreasing trees are in bijection with the maximal cells of Subdiv�(s).

Remark 4.4.23. We can use a different parameterization of the space where FOru(s) lives by
considering the cube ���n as the Cayley embedding of two cubes ���n−1, or equivalently by in-
tersecting Rn with the hyperplane xn = 1

2
. This allows us to lower the dimension and obtain

a fine mixed subdivision of the Minkowski sum of cubes (sn + 1)���n−1 +
∑n−1

i=1 (si− 1)���i−1.

This is also what we would directly obtain if we considered the graph Ôru(s), where the
edge (v−1, v0) of Oru(s) is contracted (see Remark 4.4.2). We use this representation for
the figures.

Figure 4.24a shows the mixed cell corresponding to the Stirling (1, 2, 1)-permutation
w = 3221, obtained from the clique ∆w with the Cayley trick. Figure 4.24b shows the
entire mixed subdivision for the case s = (1, 2, 1). Both figures are represented in the
coordinate system (e2

0, e
1
0).
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Figure 4.24: (a) Summands of the Minkowski cell corresponding to w = 3221 together
with their corresponding routes in the clique ∆w. (b) Mixed subdivision of 2���2 + ���1

corresponding dually to the (1, 2, 1)-permutahedron. The cells are numbered according
to Figure 4.22. The highlighted cell in blue corresponds to w = 3221 as obtained in
Figure 4.24a.

4.4.3 The tropical realization

In the two realizations that we provided in Sections 4.4.1 and 4.4.2, the s-decreasing trees
index the maximal cells of a polytopal complex. However, Conjecture 4.1.1 asks for a
polytopal complex where the s-decreasing trees index the vertices.

In this Section, we explain how tropical dualization and its interplay with the Cayley
trick, that we presented in Section 1.2.2, allow us to obtain such a polytopal realization
and fully answer the conjecture for strict compositions.

Before applying Theorem 1.2.10 to our mixed subdivision Subdiv�(s), we explain how
to obtain admissible lifting functions.

DKK admissible lifting functions

Danilov, Karzanov and Koshevoy provided explicit constructions of admissible lifting func-
tions for the DKK triangulation of a flow polytope ([DKK12, Lemma 2 & 3]) that we can
adapt to our particular graph Oru(s). Note that since their definition of regular subdivi-
sions is in terms of upper faces (linearity areas of a concave function) we change the sign
from their w to our `. We slightly refine their results, using the notion of resolvents that
we introduced in Definition 4.2.2.

Lemma 4.4.24 (adaptation of [DKK12, Lemma 2]). Let (G,�) be a framed graph. A
function ` from the routes of G to R is an admissible lifting function of TriangDKK(G,�)
if and only if:
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For any two non-coherent routes P and Q with resolvents P ′ and Q′ we have:

`(P ) + `(Q) > `(P ′) + `(Q′). (4.9)

Proof. The original statement of [DKK12, Lemma 2] is that a weaker version of this con-
dition, where P ′ and Q′ are not necessarily the resolvents but can be any two routes
that satisfy P + Q = P ′ + Q′, is sufficient. Let us show (with the same ideas as their
proof) that it is also necessary and that we can even choose P ′, Q′ to be the resolvents
of P and Q. Suppose that ` is an admissible lifting function of TriangDKK(G,�) and
let P,Q be two non-coherent routes of (G,�) with resolvents P ′, Q′. Since they form a
clique, P ′ and Q′ are the vertices of an edge of the DKK triangulation of FG. The point
F = 1

2
(P +Q) = 1

2
(P ′ +Q′) belongs to this edge. Since this edge as to be lifted to a lower

face of the lift of the flow polytope FG given by the lifting function `, which is admissible
for TriangDKK(G,�), we necessarily have `(P ′) + `(Q′) < `(P ) + `(Q).

This statement can be made slightly stronger by restricting condition 4.9 to minimal
conflicts.

Lemma 4.4.25. Let (G,�) be a framed graph. A function ` from the routes of G to R is
an admissible lifting function of TriangDKK(G,�) if and only if:

For any minimal conflict between two routes P and Q with resolvents P ′ and Q′, we
have

`(P ) + `(Q) > `(P ′) + `(Q′). (4.10)

Proof. Let ` be a function from the routes of G to R such that for any minimal conflict
between two routes P and Q with resolvents P ′ and Q′, we have `(P )+`(Q) > `(P ′)+`(Q′).
It follows from Lemma 4.4.24 that we only need to show that for any two non-coherent
routes P and Q, there exist routes P ′ and Q′ such that P +Q = P ′+Q′ and `(P )+ `(Q) >
`(P ′) + `(Q′).

First, suppose that P and Q are conflicting at exactly one subroute [vi, vj]. We can
build partial routes R1 = Pvi, R2, . . . , Rk = Qvi that end at vi and such that R1 ≺ R2 ≺
. . . ≺ Rk, their ending edges are adjacent in �Ini and they are not in conflict. This can
be done by building these partial routes from right to left: the ending edge is determined
and we can choose the other ones as we want but if we arrive at a vertex common to a
previously built partial route we choose the same edges as in this partial route. Similarly
we can build partial routes S1 = vjQ,S2, . . . , St = vjP that start at vj and such that
S1 ≺ S2 ≺ . . . ≺ St, their starting edges are adjacent in �Outj and they are not in conflict.
Then for any x ∈ [k − 1], y ∈ [t − 1] the routes RxviPvjSy+1 and Rx+1viPvjSy are in
minimal conflict, with resolvents RxviPvjSy and Rx+1viPvjSy+1. Hence the condition on
` implies the following inequality:

`(RxviPvjSy+1) + `(Rx+1viPvjSy) > `(RxviPvjSy) + `(Rx+1viPvjSy+1). (Wx,y)

When we sum all these inequalities for all x ∈ [k−1], y ∈ [t−1] we see that all terms of the
form `(RxviPvjSy) are cancelled out by pairs, except for (x, y) ∈ {(1, 1), (k, t), (1, t), (k, 1)}.
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We end up with:

`(R1viPvjSt) + `(RkviPvjS1) > `(R1viPvjS1) + `(RkviPvjSt),

which is exactly `(P ) + `(Q) > `(P ′) + `(Q′), where P ′ and Q′ are the resolvents of P,Q.
Now, we can finish the proof by induction on the number of conflicts. Suppose that `

satisfies that for any pair of non-coherent routes P and Q with at most n conflicts their
resolvents P ′, Q′ satisfy `(P ) + `(Q) > `(P ′) + `(Q′). Let P and Q be non-coherent routes
with n + 1 conflicts at subroutes [x1, y1], . . . , [xn+1, yn+1]. Since the routes P and Px1Q
have n conflicts and their resolvents are Px1P

′ = P ′ and Px1Q
′, the induction hypothesis

gives us:
`(P ) + `(Px1Q) > `(P ′) + `(Px1Q

′).

Similarly we have:
`(Q) + `(Qx1P ) > `(Qx1P

′) + `(Q′).

Moreover, the routes P and Qx1P
′ only have one conflict and their resolvents are P ′ and

Qx1P , so we have
`(P ) + `(Qx1P

′) > `(P ′) + `(Qx1P ),

and similarly:
`(Q) + `(Px1Q

′) > `(Px1Q) + `(Q′).

When we sum up these four inequalities, some terms cancel out and we recover:

`(P ) + `(Q) > `(P ′) + `(Q′).

Recall that the routes of Oru(s) are denoted R(k, t, δ) as in the discussion after Defini-
tion 4.4.1. Adapting [DKK12, Lem 3] to our context gives us the following lemma.

Lemma 4.4.26. Let s be a composition and ε > 0 a sufficiently small real number. Consider
`ε to be the function that associates to a route R = R(k, tk, δ) of Oru(s) the quantity

`ε(R) = −
∑

k≥c>a≥1

εc−a(tc + δa)
2, (4.11)

where tc =

{
0 if δc = 0,

sc if δc = 1,
for all c ∈ [k − 1].

Then `ε is an admissible lifting function for TriangDKK(Oru(s),�).

Proposition 4.4.27. In Lemma 4.4.26, it is enough to take ε < 1
n(1+

∑n
j=2(2sj+1))

.

Proof. Let P = R(k, t, δ) and Q = R(k′, t′, δ′) be two routes of Oru(s) that are in minimal
conflict at a common route [vn+1−y, vn−x]. We can suppose that Pvn+1−y ≺ Qvn+1−y. Note
that this implies that δx = 1 and δ′x = 0. We deal separately with the three following
cases (which are the only possible ones for a minimal conflict) and compute the quantity
H := `ε(P ) + `ε(Q)− `ε(P ′)− `ε(Q′).
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Case 1: k = k′ = y, t ∈ [sy − 2], t′ = t+ 1.
In the computation of `ε(P ) + `ε(Q) − `ε(P

′) − `ε(Q
′), we see that all pairs (a, c) in

formula 4.11 cancel out either with `ε(P )−`ε(Q′) or `ε(Q)−`ε(P ′), except for (a, c) = (x, y).
Thus we have:

H = `ε(P ) + `ε(Q)− `ε(P ′)− `ε(Q′)

= −εy−x
(

(t+ 1)2 + ((t+ 1) + 0)2 − (t+ 0)2 − ((t+ 1) + 1)2
)

= 2 εy−x > 0.

Case 2: k > k′ = y, δy = 0, t′ = 1.
Here the pairs that do not cancel out are all pairs (a, c) for k ≥ c ≥ y and x ≥ a. Then

we have:

H = −
∑
x≥a

εy−a
(
δ2
a + (1 + δ′a)

2 − δ′a
2 − (1 + δa)

2
)
−

∑
k≥c>y, x≥a

εc−a
(

(tc + δa)
2 − (tc + δ′a)

2
)

= 2 εy−x − 2
∑
x>a

εy−a(δ′a − δa)−
∑

k≥c>y, x≥a

εc−a
(

2 tc(δa − δ′a) + δ2
a − δ′a

2
)

≥ 2 εy−x − 2
∑
x>a

εy−a −
∑

k≥c>y, x≥a

εc−a(2sc + 1)

≥ 2 εy−x − 2 εy−x+1
(
x− 1 + x

∑
k≥c>y

(2sc + 1)
)

≥ 2 εy−x
(

1− ε
(
y − 2 + (y − 1)

∑
k≥c>y

(2sc + 1)
))

Then, we see that if ε < 1
n(1+

∑n
j=2(2sj+1))

, then for any y ∈ [2, n] we have

1− ε
(
y − 2 + (y − 1)

∑
k≥c>y

(2sc + 1)
)
> 0,

thus H > 0.
Case 3: k′ > k = y, t = sy − 1, δ′y = 1. Here again, the pairs that do not cancel out are

all pairs (a, c) for k ≥ c ≥ y and x ≥ a and we have:

H = −
∑
x≥a

εy−a
(

(sy − 1 + δa)
2 + (sy + δ′a)

2 − (sy − 1 + δ′a)
2 − (sy + δa)

2
)

−
∑

k≥c>y, x≥a

εc−a
(

(t′c + δ′a)
2 − (t′c + δa)

2
)

= 2 εy−x + 2
∑
x>a

εy−a(δ′a − δa)−
∑

k≥c>y, x≥a

εc−a
(

2 t′c(δ
′
a − δa) + δ′a

2 − δ2
a

)
,

and the rest of the computations are very similar to the Case 2.
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Figure 4.25: The (1, 1, 1, 2)-permutahedron (left) and the (1, 2, 2, 2)-permutahedron (right)
via their tropical realization.

Coordinates for the s-permutahedron

For the remainder of this section s is assumed to be a composition and ` an admissible
lifting function for TriangDKK(Oru(s),�).

Since we defined in Section 4.4.2 the mixed subdivision Subdiv�(s) from the regular
triangulation TriangDKK(Oru(s),�) via the Cayley trick, the following theorem directly
follows from Theorem 1.2.10.

Theorem 4.4.28. The tropical dual of the mixed subdivision Subdiv�(s) is the polyhedral
complex of cells induced by the arrangement of tropical hypersurfaces

Hs(`) :=
{
T (F k

t ) | k ∈ [2, n+ 1], t ∈ [sk − 1]
}
,

where F k
t (x) =

⊕
`(R(k, t, δ))� xδ = min

{
`(R(k, t, δ)) +

∑
i∈[k−1] δixi | δ ∈ {0, 1}k−1

}
.

Definition 4.4.29. We denote by Perms(`) the polyhedral complex of bounded cells induced
by the arrangement Hs(`).

Theorem 4.4.30. The face poset of the geometric polyhedral complex Perms(`) is isomor-
phic to the face poset of the combinatorial s-permutahedron Perms.

Proof. We showed in Theorem 4.4.22 that the face poset of Perms is anti-isomorphic to
the face poset of interior cells of the mixed subdivision Subdiv�(s). It then follows from
Lemma 1.2.9 and Theorem 4.4.28 that this poset is isomorphic to the poset of bounded
cells of Hs(`), which is the face poset of Perms(`).
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Figure 4.25 shows some examples of such realizations of the s-permutahedron.

Moreover, we can describe the explicit coordinates of the vertices of Perms(`). For a
Stirling s-permutation w, a ∈ [n] and t ∈ [sa], we denote i(at) the length of the prefix of
w that precedes the t-th occurrence of a. As explained in the argument leading to Lemma
4.4.6, this prefix is associated to the route R[w[i(at)]] in the clique ∆w.

Theorem 4.4.31. The vertices of Perms(`) are in bijection with Stirling s-permutations.
Moreover, the vertex v(w) = (v(w)a)a∈[n] associated to a Stirling s-permutation w has
coordinates

v(w)a =
sa∑
t=1

(
`(R[w[i(at)]])− `(R[w[i(at)+1]])

)
. (4.12)

Proof. The bijection between vertices of Perms(`) and Stirling s-permutations is a direct
consequence of Theorem 4.4.30.

Let w be a Stirling s-permutation. It is associated via Theorem 4.4.28 to the intersection
of all regions of the form{

x ∈ Rn
∣∣∣ `(R(c, t, δ)) +

∑
a∈[c−1]

δaxa = min
θ∈{0,1}c−1

{`(R(c, t, θ)) +
∑

a∈[c−1]

θaxa}
}
, (4.13)

where R(c, t, δ) is a route in the clique ∆w. It follows from the previous remark that
this intersection is a single point, that we denote v. We show that v necessarily has the
coordinates given by the theorem. Let a ∈ [n]. Both routes R[w[i(a1)]] and R[w[i(asa )+1]] are
of the form R(c, t, δ) and R(c, t, δ′) respectively, where c is the smallest letter such that the
a-block is contained in the c-block in w, and t denotes the number of occurrences of c that
precedes the a-block. If the a-block is contained in no other block we set c = n + 1 and
t = 1. The indicator vectors δ and δ′ satisfy that δ′− δ is the indicator vector of the letters
b ≤ a such that the b-block is contained in the a-block in w. The fact that both routes
belong to ∆w implies that `(R[w[i(a1)]]) +

∑
b∈[c−1] δbvb = `(R[w[i(asa )+1]]) +

∑
b∈[c−1] δ

′
bvb,

thus ∑
b∈[a] s.t.

b-block ⊆ a-block

vb = `(R[w[i(a1)]])− `(R[w[i(asa )+1]]).

Then, we obtain Equation 4.12 by induction on a. Indeed, if the equation is true for all b <
a, then all terms in

∑
b∈[a−1] s.t.

b-block ⊂ a-block

vb cancel by pairs except the terms that correspond to a

prefix ending at or just before an occurrence of a in w, which are of the form −`(R[w[i(ar)]])
for r ∈ [2, sa] or `(R[w[i(ar)+1]]) for r ∈ [sa − 1].

Corollary 4.4.32. The s-permutahedron Perms(`) is contained in the hyperplane{
x ∈ Rn

∣∣∣∣∣
n∑
i=1

xi = `(R(n+ 1, 1, (0)n)− `(R(n+ 1, 1, (1)n))

}
. (4.14)
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Theorem 4.4.33. Let 1 ≤ a < c ≤ n. Let w and w′ be Stirling s-permutations of the form
u1Bacu2 and u1cBau2 respectively, where Ba is the a-block of w and w′.

Then the edge of Perms(`) corresponding to the transposition between w and w′ is:

v(w′)− v(w) = (`(R[u1c]) + `(R[u1Ba])− `(R[u1])− `(R[u1Bac])) (ea − ec), (4.15)

where (ei)i∈[n] is the canonical basis of Rn.

Proof. We denote t := #w(c, a) + 1, so that the transposition from w to w′ exchanges the
a-block with the t-th occurrence of c. We use the expression of the explicit coordinates
given in Theorem 4.4.31 to compute v(w′) − v(w). The only routes that do not cancel
out are the ones corresponding to prefixes u1, u1c, u1Ba and u1Bac, which gives the same
route as u1cBa. Indeed, a prefix contained in u1 is common to w and w′ ; a prefix that
ends inside the a-block does not give information on c, so the corresponding route will be
common to w and w′, and a prefix that ends inside u2 does not give information on the
relative order of the a-block and letter c, so the corresponding route will also be common
to w and w′. Hence:

v(w′)− v(w) = (v(w′)a − v(w)a) ea + (v(w′)c − v(w)c) ec

=
(
`(R[w′[i(a1)]])− `(R[w′[i(asa )+1]])− `(R[w[i(a1)]]) + `(R[w[i(asa )+1]])

)
ea

+
(
`(R[w′[i(ct)]])− `(R[w′[i(ct)+1]])− `(R[w[i(ct)]]) + `(R[w[i(ct)+1]])

)
ec

= (`(R[u1c])− `(R[u1cBa])− `(R[u1]) + `(R[u1Ba])) ea

+ (`(R[u1])− `(R[u1c])− `(R[u1Ba]) + `(R[u1Bac])) ec

= (`(R[u1c]) + `(R[u1Ba])− `(R[u1])− `(R[u1Bac])) (ea − ec).

It follows from Lemma 4.4.25 that we have

`(R[u1c]) + `(R[u1Ba])− `(R[u1])− `(R[u1Bac]) > 0,

since P := R[u1Ba] and Q := R[u1c] are in minimal conflict at [vn+1−c, vn+1−a] and
P ′ := R[u1] and Q′ := R[u1Bac] are their resolvents.

Lemma 4.4.34. For any strictly decreasing sequence of real numbers κ1 > . . . > κn, if we
orient the edges of Perms(`) according to the direction

∑n
i=1 κiei we recover the Hasse

diagram of the s-weak order.

Proof. This is a direct consequence of Theorem 4.4.33 and the remark at the end of its
proof.

Lemma 4.4.35. The support supp(Perms(`)), i.e. the union of faces of Perms(`), is a poly-
tope combinatorially isomorphic to the (n−1)-dimensional permutahedron. More precisely
it has:

1. vertices v(wσ) for all permutation σ of [n] where wσ is the Stirling s-permutation

wσ = σ(1) . . . σ(1)︸ ︷︷ ︸
sσ(1) times

. . . σ(n) . . . σ(n)︸ ︷︷ ︸
sσ(n) times

,
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2. facet defining inequalities

〈δ,x〉 ≥ `(R(n+ 1, 1, (0)n))− `(R(n+ 1, 1, δ)), (4.16)

〈1− δ,x〉 ≤ `(R(n+ 1, 1, δ))− `(R(n+ 1, 1, (1)n)), (4.17)

for all δ ∈ {0, 1}n.

Proof. 1. Let σ be a permutation of [n]. we consider the linear functional f(x) =∑
a∈[n] σ(a)xa. Among the vertices of Perms(`), f is maximized on v(wσ). Indeed,

let w′ be a Stirling s-permutation.

• If w′ contains an ascent (a, c) such that σ(a) > σ(c), then f is increasing along
the edge of direction ea − ec corresponding to the transposition of w′ along the
ascent (a, c).

• If w′ contains a descent (c′, a′) such that σ(a′) < σ(c′), then f is increasing along
the edge of direction ec′−ea′ corresponding to the transposition of w′ along the
descent (c′, a′).

• If w′ is in neither of the above cases, than necessarily w′ = wσ.

This shows that the vertices of supp(Perms(`)) have the same normal cones as the
(n− 1)-permutahedron (embedded in Rn), hence its normal fan is the braid fan.

2. It follows from the fact that all cliques ∆w contain the routes R(n + 1, 1, (0)n) and
R(n + 1, 1, (1)n) (see the remark before Lemma 4.4.6) that all vertices of Perms(`)
are contained in the region{

x ∈ Rn
∣∣∣ `(R(n+ 1, 1, (0)n)) = `(R(n+ 1, 1, (1)n)) +

∑
a∈[n]

xa

= min
θ∈{0,1}n

{`(R(n+ 1, 1, θ)) +
∑
a∈[n]

θaxa}
}
.

This region is exactly defined by intersecting the half-spaces defined by 4.16 and 4.17.

Moreover, let δ ∈ {0, 1}n and I := {i ∈ [n] | δi = 1}. The equality in 4.16 and 4.17
is achieved exactly on vertices v(wσ) where {σ(1), . . . , σ(|I|)} = I. Hence, these
inequalities define the facets of supp(Perms(`)).

Remark 4.4.36. With similar arguments we can see that the restriction of the s-weak order
to a face of supp(Perms(`)), associated to an ordered partition, will correspond to a product
of s′-weak orders, one for each part of the ordered partition.

Note that Lemma 4.4.35 finishes to answer Conjecture 4.1.1 in the case where s is a
composition, because then the zonotope

∑
1≤i<j≤n sj[ei, ej] is combinatorially isomorphic

to the (n− 1)-dimensional permutahedron.
In the case where ` is given by Lemma 4.4.26, we can even go a bit further.
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Proposition 4.4.37. Let ε > 0 be a small enough real number so that `ε is an admissible
lifting function for TriangDKK(Oru(s),�).

Then the support supp(Perms(`ε)) is a translation of the zonotope 2
∑

1≤a<c≤n sc ε
c−a[ea, ec].

Proof. It follows from Lemma 4.4.35 that the edges of supp(Perms(`ε)) are of the form
[v(wσ),v(wσ

′
)], where σ and σ′ are permutations of [n] related by a transposition along

an ascent (a, c). When we plug the expression 4.11 of `ε into the formula 4.15, where the
letter c is replaced by sc occurrences of c, we see that the only terms that do not cancel
out are those involving the pair (a, c):

v(wσ
′
)− v(wσ) = −εc−a

(
(0 + 1)2 + (sc + 0)2 − (0 + 0)2 − (sc + 1)2

)
(ea − ec)

= 2 sc ε
c−a(ea − ec).

Hence all edges of the same direction have the same length, and since supp(Perms(`ε)) is
combinatorially equivalent to a permutahedron, it follows that it is a zonotope.

4.5 Perspectives on geometric realizations of the
quotients of the s-weak order

In this section, we sketch briefly the directions that we worked on recently, which deal with
Ceballos and Pons second conjecture and more generally with geometric realizations for
lattice quotients of the s-weak order.

We first provide some background about lattice quotients, and some elements related
to lattice quotients of the weak order.

4.5.1 Background on lattice quotients of the weak order

Let (X,�) be a lattice.
A join irreducible element in X is an element that covers exactly one other element

of X.
A canonical join representation of an element y ∈ X is a way to write y =

∨
J that is

irredundant (there is no J ′ ( J such that y =
∨
J ′) and minimal (for any other J ′ ⊆ X

such that y =
∨
J ′, we have that for any element x ∈ J there is x′ ∈ J ′ such that x � x′).

Such a J is an antichain of join irreducible elements.
A lattice congruence on the lattice X is an equivalence relation ≡ on X which respects

∨ and ∧: for any x1, x2, y1, y2 ∈ X such that x1 ≡ x2 and y1 ≡ y2 we have x1∨ y1 ≡ x2∨ y2

and x1 ∧ y1 ≡ x2 ∧ y2.
The lattice quotient of X by ≡ is then the lattice X/≡ whose elements are the equiv-

alence classes of ≡ with the order A � B if and only if there are a ∈ A, b ∈ B such that
a � b.
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A lattice X is semidistributive if for any x, y, z ∈ X, x∨ y = x∨ z implies x∨ (y ∧ z) =
(x ∨ y) ∧ (x ∨ z) and x ∧ y = x ∧ z implies x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

A semidistributive lattice X has the following special properties:
• Any y ∈ X admits a canonical join representation with join irreducible elements.
• To describe a lattice quotient it is sufficient to know which of the join irreducible

elements are contracted (i.e. they are not the minimal element in their equivalence
class).

Figure 4.26 depicts the sylvester congruence on the weak order on S4, whose corre-
sponding lattice quotient is the Tamari lattice.

Figure 4.26: Example of lattice quotient: from the weak order (left) to the Tamari lattice
(right). The join irreducible elements of the weak order are colored in red if they are
contracted by the sylvester congruence or in green if they are preserved. Figure from
Vincent Pilaud.

Lattice quotients of the weak order on Sn were extensively studied by Nathan Reading
in [Rea05, Rea04, Rea15]. In [Rea05], he proves that for any lattice congruence ≡ of the
weak order, the operation of gluing together the cones of the braid fan that belong to the
same congruence class still defines a complete fan, called the quotient fan of ≡, whose dual
graph gives the Hasse diagram of the lattice quotient Sn/ ≡. He provides a way to build
the quotient fan of ≡ by associating to each join irreducible element α of the weak order
an (n − 1)-dimensional cone S(α), called the shard of α. The quotient fan of ≡ is then
obtained by taking the union of all shards S(α) for the join irreducible elements α that
are not contracted by the congruence ≡. In [Rea15], Reading gives a handy combinatorial
model for the join irreducible elements of the weak order in terms of arcs, such that the
canonical join representations correspond to non-crossing arc diagrams. See examples on
the left of Figure 4.27.

Pilaud and Santos ([PS19]) showed that the quotient fan of ≡ is the normal fan of a
polytope, called a quotientope. Padrol, Pilaud and Ritter ([PPR23]) provided a simpler
realization of quotientopes as Minkowski sums of elementary polytopes SP (α), called the
shard polytopes. See examples on the right of Figure 4.27.
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Figure 4.27: Quotient fans of the trivial (above) and sylvester (below) congruences on
the weak order on S3 and the corresponding Minkowski sums of shard polytopes. Each
shard and shard polytope is indexed by the arc of the join irreducible of the weak order it
corresponds to. Figures from Vincent Pilaud.

Among all lattice congruences of the weak order, a special family was identified by
Pilaud and Pons [PP18] under the name permutrees, which interpolates the weak order,
the Tamari lattice, the boolean lattice, and contains all the Cambrian lattices ([Rea06]).
These congruences are obtained by choosing which join irreducible elements of rank 2
are contracted or not. They are indexed by a parameter δ ∈ { , , , }n−2 and can be
described as a poset on combinatorial objects called δ-permutrees. Their Hasse diagram can
be realized as the edge-graph of polytopes called δ-permutreehedra, which have the special
property that they are the only quotientopes that can be obtained from the standard
permutahedron by removing facets ([PP18, CPS21]).

4.5.2 Towards realizations of the s-quotientoplexes via s-shardoplexes

In [PP24], with Vincent Pilaud we recently generalized these constructions for the s-weak
order, which is also a semidistributive lattice ([CP22, Proposition 1.37]).

We define s-arcs and s-shards to model the join-irreducible elements of the s-weak order.
The union of all s-shards does not define a fan anymore, but a polyhedral complex that
covers Rn with set of vertices V , and that we call the s-foam. See Figure 4.28 for an example
with s = (1, 2, 1), where the polyhedral complex has two vertices {v1, v2} (in gray).

Then, we associate to each s-arc α a collection of polytopes {Sh(α)v}v∈V where each
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Figure 4.28: (1, 2, 1)-foam. The shards are indexed by their corresponding (1, 2, 1)-arc.
The 2-cells are indexed by the (1, 2, 1)-decreasing trees. Figure from Vincent Pilaud.

Sh(α)v is a shard polytope or a face of it. These polytopes form a polytopal complex that
we call the α-shardoplex.

Let ≡ be a lattice congruence of the s-weak order, L≡ the corresponding lattice quotient
and A≡ the set of join-irreducible elements of the s-weak order that are not contracted by ≡.
Then we have that:

• the graph dual to the polyhedral complex defined by the s-shards S(α) for α ∈ A≡
(called the quotient foam) gives the Hasse diagram of L≡,

• the polytopes {
∑

α∈A≡ Sh(α)v}v∈V are the maximal cells of a polytopal complex of
dimension n− 1 whose graph gives the Hasse diagram of L≡ and whose support is a
quotientope. We call this polytopal complex the s-quotientoplex.

See Figure 4.29 for the continuation of the example with s = (1, 2, 1) from Figure 4.28.

Note that this gives a new answer to Conjecture 4.1.1, that works also when s is a
weak composition (when it has zero entries). Moreover, when s is a composition, the
s-Tamari lattice is a lattice quotient of the s-weak order ([CP22, Theorem 2.20]), so we
obtain a realization of the s-associahedron that can be obtained from a realization of the
s-permutahedron, as asked in Conjecture 4.1.2. Indeed, we have a continuous deforma-
tion of the s-permutahedron into the s-associahedron by taking the polytopal complexes
{
∑

α∈A Sh(α)v}v∈V + λ{
∑

β∈B Sh(β)v}v∈V where A is the set of join irreducible that are
not contracted by the s-sylvester congruence and B the set of join irreducible that are
contracted by the s-sylvester congruence, for λ varying from 1 to 0. The correspondence
with the dual polyhedral complex shows that some codimension 1-faces disappear at the
end.

Moreover, the representation of the join irreducible elements with s-arcs gives a natural
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Figure 4.29: The (1, 2, 1)-permutahedron obtained as the (1, 2, 1)-quotientoplex. Each
summand of the Minkowski sum of α-shardoplexes {Sh(α)v1 ,Sh(α)v2} is labeled by the
(1, 2, 1)-arc corresponding to the join irreducible element α of the (1, 2, 1)-weak order and
colored according to the shards on Figure 4.28.

way to extend the permutree congruences to a family of lattice congruences of the s-weak
order. The corresponding lattice quotients can be modeled by lattices on (s, δ)-permutrees
for any δ ∈ { , , , }n−2.

4.5.3 Towards realizations of the (s, δ)-permutreehedra via flow

polytopes and M -moves on the s-oruga graph

With Matias von Bell, Rafael S. González D’León, Alejandro H. Morales, Daniel Tamayo
Jiménez, Yannic Vargas and Martha Yip, we are working on several research directions
that arise from our collaboration on realizing the s-permutahedron via triangulations of
flow polytopes. We define a graph operation, called the M -move, that can be applied to
some edges of the s-oruga graph to recover the s-caracol graph, which allows to realize the
s-Tamari order ([BGMY23]).

Conjecture 4.5.1. By applying the M-move to all possible subsets of non-source and non-
sink edges of the s-oruga graph, we can recover exactly the (s, δ)-permutree lattices for all
δ ∈ { , , , }n−2.

The case s = (1, ..., 1) of Conjecture 4.5.1, where we recover the classical weak order and
the permutrees, is already written down in Daniel Tamayo Jiménez’s PhD thesis [TJ23,
Theorem 7.3.5 and Corollary 7.3.7].

We are also studying the M -move operation on framed graphs in more generality. In
particular, von Bell and Ceballos have a way to associate a lattice structure on the set of
maximal cliques of any framed graph ([BC2X], in preparation). It seems that applying the
M -move always corresponds to taking a lattice quotient.

Other directions of research are: to study the combinatorial structures induced by the
DKK triangulation of the s-oruga graph endowed with other framings, to find analogues
of the s-oruga graph for other Coxeter types.
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[Bjö92] Anders Björner. Essential chains and homotopy type of posets. Proc. Amer.
Math. Soc., 116(4):1179–1181, 1992. 76, 77, 79, 113, 114
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[TJ23] Daniel Tamayo Jiménez. Combinatorics of permutreehedra and geometry of
s-permutahedra. PhD thesis, Univeristé Paris-Saclay, 2023. 137, 140, 187
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