
 
 
 

 
 

 

 
 
 
 
 

 
 

 
 
 
 
  

Congested Optimal Transport  
in the Heisenberg Group 

 
Michele Circelli 

 
 
 
 
 

 
 
 
 
 

 
 

 
 
 
Aquesta tesi doctoral està subjecta a la llicència Reconeixement 4.0. Espanya de Creative 
Commons. 
 
Esta tesis doctoral está sujeta a la licencia  Reconocimiento 4.0.  España de Creative 
Commons. 
 
This doctoral thesis is licensed under the Creative Commons Attribution 4.0. Spain License.  
 



  

in cotutela con Universitat de Barcelona

DOTTORATO DI RICERCA IN

MATEMATICA

Ciclo 36

Settore Concorsuale: 01/A3 - ANALISI MATEMATICA, PROBABILITÀ' E STATISTICA 
MATEMATICA

Settore Scientifico Disciplinare: MAT/05 - ANALISI MATEMATICA

CONGESTED OPTIMAL TRANSPORT IN THE HEISENBERG GROUP

Presentata da: Michele Circelli

Supervisore

Giovanna Citti

Esame finale anno 2024

Coordinatore Dottorato

Giovanni Mongardi

Supervisore

ALBERT CLOP PONTE



2



Abstract of the thesis

In this thesis we adapted the problem of continuous congested optimal
transport to the Heisenberg group, equipped with a sub-Riemannian metric:
we restricted the set of admissible paths to the horizontal curves. We ob-
tained the existence of equilibrium configurations, known as Wardrop Equi-
libria, through the minimization of a convex functional, over a suitable set of
measures on the horizontal curves. Moreover, such equilibria induce trans-
port plans that solve a Monge-Kantorovic problem associated with a cost,
depending on the congestion itself, which we rigorously defined. We also
proved the equivalence between this problem and a minimization problem
defined over the set of p-summable horizontal vector fields with prescribed
divergence. We showed that this new problem admits a dual formulation
as a classical minimization problem of Calculus of Variations. In addition,
even the Monge-Kantorovich problem associated with the sub-Riemannian
distance turns out to be equivalent to a minimization problem over measures
on horizontal curves. Passing through the notion of horizontal transport
density, we proved that the Monge-Kantorovich problem can also be formu-
lated as a minimization problem with a divergence-type constraint. Its dual
formulation is the well-known Kantorovich duality theorem. In the end, we
treated the continuous congested optimal transport problem with orthotropic
cost function: we proved the Lipschitz regularity for solutions to a pseudo
q-Laplacian-type equation arising from it.
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Introduction

The aim of this thesis is to study the problem of continuous congested
optimal transport in the Heisenberg group, equipped with a sub-Riemannian
metric. We will introduce three equivalent problems: one of them will give
rise to a quasilinear PDE in divergence form.

The classical Monge-Kantorovich formulation of the optimal transport
problem

inf
γ∈Π(µ,ν)

ˆ
X×X

c(x, y)dγ(x, y), (1)

has been widely studied in literature in general metric spaces (X, d): here the
set Π(µ, ν) consists of probability measures γ on the product space X ×X,
with prescribed marginals µ, ν and the cost function c ≥ 0 is typically a power
of the distance d. See [87] for an overview on this topic. This formulation
depends only on the amount of mass γ(x, y) transiting between two points
x, y, but not on the paths followed by it. The problem of congested optimal
transport is a variant of the problem (1), which take into account congestion
over paths. The first contribution in this direction was given by Wardrop
in [94], where he introduced a concept of equilibrium for a traffic problem
on a network. Let us consider two discrete probability measures µ and ν

on it, representing the distributions of agents and destinations, respectively.
For any pair of nodes x and y, γ(x, y) represents the amount of agents that
have to go from the node x to the node y. Wardrop supposed that each path,
connecting x to y, has a cost that depends on the portion of γ(x, y) transiting
through it. Of course, on the network there is an equilibrium if and only if
all the actually used paths, connecting the nodes x and y, provide a cost
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that is less than, or equal to, the one provided by any other path between
the same nodes. Later in [14], Beckmann et al. showed that an equilibrium
is a solution to a convex minimization problem, taking into account the total
congestion over the whole network. See for instance [87, Section 4.4] and [44]
for an overview on this topic.

In [43] Carlier et al. proposed a continuous version of the previous model,
by replacing the network with a domain Ω in R2 and the edges of the network
with the space L of Lipschitz curves. The ways in which traffic is distributed
over Ω are modelled through traffic plans, i.e. probability measures Q over
L, which connect µ to ν. Each traffic plan generates a traffic intensity iQ,
whose action over a set A ⊆ Ω describes how much traffic there is over the
curves corresponding to the traffic plan Q and passing through the subregion
A: ˆ

Ω

φ(x)diQ(x) :=

ˆ
L

ˆ 1

0

φ(σ(t))|σ̇(t)|dtdQ(σ), ∀φ ∈ C(Ω). (2)

If at every point x there is an amount of traffic iQ(x), and the congestion
effects are described by a function g ≥ 0, then the total cost of passing
through x will be G(iQ(x)) = iQ(x)g(iQ(x)) and a Wardrop equilibrium is a
minimum of the overall transport cost, i.e. a solution to

inf
Q

ˆ
Ω

G(iQ(x))dx, (W)

whenever the composition G ◦ iQ exists. In this configuration nobody is
interested to change its path, since everyone is paying the least.

In [30] Brasco et al. proved that the problem (W) is equivalent to a
minimization problem over vector fields with prescribed divergence

inf
w∈Lp(Ω,R2)

{ˆ
Ω

G(w(x))dx : divw = µ− ν

}
, (B)

where G(w) := G(|w|). The previous problem admits the following dual
formulation, as a minimization of a classical functional in Calculus of Varia-
tions,

sup

{ˆ
Ω

φd(µ− ν)−
ˆ
Ω

G∗(∇φ) : φ ∈ W 1,q(Ω)

}
, (D)
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where G∗ is the Legendre transform of G and q = p
p−1

; the corresponding
Euler-Lagrange equation is

div (∇G∗(∇φ)) = µ− ν, in Ω.

It turns out to be the Laplace or q-Laplace equation, in the simplest cases,
but it may be much more degenerate in a more realistic traffic model, see
[30], [89], [49], [23], [28] and [88]. See also [45], [32] and [44] for more details
about the equivalence between the problems (W),(B) and (D).

This thesis deals with the problem of continuous congested optimal trans-
port in the Heisenberg Group Hn. This is the simplest non commutative Lie
group: it coincides with R2n+1 with a totally degenerate metric defined on a
sub-bundle of the tangent bundle. This subbundle is called horizontal bun-
dle and it can be assigned through a family X1, . . . , X2n of horizontal vector
fields : all the differential calculus in this setting is expressed in terms of these
vector fields, for which the following non-trivial bracket relation holds

X2n+1 := [Xi, Xn+i] ̸= 0, ∀i ∈ {1, . . . , n}.

In particular, displacement is allowed only along horizontal curves, i.e. inte-
gral curves of the vector fields (Xi)

2n
i=1: the sub-Riemannian distance between

two points x, y ∈ Hn is given by

dSR(x, y) := inf

{ˆ 1

0

|σ̇(t)|Hdt : σ horizontal curve, σ(0) = x, σ(1) = y

}
,

where | · |H is the norm associated with the metric on the horizontal bundle.
See for instance [1], [19], [35], [36] and [69] for a general overview on this type
of spaces.

The Monge-Kantorovich problem in the Heisenberg group

inf
γ∈Π(µ,ν)

ˆ
Hn×Hn

dSR(x, y)
αdγ(x, y). (3)

was first studied in [5], where L. Ambrosio and S. Rigot proved the existence
and the uniqueness of the solution to (3) for α = 2; this result was extended
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to more general non-homogeneous settings in [58]. The first work on the
problem (3) for α = 1 is [52], where the authors proved the existence of
solutions induced by maps. Afterwards the analogous result was proven in
more general measure metric spaces, see for instance [16] and [46].

In this direction, we introduced the horizontal transport density aγ defined
as ˆ

Hn

φ(x)daγ :=

ˆ
Hn×Hn

(ˆ 1

0

φ(σx,y(t))|σ̇x,y(t)|Hdt
)
dγ(x, y), (4)

for any φ continuous, where γ is a solution to (3) with α = 1, and σx,y is
a minimizing geodesic between the points x and y. In (4) the exterior inte-
gral is computed over the product space Hn ×Hn, while in the definition of
traffic intensity it runs over curves: in this sense the traffic intensity can be
interpreted as a dynamic version of the transport density. We adapted some
summability results contained in [44] (which are specific to the Euclidean set-
ting) to Hn, paying attention to the fact that in Hn the geodesic dimension
does not coincide neither with the topological dimension, nor with the ho-
mogeneous one (see [66]). Passing through a vector version of the transport
density, we showed that the Monge-Kantorovich problem for α = 1 can also
be formulated as a minimization problem with horizontal divergence-type
constraint

inf

{ˆ
|w|dx : divHw = µ− ν

}
, (5)

where divH is defined in duality with the horizontal gradient
∇Hφ =

∑2n
i=1XiφXi, with φ ∈ C∞. Its dual formulation is the well-known

Kantorovich duality formula

sup

{ˆ
ud(µ− ν) : ∥∇Hu∥∞ ≤ 1

}
. (6)

The congested optimal transport problem in this setting was still an open
problem. In order to to take into account the geometry of the Heisenberg
group we have significantly reduced the set of admissible paths, allowing
the agents to move only along horizontal curves. If Ω ⊂ Hn, a horizontal
traffic plan is a probability measure over the space of horizontal curves with
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value in Ω, which connect µ to ν. Any horizontal traffic plan Q induces a
horizontal traffic intensity iQ, defined as (2), where the integral w.r.t. Q is
computed over the horizontal curves, and the Euclidean norm is replaced by
the horizontal one | · |H .

Given any two points x, y ∈ Ω and a horizontal traffic plan Q, we will
denote by dQ the horizontal length weighted with g ◦ iQ

dQ(x, y) := inf

{ˆ 1

0

g(iQ(σ(t)))|σ̇(t)|Hdt :

σ horizontal, σ(0) = x, σ(1) = y

}
; (7)

then, a horizontal Wardrop equilibrium, analogous to the one introduced in
[94], is a horizontal traffic plan Q such that

1. Q is concentrated on the geodesics w.r.t. the metric dQ, i.e.

ˆ 1

0

g(iQ(σ(t)))|σ̇(t)|Hdt = dQ(σ(0), σ(1))

for Q-a.e. horizontal curve σ;

2. Q induces a measure γQ := (e0, e1)#Q ∈ Π(µ, ν) which solves the
Monge-Kantorovich problem

inf
γ∈Π(µ,ν)

ˆ
Ω×Ω

dQ(x, y)dγ(x, y), (8)

associated with the cost dQ, depending on Q itself.

If the congestion function g(i) ∼ ip−1, a horizontal traffic plan Q turns out
to be a Wardrop equilibrium if and only if it solves

inf
Q∈Qp

H(µ,ν)

ˆ
Ω

G(iQ(x))dx, (WH)

where Qp
H(µ, ν) is the set of horizontal traffic plans Q such that iQ ∈ Lp(Ω).

In the last chapter of this thesis, we get a necessary and sufficient condition
for the non emptiness of this set; in particular, if one assume that µ and ν

are p-summable, then the set Qp
H(µ, ν) is not empty.
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In the limit case p = 1, the problem (WH) reads as

inf
Q∈QH(µ,ν)

ˆ
lSR(σ)dQ(σ), (9)

which turns out to be equivalent to the Monge-Kantorovich problem for
α = 1, and hence to (5) and (6).

In the spirit of [30], under the p-summability assumption for both µ and ν,
one can also prove that the minimization problem over p-summable horizontal
vector fields, with prescribed horizontal divergence,

inf
w∈Lp(Ω,HΩ)

{ˆ
Ω

G(w(x))dx : divHw = µ− ν

}
(BH)

admits a solution. Here G(w) := G(|w|H), HΩ is the restriction of HHn to
the set Ω. Moreover, it holds that (WH) = (BH) and there is a way to find a
solution to one problem, starting from a solution to the other one, and vice
versa: in order to find a solution to (WH), starting from a solution to (BH), we
passed through a sequence of approximating Riemannian manifolds, where
the non-horizontal direction is increasingly penalized. In the spirit [88], one
actually can prove that to get the existence of solutions to (BH) it is enough
that µ and ν belong to the more general dual space (HW 1,q(Ω))′. Here
HW 1,q(Ω) is the space of function φ ∈ Lq(Ω), whose horizontal gradient (in
the weak sense) ∇Hφ ∈ Lq(Ω, HΩ). In addition, under this hypothesis on µ

and ν, the problem

sup

{
−
ˆ
Ω

φd(µ− ν)−
ˆ
Ω

G∗(∇Hφ) : φ ∈ HW 1,q(Ω)

}
(DH)

admits solutions and its value equals (BH). Moreover, if w is the solution
to (BH) and u ∈ HW 1,p(Ω) is a solution to (DH), then the relation between
them is

w = ∇G∗(∇Hu).

In particular, the function u solves in the weak sense the the Euler-Lagrange
equation

divH(∇G∗(∇Hφ)) = µ− ν in Ω. (10)
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The main difficult in studying regularity for PDEs in this setting is due to
the fact that derivatives do not commute: [Xi, Xi+n] = X2n+1; hence, when
we derive the equation and we switch derivatives (in order to get higher
regularity estimates for solutions), we get a derivative of solutions in the
direction X2n+1, which has to be managed.

If the congestion function g has the standard form g(i) = ip−1, then
G∗(z) = 1

q
|z|q and (10) becomes the degenerate q-Laplace equation in Hn.

This equation has been widely studied in literature, both in homogeneous
and non-homogeneous case. In both case, the optimal regularity for solutions
is the Hölder continuity of the horizontal derivatives: it has been established
in [95], for 2 ≤ q < ∞, and in [75] for 1 < q < 2, in homogeneous case; see
also [79] for an alternative proof in H1, for q > 4. For the analogous result in
non-homogeneous case see [74]. See [80] and references therein for a general
overview on this topic.

In the spirit of [9] and [29], we study the equivalence of the three prob-
lems (WH), (BH) and (DH) in the orthotropic case: more precisely, if w =∑2n

i=1 wiXi is a horizontal vector field, we consider a function

G(w) =
2n∑
i=1

G(|wi|)

having p-growth in each horizontal direction. This gives rise to a function G∗

that has q-growth in each horizontal direction. See [7], [22], [24], [25], [26],
[27], [29], [31], [67] and [81] for regularity results of this type of equations
in the Euclidean setting. Here we prove the local Lipschitz regularity for
solutions to (10) for such a function G∗, assuming that i-th eigenvalue of the
Hessian of G∗ is comparable with the n+ i-th one. The model function is

G∗(z) =
n∑

i=1

1

q

(
z2i + z2n+i

) q
2 :

it has q-growth in the horizontal directions of the complexified tangent bun-
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dle, according to [90, Chapters XII and XIII], and it leads to the equation

n∑
i=1

[
Xi

((
|Xiu|2 + |Xn+iu|2

) q−2
2 Xiu

)
+Xn+i

((
|Xiu|2 + |Xn+iu|2

) q−2
2 Xn+iu

)]
= 0.

As is common in the study of regularity theory for PDEs, we first ap-
proximated the equation in order to make it non-degenerate; then, in the
spirit of [39], [38], [40] and [41], we introduced a Riemannian approximation
of the non-degenerate equation, in order to have the smoothness of solu-
tions. Adapting the technique introduced by X. Zhong in [95], we obtained a
Caccioppoli-type inequality similar to that for solutions to Riemannian ellip-
tic equations, where the derivative of the solution in the direction X2n+1 has
disappeared. A uniform bound for the L∞ norm of the horizontal gradient
of solutions follows from the well-known Moser’s iteration: passing to the
limits, the Lipschitzianity of solutions for the starting equation follows.
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The thesis is organized as follows.
Chapter 1 contains an overview of existing results: first, we recall the

definition and the main properties of the Heisenberg group. Then, we recall
some known results about the optimal transport theory in this setting.

The aim of Chapter 2 is twofold: on the one hand, we prove the existence
of horizontal transport densities that are Lp functions, for some particular p’s.
On the other, we prove that even the Monge-Kantorovich problem, associated
with the sub-Riemannian distance, admits a divergence-type formulation. In
order to do this, we introduce a vector version of the horizontal transport
density and we prove the differentiability of the Kantorovich potential. In the
end we show that the same problem can be also formulated as a minimization
problem over measures on curves.

In Chapter 3 we define the problem of continuous congested optimal trans-
port in the Heisenberg group. First, we give the definition of traffic plans and
associated traffic intensities, and we collect some of their properties. Second,
we rigorously define the congested metric. In the end, we introduce the con-
gested optimal transport problem as a minimization problem over a suitable
set of horizontal traffic plans. We show that it admits a solution, which turns
out to be an equilibrium configuration.

Chapter 4 deals with the equivalent formulations of the continuous con-
gested optimal transport problem in the Heisenberg group. We introduce
the divergence-type problem and we show that it admits a solution. More-
over we introduce its dual formulation and we show that two problems are
actually equivalent. In the end, under some additional hypothesis, we show
that the divergence-type problem is equivalent to the minimization problem
introduced in Chapter 3.

Chapter 5 is devoted to the three problems in the orthotropic case. We
investigate the equivalence of these problems, by using techniques that are
different from those of the previous two chapters. In the end, we study
the local Lipschitz regularity for solutions to a PDE arising from the dual
formulation of the problem. This result holds true in the homogeneous case.
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Chapter 1

Preliminaries

The first chapter of this thesis deals with some preliminary results that
will be useful later on. In the first section we introduce the setting of the
Heisenberg group, while in the second one we recall some well-known results
about the optimal transport theory in this setting.

Given a locally compact and separable metric space (M,d), we denote by
B(M) its Borel σ-algebra. A (Borel) measure λ on M is a σ-additive function
λ : B(M) → R. We denote by

• M(M) the set of finite Radon measures on M ;

• Mc(M) the subset of M(M) consisting of finite Radon measures on
M with compact support;

• M+(M) the subset of M(M) consisting of positive and finite Radon
measures on M ;

• P(M) the subset of M+(M) consisting of probability measures on M ;

• Pc(M) the subset of P(M) consisting of probability measures on M

with compact support.

Given a sequence of measures (λn)n∈N on M , we say that λn weakly converges
to λ, we write λn ⇀ λ, if ˆ

M

fdλn →
n→∞

ˆ
M

fdµ,

3



4 1. Preliminaries

for any bounded continuous function f ∈ Cb(M). If (M,d) is a compact
metric space, then the Riesz Theorem implies that the weak convergence of
measure is nothing but the weak* convergence.

Let (M1, d1) and (M2, d2) be two locally compact and separable metric
spaces, f :M1 →M2 be a Borel map and λ be a measure on M1. Then, the
push-forward of λ is the measure on M2 defined as

f#λ(A) := λ(f−1(A)),

for any A ∈ B(M2). If φ :M2 → [0,+∞] is any Borel function, then
ˆ
M2

φd (f#λ) =

ˆ
M1

(φ ◦ f) dµ.

1.1 The Heisenberg group Hn

In this section we introduce the Heisenberg Group and we equip it with a
natural intrinsic sub-Riemannian distance, which makes it a polish, geodesic
and non-branching metric space and a doubling metric measure space, when
equipped with its Haar measure.

Given n ≥ 1, the n-th Heisenberg group Hn is the simplest non-commutative
Carnot group1. Its Lie algebra hn is stratified of step 2

hn = hn1 ⊕ hn2 ,

1A Carnot group (G, ⋆) is a connected, simply connected Lie group of dimension d,
whose Lie algebra g admts a stratification, that is

g = g1 ⊕ g2 ⊕ · · · ⊕ gr,

with

[g1, gi] = gi+1, ∀1 ≤ i ≤ r, gr ̸= 0, gr+1 = 0,

where

[g1, gi] = span{[X,Y ] | X ∈ g1, Y ∈ gi}.
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where hn1 = span{X1, . . . , Xn, Xn+1, . . . , X2n}, hn2 = span{X2n+1} and the
only non-trivial bracket-relation is

[Xj, Xn+j] = X2n+1, ∀j = 1, . . . n. (1.1)

The subspace h1 is called horizontal layer. We recall that the Lie algebra
hn is isomorphic to the tangent space at the origin TeHn through the vector
space isomorphism

X 7→ X(e) ∈ TeHn.

See for instance [92, Chapter 4]. Hence, the horizontal layer hn1 of the algebra
is isomorphic to a linear subspace V of TeHn. The disjoint union of

HHn :=
⊔
q∈Hn

((dℓq)e(V ), q) , (1.2)

defines a sub-bundle of the tangent bundle that we will call horizontal sub-
bundle. In (1.2) dℓq is the differential of the left translation

ℓq : G → G, ℓq(g) := q ⋆ g, q ∈ G.

The vector fields X1, . . . , X2n defines a global frame and the fiber of HHn at
q ∈ Hn is generated by these vector fields evaluated at q:

HqHn = span{X1(q), . . . , X2n(q)}.

A horizontal vector field is a section of the horizontal subbundle ϕ : Hn →
HHn,

ϕ =
2n∑
j=1

ϕjXj.

Since the horizontal subbundle HHn admits a global trivialization, we will
sometimes identify a section of HHn with its canonical coordinate w.r.t. the
moving frame {X1, . . . , X2n}. In this way a section will be identified with a
function

ϕ = (ϕ1, . . . , ϕ2n) : Hn → R2n.
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We fix an inner product β on the horizontal layer hn1
∼= HeHn such that

{X1, . . . , X2n} is an orthonormal basis: this induces a left-invariant Rieman-
nian metric b on HHn

Hn ∋ q 7→ bq :=
(
ℓ∗q−1β

)
q
: HqHn ×HqHn → R, q ∈ Hn,

where ℓ∗q−1β is the pullback of β by the left translation ℓq−1 ,(
ℓ∗q−1β

)
q
(v, w) = β

(
(dlq−1)

q
(v), (dlq−1)

q
(w)
)
, ∀v, w ∈ HqHn.

From now on, we will drop the index q for the metric and we will use the
notation ⟨·, ·⟩H to denote both β and bq. We adopt the same notational
convention for the norm

| · |H :=
√

⟨·, ·⟩H . (1.3)

associated to the scalar product β, which makes {X1, . . . , X2n} an orthonor-
mal basis for hn1 and hence a global orthonormal frame for HHn.

The triple (Hn, HHn, ⟨·, ·⟩H) is the simplest example of sub-Riemannian
manifold: it plays the role of Rn in Riemannian geometry. See [35] and [58].

Given X ∈ hn and q0 ∈ Hn, we denote by exp(tX)(q0) the integral curve
of the vector field X, passing trough q0 at time t = 0, that is the map
σ(t) : I ⊆ R → Hn, such that

σ̇(t) = X(σ(t)),

and σ(0) = q0. This map is well-defined for all whole R, see for instance [19,
Proposition 2.1.53] or [76, Appendix]. Moreover, for any q0 ∈ Hn and any
X ∈ hn it holds that

exp(tX)(q0) = q0 ⋆ exp(tX)(e),

where e is the identity The exponential map of the Heisenberg group Hn is
the map

exp : hn → Hn

defined as
exp(X) := exp(X)(e). (1.4)
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Since Hn is a Carnot group, in particular it is connected and simply con-
nected, hence the exponential map is a global diffeomorphism between hn

(equipped with its trivial manifold structure of finite dimensional vector
space) and Hn: hence every q ∈ Hn can be written in an unique way as

q = exp(x1X1 + · · ·+ xnXn + xn+1Xn+1 + . . . x2nX2n + x2n+1X2n+1), (1.5)

with (x1, . . . , x2n+1) ∈ R2n+1. Through the Campbell-Hausdorff formula (see
[19, Theorem 2.2.18]) in this system of coordinates the group law reads as

x·y :=

(
x1+y1, . . . , x2n+y2n, x2n+1+y2n+1+

1

2

2n∑
j=1

(xjyn+j−xn+jyj)

)
, (1.6)

the unit element is 0R2n+1 and the center of the group is

L := {(0, x2n+1) ∈ R2n+1; x2n+1 ∈ R}.

The stratification of the algebra hn induces a family of dilations δs on H ≡
R2n+1

δs((x1, . . . , x2n+1)) := (sx1, . . . , sx2n, s
2x2n+1).

The vector fields X1, . . . , X2n+1 ∈ hn in coordinates read as

Xj = ∂xj
− xn+j

2
∂x2n+1 , j = 1, . . . , n,

Xn+j = ∂xn+j
+
xj
2
∂x2n+1 , j = 1, . . . , n,

X2n+1 = ∂x2n+1 .

Moreover, the (2n + 1)-dimensional Lebesgue measure L2n+1 is the left-
Haar measure (up to multiplicative constants) of the Carnot group (R2n+1, ·),
and its push-forward through the inverse of the map (1.4) is the left-Haar
measure (up to multiplicative constants) of the Carnot group (Hn, ⋆). The
homogeneous dimension of the group is

N :=
2∑

i=1

i dim hni = 2n+ 2 (1.7)
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and it holds that
L2n+1(δs(B)) = sNL2n+1(B)

for all Borel set B and all s > 0. From now on we will always work in
coordinates: with an abuse of notation, we denote by Hn the group (R2n+1, ·)
and we will write x = (x1, . . . , x2n+1) ∈ Hn to indicate a generic point Hn.

1.1.1 Horizontal curves and Carnot-Caratheodory dis-

tance

We denote by C([a, b],R2n+1) the set of continuous curves on R2n+1 and
by Lip([a, b],R2n+1) its subset of lipschitz curves.

Definition 1.1 (Horizontal curves). A horizontal curve is a curve σ ∈
Lip([a, b],R2n+1) such that

σ̇(t) ∈ Hσ(t)Hn, for a.e. t ∈ [a, b].

We denote by

H([a, b],R2n+1) :=
{
σ ∈ C([a, b],R2n+1) : σ is horizontal

}
,

and by

Hx,y([a, b],R2n+1) :=
{
σ ∈ H([a, b],R2n+1) : σ(a) = x, σ(b) = y

}
for any two points x, y ∈ Hn.

We recall the following important result that enable us to define a natural
intrinsic sub-Riemannian distance on Hn.

Theorem 1.1.1 (Chow-Rashevsky’s Theorem). For any two points in Hn

there exists a horizontal curve between them.

See [35, Chapter 3] for the proof of the previous result.
Given a horizontal curve σ ∈ H([a, b],R2n+1), one can define its sub-

Riemannian length

lSR(σ) :=

ˆ b

a

|σ̇(t)|Hdt, (1.8)
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where | · |H is defined in (1.3). Let us remark that any horizontal curve has
finite sub-Riemannian length.

Given two points x, y ∈ Hn, one can define the sub-Riemannian distance
or Carnot-Caratheodory distance dSR between them as

dSR(x, y) := inf
{
lSR(σ) : σ ∈ Hx,y([a, b],R2n+1)

}
. (1.9)

Theorem 1.1.1 implies that the distance

dSR : Hn ×Hn → [0,+∞)

is well-defined.

Given x ∈ Hn and r > 0 the sub-Riemannian ball B(x, r) centred at x
with radius r is the set

B(x, r) := {y ∈ Hn : dSR(x, y) < r} .

One can prove that the topology induced by dSR coincides with the original
topology of Hn, i.e. the Euclidean one. In particular, dSR : Hn ×Hn → R is
continuous, see [1, Theorem 3.31] and [58, Proposition 1.16], and this in turn
implies that the metric space (Hn, dSR) is locally compact, see [70, Proposi-
tion 1.4.3]. More precisely, (Hn, dSR,L2n+1) is a locally compact Polish, i.e.
a complete and separable, metric measure space. Let us just remark that
completeness and separability can be lifted from the metric (Hn, dSR) to the
metric space (C([a, b],R2n+1), d∞), where

d∞(σ1, σ2) = sup
t∈[a,b]

∥σ1(t)− σ2(t)∥R2n+1 , ∀σ1, σ2 ∈ C([a, b],R2n+1).

The topology induced by this distance on C([a, b],R2n+1) is called topology
of uniform convergence.

On the metric space (Hn, dSR) one can consider the length structure in-
duced by the distance dSR, see [34, Chapter 2]: one can consider the func-
tional

l : C
(
[a, b],R2n+1

)
→ [0,+∞],
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where

l(σ) := sup

{ k∑
i=1

dSR(σ(ti−1), σ(ti)) :

k ∈ N, a = t0 < t1 < . . . < tk−1 < tk = b

}
∈ [0,∞], (1.10)

for any continuous curve σ ∈ C([a, b],R2n+1). We denote by

R
(
[a, b],R2n+1

)
:=
{
σ ∈ C([a, b],R2n+1) : l(σ) < +∞

}
the subspace of the rectifiable curves. Let us just recall that any σ ∈
R ([a, b],R2n+1) can be parametrized proportionally to the arc-length.

In particular, the previous functional is lower semicontinuous on the space
R ([a, b],R2n+1), with respect to the topology of the uniform convergence,
since it is the supremum of lower semicontinuous functions. The definition
of length in (1.10) extends the definition (1.8) in the following sense.

Lemma 1.1.2. If σ ∈ H ([a, b],R2n+1), then

l(σ) = lSR(σ).

See [70, Theorem 1.3.5] for the proof.

Geodesics in Hn

A minimizing horizontal curve between two points x, y ∈ Hn is a hori-
zontal curve σ ∈ Hx,y([a, b],R2n+1) such that

dSR(x, y) = lSR(σ).

As for Riemannian manifolds, a minimizing horizontal path σ with con-
stant speed, i.e. such that |σ̇(t)|H is constant, minimizes the sub-Riemannian
energy functional

E : H([a, b],R2n+1) → R,

defined as
E(σ) =

ˆ b

a

|σ̇(t)|2Hdt.
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Let us denote by

eSR(x, y) := inf
{
E(σ) : σ ∈ Hx,y([a, b],R2n+1)

}
the sub-Riemannian energy between two points x, y ∈ Hn.

We call geodesic any horizontal curve σ ∈ H([a, b],R2n+1) such that

eSR(σ(a), σ(b)) = E(σ).

One can prove that σ is a geodesic if and only if it is a minimizing horizontal
curve with constant speed, see [58, Proposition 2.2].

Theorem 1.1.3 (Hopf-Rinow’s theorem). [58, Theorem 2.4] Let us consider
the complete metric space (Hn, dSR), then

1. any bounded and closed subset is compact;

2. for any x, y ∈ Hn there exists a geodesic between them. In this case we
say that (Hn, dSR) is a geodesic space.

We denote by

Geo(Hn) :=
{
σ ∈ H([0, 1],R2n+1) : σ is a geodesic

}
the set of geodesics parametrized on [0, 1]. Notice that

σ ∈ Geo(Hn) ⇐⇒ dSR(σ(t), σ(t
′)) = |t− t′|dSR(σ(0), σ(1)), ∀t, t′ ∈ [0, 1]

and this implies that Geo(Hn) is a closed subset of C([0, 1],R2n+1), equipped
with the topology of uniform convergence.

Minimizing horizontal curves in Hn, and more generally in any sub-
Riemannian manifold, can be founded solving the following system of Hamil-
tonian equations ẋ = ∂H(x,p)

∂p

ṗ = −∂H(x,p)
∂x

,
(1.11)

with Hamiltonian

H(x, p) =
1

2

n∑
j=1

((
pxj

− xn+j

2
px2n+1

)2

+

(
pxn+j

+
xj
2
px2n+1

)2)
,
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where (p, x) are the canonical coordinates on T ∗Hn. See for instance [1] for
more details about this topic.

In the case of the Heisenberg group, one can compute explicitly the equa-
tions of geodesics. We set

E := {(x, y) ∈ Hn ×Hn; x−1 · y ̸∈ L}, (1.12)

then it holds the following characterization for minimizing geodesics parametrized
on [0, 1].

Theorem 1.1.4. (Geodesics parametrized on [0, 1]) A non trivial geodesic
starting from 0 is the restriction to [0, 1] of the curve

σχ,θ(t) = (x1(t), . . . , x2n+1(t))

either of the form

xj(t) =
χj sin(θt)− χn+j (1− cos(θt))

θ
, j = 1, . . . , n (1.13)

xn+j(t) =
χn+j sin(θt) + χj (1− cos(θt))

θ
, j = 1, . . . , n (1.14)

x2n+1(t) =
|χ|2

2θ2
(θt− sin(θt)) , (1.15)

for some χ ∈ R2n \ {0} and θ ∈ [−2π, 2π] \ {0}, or of the form

(x1(t), . . . , x2n+1(t)) = (χ1t, . . . , χ2nt, 0) ,

for some χ ∈ R2n \ {0} and θ = 0. In particular, it holds

|χ|R2n = |σ̇|H = dSR(0, σ(1)).

Moreover it holds:

1. For all (x, y) ∈ E, there is a unique geodesic x · σχ,θ parametrized on
[0, 1] between x and y, for some χ ∈ R2n\{0} and some φ ∈ (−2π, 2π).

2. If (x, y) ̸∈ E, then x−1 · y = (0, . . . , 0, z2n+1) for some z2n+1 ∈ R \ {0}.
Hence, there are infinitely many geodesics parametrized on [0, 1] between
x and y: they are all the curves of the form x · σχ,2π, if z2n+1 > 0,
x · σχ,−2π, if z2n+1 < 0, for any χ ∈ R2n such that |χ|R2n =

√
4π|z2n+1|.
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See for instance [5] and [71].

Remark 1. For any γ ∈ P (Hn ×Hn), there exists a γ- measurable map

S : Hn ×Hn → Geo(Hn) (1.16)

that associates with any pair of points (x, y) ∈ Hn×Hn a geodesic S(x, y) =
σS
x,y ∈ Geo(Hn), between x and y. The existence of such a map follows

from the closedness of the graph of the multi-valued map (x, y) 7→ σx,y in
Hn × Hn × C([0, 1],Hn), and from the theory of Souslin sets and general
theorems about measurable selections, see for instance [18, Theorem 6.9.13].
Moreover S is continuous, hence Borel, on E.

If et is the evaluation map at time t ∈ [0, 1], i.e. et(σ) := σ(t) for all
σ ∈ C ([0, 1],R2n+1), then the map

St := et ◦ S : Hn ×Hn → Hn (1.17)

associates with any two points x, y ∈ Hn the point St(x, y) := σS
x,y(t) of Hn

at distance t dSR(x, y) from x on the selected geodesic σS between x and y.

From [93, Theorem 7.29] it follows that (Hn, dSR) is a non-branching
metric space: any two minimizing geodesics which coincide on a non trivial
interval coincide on the whole intersection of their intervals of definition.

1.1.2 Measure contraction property MCP (0, 2n + 3) in

Hn

Let S : Hn × Hn → Geo(Hn) be a selection of geodesics, let et be the
evaluation map, for t ∈ [0, 1], and let us consider the map

St := et ◦ S : Hn ×Hn → Hn.

If we fix y ∈ Hn and t ∈ (0, 1), then the function St(·, y) is C∞ on Hn \(y ·L),
see [5] or [71]. Moreover it holds that

detDx(St(x, y)) ≥ (1− t)2n+3 (1.18)
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for all x ∈ Hn\(y·L). Hence, for any y ∈ Hn and any Borel set A ⊂ Hn\(y · L)
it holds that

L2n+1(A) ≤ 1

(1− t)2n+3
L2n+1(St(A, y)). (1.19)

For the proof of the previous inequalities see [66, Section 2]. Instead of the
exponent 2n + 3 one would expect the topological dimension 2n + 1, as in
the Euclidean setting, or at most the homogeneous dimension N = 2n + 2.
However the author in [66, Remark 2.3] shows that this exponent is sharp.

Roughly speaking, inequality (1.19) means that the metric measure space
(Hn, dSR,L2n+1) satisfies the Measure Contraction Property MCP (0, 2n+3):
this is a generalization to metric measure spaces of the concept of Ricci
curvature bounded by below. This notion was introduced by Otha in [77]:
it controls the distortion of measures along geodesics. Recently in [8] the
authors proved that every two-step compact sub-Riemannian manifold and
every Lipschitz Carnot group satisfy MCP (0, R), for some R > 0. See also
[12], [82], [84] and references therein for further results in this direction.

1.1.3 Intrinsic differentiability

We start by saying that a group homomorphism F : Hn → R is homoge-
neous if F (δs(x)) = s F (x) for all x ∈ Hn and all s > 0. From now on, in
this section, Ω will be an open subset of Hn. Now we give the definition of
Lie derivative in the direction of left-invariant vector fields.

Definition 1.2 (Derivative along vector fields). Let φ : Ω → R, we call Lie
Derivative of φ at x ∈ Ω in the direction Xj, j = 1, . . . , 2n+ 1

Xjφ(x) :=
d

dt
∣∣t=0

φ(exp(tXj)(x)),

if it exists. Moreover we denote by ∇Hφ(x) :=
∑2n

j=1Xjφ(x)Xj(x) ∈ HxΩ.
We say that φ ∈ Ck

H(Ω), for k ≥ 1, if X i
jφ ∈ C(Ω), for any j = 1, . . . , 2n, for

any i = 1, . . . , k.

In the previous definition HΩ denotes the restriction of HΩ to the open
set Ω, whose horizontal fibers HxΩ are restricted to all points x ∈ Ω.
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A simple computation based on the classical chain rule shows that

d

dt
(φ ◦ σ)∣∣t=s

=
2n∑
j=1

Xjφ(σ(s))σ̇j(s), (1.20)

provided σ ∈ H([a, b],R2n+1) is differentiable at s ∈ [a, b], φ ∈ C∞(Ω).

Definition 1.3. A map φ : Ω → R is Pansu-differentiable at x ∈ Hn if there
exists an homogeneous group homomorphism F : Hn → R such that

lim
y→x

φ(y)− φ(x)− L(x−1 · y)
dSR(x, y)

= 0.

If the map L exists, it is unique and will be denoted by DHφ(x).

If φ : Ω → R is Pansu-differentiable at x ∈ Ω then φ is differentiable at
x in the directions Xj,∀j = 1, . . . , 2n and

DHφ(x)(y) =
2n∑
j=1

yjXjφ(x),

see [60, Proposition 5.6].

Theorem 1.1.5 (Pansu-differentiability theorem [78]). Let φ ∈ Lip(Ω, dSR)
be a C-Lipschitz function. Then, for L2n+1-a.e. x ∈ Ω, the function φ is
Pansu-differentiable at x and |∇Hφ(x)|H ≤ C.

For every 1 ≤ q ≤ ∞, the space

HW 1,q(Ω) := {φ : Ω → R : φ ∈ Lq(Ω),∇Hφ ∈ Lq(Ω, HΩ)} , (1.21)

where the derivatives Xjφ has to be understood in the sense of distributions,
is a Banach space equipped with the norm

∥φ∥HW 1,q(Ω) := ∥φ∥Lq(Ω) + ∥∇Hφ∥Lq(Ω,HΩ).

If 1 ≤ q ≤ ∞, we denote by

HW 1,q
0 (Ω) := C∞

c (Ω)
HW 1,q(Ω)

,

while we denote by
HW−1,p(Ω) := (HW 1,q

0 (Ω))′,

where p = q
q−1

and 1 ≤ q <∞.
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Poincaré-Sobolev inequalities

Let us suppose that Ω is a Poincaré-Sobolev domain in Hn, i.e. an open
bounded subset of Hn such that there exists a covering of sub-Riemannian
balls (B)B∈F and numbers L > 0 α, β ≥ 1:

1. for every x ∈ Hn ∑
B∈F

1(α+1)B(x) ≤ L1Ω(x);

2. there exists a ball B0 ∈ F such that for any B ∈ F one may find a chain
B0, B1, . . . , Bs(B) = B such that Bi ∩Bi+1 ̸= ∅ and L2n+1(Bi ∩Bi+1) ≥
L−1max (L2n+1(Bi),L2n+1(Bi+1)) ;

3. for any i = 0, . . . , s(B) it holds

B ⊆ βBi.

Let us just remark that the class of PS-domains in Hn is very large: in
particular sub-Riemannian balls and any bounded domain with C1,1 bound-
ary (in Euclidean sense) are PS-domains. See [61] and references therein for
a detailed overview on this topic. These sets support a q-Poincaré inequality,
i.e. there exists c = c(n, q,Ω) > 0 such that

ˆ
Ω

|φ(x)− φΩ|qdx ≤ c

ˆ
Ω

|∇Hφ(x)|qdx, ∀φ ∈ HW 1,q(Ω) (1.22)

for any 1 ≤ q < +∞. See [64] and [61].

Moreover, the following Sobolev inequality holds true.

Theorem 1.1.6. Let 1 ≤ q < N . For any φ ∈ HW 1,q
0 (B(x, r)), B(x, r) ⊂

Hn, it holds that( 
B(x,r)

|φ|
Nq
N−q dx

)N−q
Nq

≤ cr

( 
B(x,r)

|∇Hφ|qHdx
) 1

q

,

where c = c(n, q).



1.1 The Heisenberg group Hn 17

1.1.4 Horizontal vector measures in HHn

Here we recall the notion of horizontal vector measure in HHn, see [10]
and [50].

Let Ω ⊆ Hn. We denote by Cc(Ω, HΩ) the class of continuous horizontal
vector fields with compact support in Ω, and by C0(Ω, HΩ) its completion
with respect to the uniform norm

∥ϕ∥∞ = sup
x∈Ω

|ϕ(x)|H ,

where ϕ : Ω −→ HΩ is a horizontal vector field. The space C0(Ω, HΩ)

equipped with the norm ∥ · ∥∞ is a Banach space.

Let λ ∈ M(Ω) be a finite Radon measure on Ω and let α : Ω → HΩ be a
locally bounded λ-measurable horizontal vector field. Hence, one can define
the following bounded linear functional Tαλ on Cc(Ω, HΩ), w.r.t. ∥·∥∞-norm,

Cc(Ω, HΩ) ∋ ϕ 7→ Tαλ(ϕ) :=

ˆ
Ω

⟨ϕ, α⟩Hdλ.

As a consequence, one can define a notion of vector measure αλ in HΩ

by setting

Cc(Ω, HΩ) ∋ ϕ 7→
ˆ
Ω

ϕ · d(αλ) := Tαλ(ϕ).

By density, this functional can be extended in a unique way to a contin-
uous linear functional on C0(Ω, HΩ).

We denote by M(Ω, HΩ) the space of all vector measures in HΩ in the
previous sense.

Since the vector field α can be written as α =
∑2n

i=1 αiXi, where the
components αi : Ω → R w.r.t. the horizontal frame are locally bounded
λ-measurable functions, then the vector measure µ = αλ can be also written
in components as w = (w1, . . . ,w2n) = (α1λ, . . . , α2nλ), where this notation
means that αi is the density of the measure wi w.r.t. λ. That is

Tw(ϕ) =

ˆ
Ω

ϕ · dw =
2n∑
i=1

ˆ
Ω

ϕi(x)dwi(x) =
2n∑
i=1

ˆ
Ω

ϕi(x)αi(x)dλ.
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One may endow the space M(Ω, HΩ) with the norm

∥w∥M(Ω,HΩ) := |w|(Ω) < +∞,

where the variation measure |w| ∈ M+(Ω) is defined as

|w|(A) := sup

{ˆ
Ω

ϕ · dw : ϕ ∈ Cc(Ω, HΩ), supp ϕ ⊆ A, ∥ϕ∥∞ ≤ 1

}
,

(1.23)
for any Borel set A ⊆ Ω.

Since the horizontal bundle HΩ has a global trivialization, one can always
argue component-wise. Hence from classical results, see for instance [4], any
T ∈ C0(Ω, HΩ)′ can be represented by a vector measure w in HΩ as

T (ϕ) =

ˆ
Ω

ϕ · dw, ∀ϕ ∈ C0(Ω, HΩ),

and

∥w∥M(Ω,HΩ) = ∥T∥(C0(Ω,HΩ))′ .

The identification between the space M(Ω, HΩ) of vector measures with
finite mass and (C0(Ω, HΩ))′ can be proved using the map Θ : M(Ω, HΩ) −→
(C0(Ω, HΩ))′ defined by

Θ(w)(ϕ) :=

ˆ
Ω

ϕ · dw = Tw(ϕ) ∀ϕ ∈ C0(Ω, HΩ).

Let us just remark that, if Ω is compact, then Cc(Ω, HΩ) = C0(Ω, HΩ) =

C(Ω, HΩ) and

M(Ω, HΩ) = (C(Ω, HΩ))′ .

1.1.5 Mollification in Hn

Let us consider a mollifier for the group structure, i.e. a function ρ ∈
C∞

c (Hn), such that ρ ≥ 0 and
´
Hn ρ(x)dx = 1; for any ϵ > 0 we denote by

ρε(x) := ε−Nρ
(
δ1/ε(x)

)
.
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If φ ∈ L1
loc, then

ρε ∗ φ(x) :=
ˆ
Hn

ρ(xy−1)φ(y)dy,

is smooth. Due to the non-commutativity nature one may also define a
different convolution

φ ∗ ρε(x) :=
ˆ
Hn

φ(y)ρ(y−1x)dy.

The mollified functions ρε ∗φ and φ∗ρε enjoy many standard properties, see
for instance [59], [50, Subsection 2.3] and references therein.

More generally, one may also mollify Radon measures: given a finite
Radon measure λ ∈ M(Hn), resp. a finite vector Radon measure w =

(w1, . . . ,w2n) ∈ M(Hn, HHn), then the mollified functions λε ∈ C∞(Hn),
resp. wε ∈ C∞(Hn, HHn), are defined as

λε(x) := ρε ∗ λ(x) =
ˆ
Hn

ρε(x · y−1)dλ(y),

and

wε :=
2n∑
j=1

wε
jXj,

where wε
j(x) := ρε ∗ wj(x), for any j = 1, . . . , 2n.

1.1.6 Riemannian approximation of the sub-Riemannian

Heisenberg group

One can also equip Hn with a left-invariant Riemannian metric: for any
ϵ > 0, one can consider the metric tensor bϵ that has at any point x ∈ Hn

X1(x), . . . , X2n(x), ϵX2n+1(x)

as orthonormal basis for TxHn. In turn this defines a sequence of collapsing
Riemannian metrics, where the non-horizontal direction is increasingly pe-
nalized: this sequence of metrics converges in the Gromov–Hausdorff sense
to the sub-Riemannian metric previously defined.
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We relabel

Xϵ
i := Xi,∀i = 1, . . . , 2n and Xϵ

2n+1 := ϵX2n+1,

and we denote by |·|ϵ :=
√
bϵ(·, ·) the norm associated to the metric bϵ and by

dϵ the associated control distance: this distance turns out to be left-invariant
with respect to (1.6), since Xϵ

1, . . . , X
ϵ
2n, X

ϵ
2n+1 are themselves left invariant.

Moreover
dϵ(x, y) ≤ dϵ′(x, y) ≤ dSR(x, y),

for any x, y ∈ Hn and 0 < ϵ′ ≤ ϵ, hence the metric space (Hn, dSR) can be
viewed as the limit of the approximating Riemannian manifolds (Hn, bϵ) in
the sense that

dSR(x, y) = lim
ϵ→0

dϵ(x, y),

for any x, y ∈ Hn, see [62]. Moreover, the convergence is uniform on compact
subsets of Hn ×Hn, see [53, Lemma 2.7].

In particular the balls Bϵ → B, in terms of the Hausdorff distance. More-
over, one can consider a regularized gauge function

G2
ϵ(x) :=

2n∑
i=1

|xi|2 +min

{
|x2n+1|2

ϵ2
, |x2n+1|

}
, x ∈ Hn;

Lemma 2.13 [37] implies that the distance function dG,ϵ(x, y) := Gϵ(y
−1 · x)

is equivalent to the distance function dϵ, i.e. there exists a constant A > 0

such that ∀ϵ > 0 and ∀x, y ∈Mϵ

A−1dG,ϵ(x, y) ≤ dϵ(x, y) ≤ AdG,ϵ(x, y).

This implies that the doubling property

L2n+1(Bϵ(x, 2r)) ≤ CL2n+1(Bϵ(x, r)),

holds uniformly in ϵ, with a constant C > 1 independent of ϵ.
If Ω ⊆ Hn is an open set and φ : Hn → R is a measurable function, the

gradient associated with the Riemannian metric bϵ is

∇ϵφ :=
2n+1∑
i=1

Xϵ
iφX

ϵ
i =

2n∑
i=1

XiφXi + ϵ2X2n+1uX2n+1,
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which has to be understood in the sense of distributions. It is obvious that

∇ϵφ −→ ∇Hφ, as ϵ→ 0

and, if we denote by | · |ϵ the norm associated to the scalar product bϵ, then

|∇ϵφ|2ϵ =
2n∑
i=1

(Xiφ)
2 + ϵ2 (X2n+1φ)

2 → |∇Hφ|2H , as ϵ→ 0.

For every 1 ≤ q ≤ ∞, one can define the Banach space

W 1,q
ϵ (Ω) := {φ : Ω → R : φ ∈ Lq(Ω),∇ϵφ ∈ Lq(Ω, TΩ)} , (1.24)

equipped with the norm

∥φ∥W 1,q
ϵ (Ω) := ∥φ∥Lq(Ω) + ∥∇ϵφ∥Lq(Ω,TΩ).

In the end let us recall that Sobolev’s inequalities hold with constants inde-
pendent of ϵ, see for instance [37] and [53].

Theorem 1.1.7. Let 1 ≤ q < N . For any φ ∈ W 1,q
ϵ (Bϵ(x, r)), Bϵ(x, r) ⊂

Hn, it holds that

( 
Bϵ(x,r)

|φ|
Nq
N−q dx

)N−q
Nq

≤ cr

( 
Bϵ(x,r)

|∇ϵφ|qϵdx
) 1

q

,

where c = c(n, q), independent of ϵ.

1.2 Optimal transport theory in Hn

In this section we collect some known results about optimal transport
theory in the Heisenberg Group. We are interested in particular in the Monge
problem associated with the sub-Riemannian distance: hence, most of the
following results are taken from [52]. See also [16] and [46].
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1.2.1 The Monge-Kantorovich problem with generic cost

In this subsection we write down in Hn some classical results about op-
timal transport theory, which hold in the more general structure of Polish
metric spaces. See for instance [3] and [87].

Let us denote by P(Hn), resp. P(Hn ×Hn), the set of Borel probability
measures on Hn, resp. on Hn ×Hn.

Let µ, ν ∈ P(Hn), we denote by

Π(µ, ν) =
{
γ ∈ P(Hn ×Hn) : (π1)#γ = µ, (π2)#γ = ν

}
the set of transport plans between µ and ν, where π1 and π2 are the projection
on the first and second factor, respectively. Let us just remark that Π(µ, ν)

is compact w.r.t. the weak convergence of measures.
Given a lower semicontinuous cost function k : Hn × Hn → [0,+∞], the

Monge-Kantorovich transport problem between µ and ν associated with the
cost k

inf
γ∈Π(µ,ν)

ˆ
Hn×Hn

k(x, y) dγ(x, y), (1.25)

admits solutions, see [87, Theorem 1.7].
We denote by

Πk(µ, ν) := {γ ∈ Π(µ, ν) : γ solves (1.25)}

the set of optimal transport plan for the generic cost function k: it is a closed
subset of the compact set Π(µ, ν), w.r.t. the weak convergence of measures.
Moreover, if γ ∈ Πk(µ, ν) and

ˆ
Hn×Hn

kdγ < +∞,

then γ is concentrated on a k-cyclically monotone σ-compact set Γ ⊆ Hn×Hn,
i.e.

N∑
i=1

k(xi, yi) ≤
N∑
i=1

k(xi+1, yi)

whenever N ≥ 2 and (x1, y1), . . . , (xN , yN) ∈ Γ, see [3, Theorem 4.1].
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Transport Plans and Transport Maps

We say that a transport plan γ ∈ Π(µ, ν) is induced by a transport map
if there exists a Borel map

T : Hn → Hn such that (I ⊗ T )#µ = γ,

where (I ⊗ T )(x) := (x, T (x)). We will refer to such a map T : Hn → Hn

solving the following Monge problem

inf
T#µ=ν

ˆ
Hn

k(x, T (x))dµ(x), (1.26)

as an optimal transport map for the cost function k.
In the end let us just remark that, if an optimal transport plan γ ∈

Πk(µ, ν) is induced by a transport map T , then T is an optimal transport
map for the cost k. Moreover, if any optimal transport plan γ ∈ Πk(µ, ν)

is induced by a transport map, then there exists a unique optimal transport
map. Hence, γ ∈ Πk(µ, ν) is unique.

1.2.2 The Monge-Kantorovich problem with cost de-

pending on the sub-Riemannian distance

From now on we consider two compactly supported Borel probability
measures µ, ν ∈ Pc(Hn) and a cost functions k of the type

k = h ◦ dSR,

where h : [0,∞] → [0,∞] is a strictly convex function.
The following uniqueness result holds. See [47, Theorem 5.3 and Corollary

5.4] for the proof.

Theorem 1.2.1. Let us suppose that µ ≪ L2n+1. Then, for any optimal
transport plan γ ∈ Πk(µ, ν) there exists a Borel map T : Hn → Hn such that
T#µ = ν. Hence, both the optimal transport map and the optimal transport
plan are unique.
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Remark 2. If h(s) = s2, the optimal transport problem reads as

inf
γ∈Π(µ,ν)

ˆ
Hn×Hn

dSR(x, y)
2dγ(x, y).

This problem was first investigated in [5], where the authors prove the Heisen-
berg version of the well known Brenier Theorem, see [87, Theorem 1.22]. This
result was first extended to the H-type Carnot groups in [83], and then to
a sub-Riemannian manifold for which the distance is locally Lipschitz (or
locally semi-concave) outside of the diagonal, in [58].

Theorem 5.3 and Corollary 5.4 in [47] extend the previous result to non-
branching metric measure spaces satisfying the Measure Contraction Prop-
erty, without an explicit form of the optimal map. Recently, in [48] the
authors replaced the non-branching hypothesis with the weaker essentially
non-branching hypothesis, see [48, Definition 2.2].

The Monge problem with k(x, y) = dSR(x, y)

Let us suppose that

k(x, y) = dSR(x, y), ∀(x, y) ∈ Hn ×Hn.

From the arguments in Subsection 1.2.1 it follows that the Monge-Kantorovich
transport problem

inf
γ∈Π(µ,ν)

ˆ
Hn×Hn

dSR(x, y) dγ(x, y), (1.27)

admits solutions: any solution to (1.27) is concentrated on a dSR-cyclically
monotone set.

From now on we denote by

Π1(µ, ν) := {γ ∈ Π(µ, ν) : γ solves (1.27)}

and by

Lip1(Hn, dSR) := {u : Hn → R : |u(x)− u(y)| ≤ dSR(x, y),∀x, y ∈ Hn} .
(1.28)



1.2 Optimal transport theory in Hn 25

The problem (1.27) is equivalent to the following Kantorovich dual problem:

sup

{ˆ
Hn

ud(µ− ν) : u ∈ Lip1(Hn, dSR)

}
. (1.29)

Moreover, (1.29) admits a solution and the following theorem holds.

Theorem 1.2.2. There exists a function u ∈ Lip1(Hn, dSR) such that

min
γ∈Π(µ,ν)

ˆ
Hn×Hn

dSR(x, y) dγ(x, y) =

ˆ
Hn

u(x) dµ(x)−
ˆ
Hn

u(y) dν(y),

and γ ∈ Π(µ, ν) is optimal if and only if

u(x)− u(y) = dSR(x, y) γ − a.e. in Hn ×Hn.

We call such a u ∈ Lip1(Hn, dSR) a Kantorovich potential.

If the measure µ is absolutely continuous with respect to the Haar measure
of the group, from the explicit representation of minimizing geodesics (1.1.4)
it follows that any optimal transport plan γ ∈ Π1(µ, ν) is concentrated on
the set

E := {(x, y) ∈ Hn ×Hn; x−1 · y ̸∈ L}, (1.30)

of pairs of points connected by a unique minimizing geodesic, see [52, Lemma
4.1].

Proposition 1.2.3. Let µ ≪ L2n+1. Given γ ∈ Π1(µ, ν), then for γ-a.e.
(x, y) ∈ Hn × Hn, there exists a unique minimizing geodesic between x and
y, i.e.

γ(Hn ×Hn \ E) = 0.

If u ∈ Lip1(Hn, dSR) is a Kantorovich potential and γ ∈ Π1(µ, ν) is an
optimal transport plan concentrated on some set Γ ⊂ Hn ×Hn, then for any
(x, y) ∈ Γ it holds that

u(x)− u(y) = dSR(x, y),

see Theorem 1.2.2.
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Let (x, y) ∈ Hn × Hn and σx,y be a geodesic between x and y, the Lips-
chitzianity of u implies

u(σx,y(t)) = u(x)− dSR (x, σx,y(t)) , ∀t[0, 1].

In this way one can define an order relation on the minimizing geodesic σx,y
in the following way: let t1, t2 ∈ [0, 1], x′ = σx,y(t1) and x′′ := σx,y(t2), then

x′ ≤ x′′ ⇔ u(x′) ≥ u(x′′). (1.31)

Following the existence literature for the Riemannian setting, see [87,
Chapter 3] and [56, Section 2], we fix a Kantorovic potential u ∈ Lip1(Hn, dSR)

and we use it to check the optimality of transport plans. In this way one can
select some optimal transport plans that satisfy a monotonicity condition,
according to (1.31).

More precisely, we denote by Π2(µ, ν) the set of transport plans solving
the secondary variational problem

inf
γ∈Π1(µ,ν)

ˆ
Hn×Hn

dSR(x, y)
2 dγ(x, y). (1.32)

This problem admits solutions since the functional

Π(µ, ν) ∋ γ 7→
ˆ
Hn×Hn

dSR(x, y)
2 dγ(x, y)

is continuous w.r.t. the weak convergence of measures and Π1(µ, ν) is com-
pact w.r.t. the same convergence. Again from Theorem 1.2.2, we can
rephrase problem (1.32) as a classical Kantorovich transport problem

inf
γ∈Π(µ,ν)

ˆ
Hn×Hn

β(x, y)dγ(x, y)

where the cost β(x, y) is defined in the following way

β(x, y) =

dSR(x, y)2 if u(x)− u(y) = dSR(x, y),

+∞ otherwise.
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Since β is lower semicontinuous and
´
Hn×Hn β(x, y) dγ(x, y) < +∞ for all

γ ∈ Π2(µ, ν), it follows that any γ ∈ Π2(µ, ν) ⊂ Π1(µ, ν) is concentrated on
a β-cyclically monotone set Γ, i.e.

u(x)− u(y) = dSR(x, y), ∀(x, y) ∈ Γ, (1.33)

and

β(x, y) + β(x′, y′) ≤ β(x, y′) + β(x′, y), ∀(x, y), (x′, y′) ∈ Γ. (1.34)

Using the non-branching property of (Hn, dSR) one can prove that geodesics
used by optimal transport plans cannot bifurcate. Moreover, if an optimal
plan solves also (1.32) then, using (1.33) and (1.34), one can get a one-
dimensional monotonicity condition along minimizing geodesics. More pre-
cisely, the following result holds [52, Lemma 4.2 and Lemma 4.3]:

Proposition 1.2.4. Let γ ∈ Π1(µ, ν). Then γ is concentrated on a set Γ

such that for all (x, y), (x′, y′) ∈ Γ such that x ̸= y and x ̸= x′, if x′ lies on
a geodesic between x and y then all points x, x′, y and y′ lie on the same
geodesic. Moreover if γ ∈ Π2(µ, ν), then

x < x′ ⇒ y ≤ y′. (1.35)

As far as we know, in the Heisenberg Group has not been proven that
any γ ∈ Π2(µ, ν) is induced by a transport map, and hence γ ∈ Π2(µ, ν)

is unique. See [87, Theorem 3.18] and [56, Theorem 28] for the analogous
result in the Euclidean and Riemannian setting, respectively. Anyway in [52]
the authors proved that some particular transport plans in Π2(µ, ν), more
precisely the ones that can be selected through the variational approximation
below, are induced by transport maps.

Variational approximation and existence of optimal maps

Let K be a compact subset of Hn such that

supp(µ) ∪ supp(ν) ⊂ K,
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and let us denote by

Π := {γ ∈ P(Hn ×Hn) : (π1)#γ = µ, supp((π2)#γ) ⊂ K}.

For any ε ∈ R+, we can consider the family of minimization problems

min{Cε(γ) : γ ∈ Π}, (Pε)

where

Cε(γ) :=
1

ε
W1((π2)#γ, ν) +

ˆ
Hn×Hn

dSR(x, y) dγ(x, y)

+ ε

ˆ
Hn×Hn

dSR(x, y)
2 dγ(x, y) + ε6n+8card(supp((π2)#γ)),

where W1((π2)#γ, ν) denotes the 1-Wasserstein distance between the two
measures (π2)#γ and ν,

W1((π2)#γ, ν) := min

{ˆ
Hn×Hn

dSR(x, y)dγ(x, y) : γ ∈ Π((π2)#γ, ν)

}
.

One can prove that, for any ε > 0 the minimization problem Pε admits at
least one finite solution. Moreover it holds the following result:

Lemma 1.2.5. Let (εk)k∈N ⊂ R+ be a sequence such that εk −→
k→∞

0 and
γεk be a solution to (Pεk) ∀k, such that γεk ⇀ γ ∈ P(Hn × Hn). Then
νεk := (π2)#γεk ⇀ ν and γ ∈ Π2(µ, ν).

In particular, if the measure µ is absolutely continuous w.r.t. the Haar
measure of the group, the optimal transport plans that are weak limits of
solutions (γεk)k∈N to (Pεk)k∈N, for some εk → 0 as k → ∞, turn out to be
induced by maps. Hence, the problem

inf
T#µ=ν

ˆ
Hn×Hn

dSR(x, y)dγ(x, y)

admits a solution. Moreover, these optimal plans are monotone in the sense
of (1.35).
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Theorem 1.2.6 (Theorem 8.1 in [52]). Assume that µ≪ L2n+1. Then there
exists an optimal transport map T : Hn → Hn such that γ = (Id ⊗ T )#µ ∈
Π2(µ, ν).

We preferred to treat the existence of solutions to (1.26) following [52]
because in the next chapter we will need the monotonicity property (1.35).
Anyhow more recent existence results are also available in [16] and [46] in
the more general setting of non -branching geodesic metric measure spaces,
satisfying the Measure Contraction Property.
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Chapter 2

Equivalent formulations of

optimal transport problem in Hn

The aim of this chapter is twofold: first we introduce the concept of
horizontal transport density in Hn; second, we introduce some equivalent
formulations of the Monge-Kantorovich problem

min
γ∈Π(µ,ν)

ˆ
Hn×Hn

dSR(x, y)dγ(x, y),

where µ, ν ∈ Pc(Hn). These reformulations will turn out to be the limit cases
of two other problems we will introduce in the next two chapters.

We first prove some geometric properties of the transport rays : we will
use them both to introduce in Section 2.3 the Beckmann formulation of the
aforementioned Monge-Kantorovich problem and to prove some summability
results about horizontal transport densities. In the end, in Section 2.4 we
show that this problem also admits a Lagrangian reformulation.

2.1 Geometric properties of transport rays

In the spirit of [87, Chapter 3] and [56, Section 2], we collect some proper-
ties of the transport rays and the transport set, see Definition 2.1 and (2.9) for
rigorous definitions. We also show a differentiability result for Kantorovich

31
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potentials.
Let us consider µ, ν ∈ Pc(Hn) and a Kantorovich potential u ∈ Lip1(Hn, dSR).
Let us just remark that if x ∈ supp (µ) and y ∈ supp(ν) are such that

u(x)− u(y) = dSR(x, y), (2.1)

then
u(σx,y(t)) = u(x)− dSR (x, σx,y(t)) , ∀t[0, 1],

where σx,y is a geodesic between x and y. This means that σx,y is a curve
along which an optimal transport may occur, see Theorem 1.2.2.

We will call transport ray any non-trivial geodesic along which an optimal
transport may occur.

Definition 2.1. A transport ray is a non-trivial geodesic σ : [0, 1] → Hn

such that

1. σ(0) ∈ supp(µ) and σ(1) ∈ supp(ν);

2. u(σ(0))− u(σ(1)) = dSR(σ(0), σ(1));

2.1.1 Pansu differentiability of the Kantorovich poten-

tial

Following [56, Lemma 10], one can prove that the Kantorovich potential
u is Pansu differentiable in the interior of transport rays.

Proposition 2.1.1. Let u ∈ Lip1(Hn, dSR) and x, y ∈ Hn, x ̸= y such that
u(x) − u(y) = dSR(x, y). Let σ : [0, 1] → Hn be a geodesic between x and y,
starting from x, then u is Pansu differentiable in σ(t), for all t ∈]0, 1[, and

∇Hu(σ(t)) = − σ̇(t)

|σ̇(t)|H
. (2.2)

For the proof of this result we need the two following lemmas. The next
one collects a differentiability property of the Carnot-
Charatheodory distance function from a fixed point y ∈ Hn. Let Ly := y ·L.
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Lemma 2.1.2. The function dy(·) := dSR(·, y) is of class C∞ in the usual
euclidean sense on Hn\Ly. In particular dy is Pansu differentiable on Hn\Ly.
Moreover, if x ∈ Hn \ Ly and σ : [0, 1] → Hn is the geodesic between x and
y, starting from y, then

∇Hdy(x) =
σ̇(1)

|σ̇(1)|H
.

Proof. Let us set Φ(χ, φ) := y · σ(1), where σ : [0, 1] → Hn is a geodesic
starting from 0, as in Theorem 1.1.4. This map is a C∞-diffeomorphism
from R2n \ {0} × (−2π, 2π) onto Hn \ Ly in the usual euclidean sense, see
e.g. [71], [6], [66]. In particular it is Pansu differentiable and, from the fact
that dy ∈ Lip1(Ω, dSR), it holds |∇Hdy(x)| ≤ 1,∀x ∈ Hn \ Ly. Let us denote
by x := σ(1) ∈ Hn \ Ly: since dSR(σ(t)) = tdSR(x, y) for all t ∈ [0, 1], and
σ(t) ∈ Hn \ Ly for all t ∈]0, 1], we can differentiate w.r.t. t:

dSR(x, y) =
d

dt
dy(σ(t)) =

2n∑
j=1

Xj(dy(σ(t)))σ̇j(t)

≤ |∇Hdy(σ(t))|H |σ̇(t)|H ≤ dSR(x, y), (2.3)

where we used the fact that σ is a geodesic, then |σ̇(t)|H = dSR(x, y). Hence,
all the inequalities in (2.3) are equalities: in particular we get that

∇Hdy(σ(t)) =
σ̇(t)

|σ̇(t)|H
, ∀t ∈]0, 1].

Lemma 2.1.3. Lef f, g, h : Hn → R three functions such that f(x) ≤ g(x) ≤
h(x), for all x ∈ Hn. Let y ∈ Hn such that f(y) = g(y) = h(y) and f, h

are Pansu differentiable at y, with ∇Hf(y) = ∇Hh(y). Then, g is Pansu
differentiable in y and ∇Hg(y) = ∇Hf(y) = ∇Hh(y).

Proof. From [60, Proposition 5.6] it follows that,

DHf(y)(x) = ⟨∇Hf(y), πy(x)⟩H = ⟨∇Hh(y), πy(x)⟩H = DHh(y)(x),
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where the map y → πy(x) is the smooth section of HHn defined as

πy(x) :=
2n∑
i=1

xiXi(y). (2.4)

Then

f(x)− f(y)−DHf(y)(y
−1 · x) ≤ g(x)− g(y)−DHf(y)(y

−1 · x)︸ ︷︷ ︸
=DHh(y)(y−1·x)

≤

≤ h(x)− h(y)−DHh(y)(y
−1 · x).

If we divide the previous inequalities by dSR(x, y) and we let x tend to y, by
using Pansu differentiability of f and g and [60, Proposition 5.6] again, we
get the thesis.

Proof of Proposition 2.1.1. Let t0 ∈]0, 1[ and a, b ∈ σ([0, 1]) such that u(a) >
u(σ(t0)) > u(b). From Theorem 2.1.2 it follows that the functions da(·) and
db(·) are smooth in a neighborhood of σ(t0). Since u ∈ Lip1(Hn, dSR), it
holds that

u(a)− u(z) ≤ da(z), ∀z ∈ Hn.

Moreover a and b lie on the geodesic between x and y, then u(a) = u(b) +

dSR(a, b), and hence

db(z) ≥ u(z)− u(b) ≥ dSR(a, b)− da(z), ∀z ∈ Hn,

where equalities hold if z = σ(t0), since σ is a geodesic. Moreover, from The-
orem 2.1.2 again, it follows that ∇Hdb(σ(t0)) = −∇Hda(σ(t0)) = − σ̇(t0)

|σ̇(t0)|H
.

Hence, from Lemma 2.1.3, it follows that u is Pansu differentiable in σ(t0)

and
∇Hu(σ(t0)) = − σ̇(t0)

|σ̇(t0)|H
.

2.1.2 Disjointness of transport rays

We now introduce the following lemma, which guarantees that transport
rays cannot intersect at points that are in the interior of both of them.



2.1 Geometric properties of transport rays 35

Lemma 2.1.4. Let γ ∈ Π1(µ, ν). Then γ is concentrated on a set Γ such
that ∀(x, y), (x′, y′) ∈ Γ with (x, y) ̸= (x′, y′), if two transport rays between
these two pairs of points intersect at an interior point z ∈ Hn, then all points
x, x′, y, y′ and z lie on the same transport ray. Moreover if γ ∈ Π2(µ, ν),
then either x ≤ x′ ≤ z ≤ y ≤ y′ or x′ ≤ x ≤ z ≤ y′ ≤ y.

Proof. We first recall that (1.2.1) reads as

dSR(x, y) + dSR(x
′, y′) ≤ dSR(x, y

′) + dSR(x
′, y), (2.5)

∀(x, y), (x′, y′) ∈ Γ. Let σ : [0, dSR(x, y)] → Hn be a geodesic between x and
y, σ̃ : [0, dSR(x

′, y′)] → Hn a geodesic between x′ and y′, z ∈ σ(0, dSR(x, y))∩
σ̃(0, dSR(x

′, y′)), so z = σ(dSR(x, z)) = σ̃(dSR(x
′, z)). We denote by α the

curve between x and y′ defined in the following way:

α(t) :=

σ
(

dSR(x,z)
dSR(x′,z)

t
)
, if t ∈ [0, dSR(x

′, z)],

σ̃(t), if t ∈ (dSR(x
′, z), dSR(x

′, y′)].

α(t) :=

σ(t), if t ∈ [0, dSR(x, z)],

σ̃(t), if t ∈ [dSR(x, z), dSR(x
′, y′)].

We will prove that α is geodesic between x and y′. Indeed, otherwise we
would have

dSR(x, y
′) < l(α) = l(α|[0,dSR(x′,z)]) + l(α|[dSR(x′,z),dSR(x′,y′)])

= dSR(x, z) + dSR(z, y
′). (2.6)

Since z lies on both the geodesic between x and y and the geodesic between
x′ and y′, it follows thatdSR(x, y) = dSR(x, z) + dSR(z, y);

dSR(x
′, y′) = dSR(x

′, z) + dSR(z, y
′).

(2.7)

By replacing (2.7) in (2.6), we obtain:

dSR(x, y
′) + dSR(z, y) + dSR(x

′, z) < dSR(x, y) + dSR(x
′, y′). (2.8)
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By the triangle inequality follows that:

dSR(x
′, y) ≤ dSR(x

′, z) + dSR(z, y),

and then, by replacing this last inequality in (2.8), we obtain

dSR(x, y
′) + dSR(x

′, y) < dSR(x, y) + dSR(x
′, y′),

and this contraddicts (2.5). It follows that σ̃ and α are geodesics that coincide
on the non-trivial interval [dSR(x′, z), dSR(x′, y′)]. Since Hn is non-branching,
this implies that σ̃ and α are sub-arcs of the same geodesic, namely α if
dSR(x

′, z) ≤ dSR(x, z) and σ̃ otherwise, on which all points x, x′, z, y′ lie.

The thesis follows from Proposition 1.2.4.

2.1.3 Compactness of the transport set

We denote by T1 the set of all points which lie on transport rays

T1 :=
⋃

{x ∈ σ ([0, 1]) : σ is transport ray} ,

and by T0 the complementary set of rays of length zero

T0 :=
{
z ∈ supp(µ) ∩ supp(ν) : |u(z)− u(z′)| < dSR(z, z

′),

∀z′ ∈ supp(µ) ∪ supp(ν), z ̸= z′
}
.

We will call transport set the set

T := T1 ∪ T0. (2.9)

We observe that

supp(µ) ∪ supp(ν) ⊆ T . (2.10)

Moreover, as in [56, Lemma 8] the following result holds.

Theorem 2.1.5. The transport set T is compact.
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Proof. Thanks to Hopf-Rinow theorem it is enough to prove that T is a
closed and bounded set. Let us consider the function v : Hn × Hn → R,
v(x, y) = u(x) − u(y). Since v is continuous, it attains a maximum L < ∞
on supp(µ) × supp(ν), which is a compact set. Let us prove that L ≥ 0. If
supp(µ) ∩ supp(ν) ̸= ∅, then ∀x ∈ supp(µ) ∩ supp(ν) we have that (x, x) ∈
supp(µ) × supp(ν) and v(x, x) = 0. Otherwise, from (2.10) it follows that
T1 ̸= ∅, hence there exists at least one transport ray σ. If x = σ(0) and
y = σ(1), then v(x, y) = dSR(x, y) > 0. Hence L ≥ 0.

We can suppose that A := T \supp(µ)∪supp(ν) ̸= ∅; otherwise, from the
previous theorem it follows that T = supp(µ) ∪ supp(ν), which is compact.
Hence, any z ∈ A lies on a transport ray σz. Let us denote by a = σz(0) and
b = σz(1), then

dSR(a, z) + dSR(b, z) = dSR(a, b) = v(a, b) ≤ L.

Hence, A lies in the union of the L-neighborhoods of the compact sets supp(µ)
and supp(ν), thus T is bounded.

Let us prove that T is closed. Let us consider (zn)n∈N ⊆ T , converging
to some z, we prove that z ∈ T . If there exists a subsequence (znk

)k∈N ⊆
supp(µ) ∪ supp(ν), then z ∈ supp(µ) ∪ supp(ν) by compactness of supp(µ)
and supp(ν). Let us suppose that zn ∈ A,∀n ∈ N: there exists a transport
ray σn, whose endpoints we denote by an = σn(0) and bn := σn(1). There
exist two subsequences

anj
→ a ∈ supp(µ) and bnj

→ b ∈ supp(ν), when j → ∞. (2.11)

Since

dSR(znj
, anj

) + dSR(znj
, bnj

) = dSR(anj
, bnj

) = u(anj
)− u(bnj

), ∀nj,

we have that

dSR(z, a) + dSR(z, b) = dSR(a, b) = u(a)− u(b). (2.12)

Hence there are two possibilities
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1. a = b =⇒
(2.12)

z = a = b ∈ T ;

2. a ̸= b =⇒
(2.11)+(2.12)

z ∈ T1.

2.2 Horizontal transport densities

The notion of transport density has been introduced in the Euclidean
setting by Bouchitté and Buttazzo in [20], [21] and by Evans and Gangbo
in [55]. In [20], [21] it was connected to some shape optimization-problems.
In [55] it was used to get the existence of optimal maps for the Monge-
Kantorovich probem associated with the Euclidean distance (see for instance
[87, Section 3.1] for more details about this topic). In [57] and [86] for
instance, the authors gave some sufficient conditions to get, respectively,
results of uniqueness and summability for the transport density.

In this section we introduce the notion of horizontal transport density,
adapting to the Heisenberg group setting the presentation provided in [44].
A horizontal transport density is a measure representing the density of trans-
port along horizontal curves and it is computed using geodesics of the space.
Then, we will investigate conditions under which the transport density is
Lebesgue absolutely continuous, with Lp density for some particular p’s.

Let µ, ν ∈ Pc(Hn) be two compactly supported Borel probability measures
over Hn. As we explained in Remark 1, for any γ ∈ Π(µ, ν) there exists a
γ-measurable selection of geodesics

S : Hn ×Hn → Geo(Hn),

such that for all x, y ∈ Hn, S(x, y) = σS
x,y ∈ Geo(Hn) is a geodesic joining

x and y. According to the terminology used in literature, we can give the
following definition.

Definition 2.2 (Horizontal transport density). Given an optimal transport
plan γ ∈ Π1(µ, ν) and a γ-measurable selection S, one can define a positive
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and finite Radon measure aSγ ∈ M+(Hn),
ˆ
Hn

φ(x)daSγ (x) :=

ˆ
Hn×Hn

( ˆ 1

0

φ(σS
x,y(t))|σ̇S

x,y(t)|Hdt
)
dγ(x, y), (2.13)

for any function φ ∈ C0(Hn).

Here C0(Hn) denotes the completion of the space of continuous function
with compact support Cc(Hn), with respect to the norm

∥φ∥∞ := sup
x∈Hn

|φ(x)|.

This measure represents the amount of transport taking place in each
region of Hn. If we look at the action of aSγ on sets, we have that for every
Borel set A,

aSγ (A) =

ˆ
Hn×Hn

H1(A ∩ σS
x,y([0, 1]))dγ(x, y).

One can define aSγ ∈ M+(Hn) as in (2.13), for any transport plan γ ∈
Π(µ, ν) (not necessarily optimal) and any γ-measurable selection of geodesics
S. In particular, given φ ∈ C0(Hn) it holds∣∣∣∣ˆ

Hn

φ(x)daSγ (x)

∣∣∣∣ ≤ ∥φ∥∞
ˆ
Hn×Hn

dSR(x, y)dγ(x, y) = C∥φ∥∞,

where C > 0 is a finite constant because µ and ν have compact support.
Moreover, if γ ∈ Π1(µ, ν), the total mass of aSγ satisfies

aSγ (Hn) ≤ min
γ∈Π(µ,ν)

ˆ
Hn×Hn

dSR(x, y)dγ(x, y),

for any γ-measurable selection S. In addition aSγ is supported on the com-
pact set T , see (2.9) and Theorem 2.1.5. This in turn implies that one can
define the transport densities aSγ ∈ M+(Hn) in duality with the continuous
functions C(Hn).

In the end, let us remark that if µ ≪ L2n+1 and γ ∈ Π1(µ, ν), then
γ(Hn × Hn \ E) = 0, see Proposition 1.2.3. Moreover, if S1 and S2 are two
γ-measurable selections, then S1|E = S2|E and therefore the definition of aSγ
is independent of the choice of the selection S. In this case we skip the
superscripts S in Definition 2.2 and we simply write aγ.
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2.2.1 Absolute continuity of horizontal transport densi-

ties

The first goal is to prove the existence of at least one horizontal transport
density, absolutely continuous w.r.t. the Haar measure of the group.

Given an optimal transport plan γ ∈ Π1(µ, ν) and a γ-measurable selec-
tion S, we consider the interpolation measures between µ and ν

(µS
t )t∈[0,1] := ((St)#γ)t∈[0,1];

the horizontal transport density aSγ may be written as

aSγ =

ˆ 1

0

(St)#(dSRγ)dt

where dSRγ is a positive measure on Hn×Hn. Since γ has compact support,
then there exists C > 0 such that dSR(x, y) ≤ C for any (x, y) ∈ supp(γ)
and hence

aSγ ≤ C

ˆ 1

0

µS
t dt. (2.14)

In order to prove that aSγ is absolutely continuous w.r.t. L2n+1, it is sufficient
to prove that µS

t is absolutely continuous w.r.t. L2n+1 for almost every t ∈
[0, 1]. In this way we get that, whenever L2n+1(A) = 0, then

aSγ (A) ≤ C

ˆ 1

0

µS
t (A)dt = 0. (2.15)

In particular if γ ∈ Π1(µ, ν) is induced by a transport map, i.e. is of the
form γ := (Id ⊗ T )#µ ∈ Π(µ, ν) where T : Hn → Hn is a measurable map,
and S is a γ-measurable selection, we denote by

T S
t := St ◦ (Id ⊗ T ) : Hn → Hn, ∀t ∈ [0, 1].

Here T S
t (x) is the point at distance tdSR(x, T (x)) from x on the selected

geodesic S(x, T (x)) between x and T (x). Then

µS
t = (T S

t )#µ.



2.2 Horizontal transport densities 41

Also in this case, if µ≪ L2n+1, then all the above quantities are independent
on the map S, hence for notational simplicity we skip the superscripts S.

With the next Proposition, if µ ≪ L2n+1, we are able to find at least an
optimal transport plan γ ∈ Π1(µ, ν) such that the interpolation measures µt

constructed from γ are absolutely continuous for t < 1.

Proposition 2.2.1. Suppose that µ≪ L2n+1 then, there exists γ ∈ Π1(µ, ν)

such that
µt := (St)#γ ≪ L2n+1, ∀t ∈ [0, 1). (2.16)

Proof. First we suppose that ν is finitely atomic, with atoms (yi)Mi=1. Let
γ ∈ Π2(µ, ν) ⊂ Π1(µ, ν), as in Theorem 1.2.6, which is monotone in the sense
of (1.31) and induced by a transport map T . Let us denote by Γ ⊆ Hn ×Hn

the set γ is concentrated on and (1.33) and (1.34) hold.
We denote by Ωi := T−1({yi})∩ π1(Γ): obviously these sets are mutually

disjoint and µ(Ω) = 1, where Ω :=
⋃M

i=1Ωi.
Now we denote by Ωi(t) := Tt(Ωi): if we fix t ∈ [0, 1[, then Ωi(t)∩Ωj(t) =

∅ for every i, j = 1, . . . ,M . Indeed, if ∃ z ∈ Ωi(t) ∩Ωj(t) then ∃ xi ∈ Ωi and
xj ∈ Ωj such that (xi, yi), (xj, yj) ∈ Γ, (xi, yi) ̸= (xj, yj) and the geodesics
between these two pairs of points intersect at z. Since γ ∈ Π2(µ, ν), by
Theorem 2.1.4 we can suppose that xi, yi, xj, yj, z belong to the same unit-
speed geodesic and xi ≤ xj ≤ z ≤ yi ≤ yj. In particular this means, on
the one hand, that tdSR(xi, yi) = dSR(xi, z) ≥ dSR(x

j, z) = tdSR(x
j, yj),

hence dSR(x
i, yi) ≥ dSR(x

j, yj). On the other hand (1 − t)dSR(x
i, yi) =

dSR(z, yi) ≤ dSR(z, y
j) = (1 − t)dSR(x

j, yj), hence dSR(xi, yi) ≤ dSR(x
j, yj).

It follows that dSR(xi, yi) = dSR(x
j, yj) and hence dSR(xi, z) = dSR(x

j, z)

and dSR(z, y
i) = dSR(z, y

j), which in turn implies that xj = xi and yi = yj

and gives a contradiction. However it may happen that xi = yi or xj = yj.
Let us suppose that xi = yi = z: the same computation above implies that
dSR(x

j, yj) = 0, which in turns implies that yi = yj and gives a contradiction.
Remember also that µ is absolutely continuous and hence there exists a

correspondence ε 7→ δ = δ(ε) such that

L2n+1(A) < δ(ε) ⇒ µ(A) < ε.
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Let A ⊂ Hn be a Borel set, t ∈ [0, 1), then µt := (Tt)#µ is concentrated
on Tt(supp(µ)) and

µt(A) =
M∑
i=1

µt(A∩Ωi(t)) =
M∑
i=1

µ(T−1
t (A∩Ωi(t))) = µ

(
M⋃
i=1

(T−1
t (A ∩ Ωi(t)))

)
,

since the sets T−1
t (A ∩ Ωi(t)) ⊆ Ωi are disjoint. We observe that for any

x ∈ Ωi, Tt(x) = St(x, y
i), hence by (1.19) follows that

L2n+1(U) ≤ 1

(1− t)2n+3
L2n+1(Tt(U)),

for any U ⊂ Ωi. This in turn implies that

L2n+1(T−1
t (A ∩ Ωi(t))) ≤

1

(1− t)2n+3
L2n+1(A ∩ Ωi(t)),

and so

L2n+1

(
M⋃
i=1

(T−1
t (A ∩ Ωi(t)))

)
≤ 1

(1− t)2n+3
L2n+1(A).

Hence, it is sufficient to suppose that L2n+1(A) < (1 − t)2n+3δ(ε) to get
µt(A) < ε. This proves that µt ≪ L2n+1.

Now, if ν is not finitely atomic, we can take a sequence (νk)k∈N of atomic
measures weakly converging to ν. For any k ∈ N we consider optimal plan γk,
as in the first part of the proof. In particular (γk)k∈N is a sequence of optimal
transport plans weakly converging to an optimal transport plan γ; moreover
the sequence (µk

t )k∈N weakly converges to the corresponding µt := (St)#γ,
thanks to Proposition 1.2.3 and [52, Lemma 7.3]. Take a set A such that
L2n+1(A) < (1 − t)2n+3δ(ε). Since the Lebesgue measure is regular,A is
included in an open set B such that L2n+1(B) < (1 − t)2n+3δ(ε). Hence
µk
t (B) < ε,∀k ∈ N. Passing to the limit and using Portmanteau’s Theorem,

see [17, Theorem 2.1], we get

µt(A) ≤ µt(B) ≤ lim inf
k

µk
t (B) ≤ ε.

This proves that µt ≪ L2n+1.
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Theorem 2.2.2. Suppose that µ ≪ L2n+1, then there exists γ ∈ Π1(µ, ν)

such that aγ ≪ L2n+1.

Proof. Let γ ∈ Π1(µ, ν) satisfying (2.16). Then, the thesis follows immedi-
ately from (2.15) applied to aγ.

Obviously the previous argument depends only on one of the two marginals
and it is completely symmetric: if ν ≪ L2n+1, again one can get the existence
of an optimal transport plan γ ∈ Π1(µ, ν) such that the associated horizontal
transport density aγ is absolute continuous w.r.t. the (2n + 1)-dimensional
Lebesgue measure.

Let us just remark that, in the Riemannian setting, if one between µ

and ν is absolutely continuous w.r.t. the volume measure, then the trasport
density does not depend on the choice of the transport plan, see [56]. See
also [57] and [2] for the analogous result in Rn.

2.2.2 Summability of horizontal transport densities

The next step is to prove, under some suitable assumptions, the exis-
tence of at least one optimal plan γ ∈ Π1(µ, ν), whose associated horizontal
transport density belongs to Lp, for some p ∈ [1,∞]. From now on, given
λ ∈ M+(Hn) we will write that λ ∈ Lp if λ ≪ L2n+1, with density ρ ∈ Lp.
We will denote by ∥λ∥p := ∥ρ∥Lp .

Let γ ∈ Π1(µ, ν) be an optimal transport plan as in Theorem 2.2.2, using
Minkowski inequality in (2.14) it holds

∥aγ∥p ≤ C

ˆ 1

0

∥µt∥pdt. (2.17)

In order to prove p-summability of aγ, for some γ ∈ Π1(µ, ν), it is sufficient
to prove that almost every measure µt is in Lp and to estimate their Lp norms,
choosing a posteriori p such that the integral above converges.

In the following theorem we will estimate for all t ∈ (0, 1) the Lp norm of
the interpolation measures µt, associated with transport plans γ ∈ Π1(µ, ν)

that satisfy the thesis of Theorem 2.2.2.
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Proposition 2.2.3. If µ ∈ Lp, then there exists γ ∈ Π1(µ, ν) such that
µt := (St)#γ satisfies

∥µt∥p ≤ (1− t)−(2n+3)/q∥µ∥p, ∀t ∈ (0, 1), (2.18)

where q := p
p−1

is the conjugate exponent of p.

Proof. Let us denote by ρ the density of µ w.r.t. L2n+1. Consider first the
discrete case: let us assume that the target measure ν is finitely atomic and
let us denote by (yi)i=1,...,M its atoms, as in the previous proof. Let us consider
an optimal transport plan γ ∈ Π2(µ, ν), as in Theorem 1.2.6, concentrated
on a set Γ. As before, since γ is induced by a map T , we denote by Ωi :=

T−1({yi})∩π1(Γ), for i ∈ {1, . . . ,M}, so that for γ-a.e. (x, y) ∈ Ωi×Hn, we
have y = yi. Let us consider the corresponding interpolation measures µt.
As in the proof of Theorem 2.2.1 we get that µt ≪ L2n+1 for every t ∈ [0, 1);
moreover, for all φ ∈ C(Hn), by the definition of push-forward we get that

ˆ
φ(x)dµt(x) =

M∑
i=1

ˆ
Ωi

φ(St(x, yi))dγ(x, yi) =

=
M∑
i=1

ˆ
Ωi

φ(Tt(x))dµ(x).

Let us fix i ∈ {1, . . . ,M} and let us denote by ρt the density of µt w.r.t. L2n+1

and by ρit := ρt⌊Ωi
. Let us take the change of variable z = St(x, yi) = Tt⌊Ωi

(x).
We know, from Lemma 2.1.4 and disjointness of the sets Ωi(t), that this map
is injective. Then, for all φ ∈ C(Hn), we get

ˆ
Ωi

φ(x)dµi
t(x) =

ˆ
Ωi

φ(Tt(x))ρ(x)dx =

=

ˆ
Ωi(t)

φ(z)ρ(T−1
t (z))| detDx(St(x, y

i))|−1dz.

Hence, we have that

ρit(z) = ρ(T−1
t (z))| detDx(St(x, y

i))|−1, for a.e. z ∈ Ωi(t).
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Consequently, we get

∥ρit∥
p
Lp(Ωi(t))

=

ˆ
Ωi(t)

ρ(T−1
t (z))p| detDx(St(x, y

i))|−pdz =

=

ˆ
Ωi

ρ(x)p| detDx(St(x, y
i))|1−pdx.

Hence from (1.18) it follows that

∥ρit∥
p
Lp(Ωi(t))

≤ (1− t)(1−p)(2n+3)∥ρ∥pLp(Ωi)
, ∀i ∈ {1, . . . ,M}.

Then, we have

∥µt∥p ≤ (1− t)−(2n+3)/q∥µ∥p, ∀t ∈ (0, 1), (2.19)

where q = p
p−1

. As in the proof of Proposition 2.2.1, if ν is not finitely atomic,
we can take a sequence (νk)k∈N of atomic measures weakly converging to ν.
As in Theorem 2.2.2, we consider the sequence (γk)k∈N of optimal plans
satisfying (2.19): this sequence weakly converges to an optimal plan γ and
µk
t weakly converge to the corresponding µt := (St)#γ. Hence, we get that

∥µt∥p ≤ lim inf
k→0

∥µk
t ∥p ≤ (1− t)−(2n+3)/q∥µ∥p.

Now we are able to prove the following theorem:

Theorem 2.2.4. If µ ∈ Lp for some p ∈ [1,∞], it holds: if p < 2n+3
2n+2

then there exists γ ∈ Π1(µ, ν) such that aγ ∈ Lp; otherwise there exists
γ ∈ Π1(µ, ν) such that aγ ∈ Ls for s < 2n+3

2n+2
.

Proof. Let γ ∈ Π1(µ, ν) satisfying (2.18). Then, it follows from (2.17) applied
to aγ that

∥aγ∥p ≤ C

ˆ 1

0

∥µt∥pdt ≤ C∥µ∥p
ˆ 1

0

(1− t)−(2n+3)/qdt.

The last integral is finite whenever q > 2n+ 3, i.e. p < 2n+3
2n+2

.
If p ≥ 2n+3

2n+2
the thesis follows from the fact that any density in Lp also

belongs to any Ls space for s < p.
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If also ν ∈ Lp, by symmetry and using the same strategy as before, it is
obvious that one can also show the same Lp estimates on µt but from the
other side: i.e., with the same notations as in proof of Proposition 2.2.3, by
approximating µ with a sequence of atomic measures we get

∥µt∥p ≤ t−(2n+3)/q∥ν∥p, ∀t ∈ (0, 1). (2.20)

However (2.18) e (2.20) have been obtained by discrete approximations
of µ and ν, respectively. If the two approximations converge to two different
optimal transport plans γ ∈ Π2(µ, ν), then we cannot glue together the two
estimates on µt and deduce anything about the summability of aγ. This is
not the case in the Euclidean setting, because uniqueness for the monotone
optimal transport plan is well-known, see for instance [87, Theorem 3.18].
Hence, Santambrogio in [44] can infer that, ∀t ∈ (0, 1),

∥µt∥p ≤ min
{
(1− t)−(2n+3)/q∥µ∥p, t−(2n+3)/q∥ν∥p

}
≤ 2(2n+3)/q max{∥µ∥p, ∥ν∥p},

and get the p-summability of aγ, starting from the p-summability of both
µ and ν. As far as we know, the aforementioned uniqueness result is still
true in the Riemannian setting, see [56], but it has not been proven in the
Heisenberg group.

2.3 Beckmann’s formulation of the optimal trans-

port problem in Hn

In this section we introduce another formulation of the Monge-Kantorovich
problem

min
γ∈Π(µ,ν)

{ˆ
Hn×Hn

dSR(x, y)dγ(x, y)

}
, (MKP)

known in literature as Beckmann problem, see [13] and [87, Section 4.2]. This
new formulation is set on the space of compactly supported horizontal vector
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measures in HHn, subjected to a horizontal divergence-type constraint

min

{
∥w∥M(Hn,HHn) : w ∈ Mc(Hn, HHn),

ˆ
Hn

∇Hφ · dw = −
ˆ
Hn

φd(µ− ν), ∀φ ∈ C∞(Hn)

}
. (2.21)

We will show that the values of (MKP) and (2.21) are the same and how
to construct a solution to (2.21) starting from a solution to (MKP).

2.3.1 Vector horizontal transport densities

Given an optimal transport plan γ ∈ Π1(µ, ν) and a γ-measurable selec-
tion of geodesics

S : Hn ×Hn → Geo(Hn),

we defined a scalar measure aSγ . One can also define a vector version of aSγ ,
i.e. a horizontal vector measure that we will call vector horizontal transport
density.

Definition 2.3 (Vector horizontal transport density). The vector horizontal
transport density is the vector measure wS

γ ∈ M(Hn, HHn) defined as

ˆ
Hn

ϕ · dwS
γ :=

ˆ
Hn×Hn

(ˆ 1

0

⟨ϕ
(
σS
x,y(t)

)
, σ̇S

x,y(t)⟩Hdt
)
dγ(x, y), (2.22)

for any ϕ ∈ C0(Hn, HHn).

Even in this case wS
γ is well-defined and compactly supported for any

γ ∈ Π(µ, ν) and any γ-measurable selection S. If γ ∈ Π1(µ, ν), the measure
wS

γ is compactly supported on the transport set and it holds that

∥wS
γ∥M(Hn,HHn) ≤ (MKP). (2.23)

Hence, as for the scalar horizontal transport density, we can define the mea-
sure wS

γ in duality with the continuous horizontal vector fields C(Hn, HHn).
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2.3.2 Absolute continuity and summability of vector hor-

izontal transport densities

There is a deep relation between the vector horizontal transport density
and the scalar one, introduced in Section 2.2. First, we observe that, given
γ ∈ Π(µ, ν) and a γ-measurable selection of geodesics S, by definition it
follows that

|wS
γ | ≤ aSγ

as measures. Indeed, let A ⊆ Hn be a Borel set and let ϕ ∈ Cc(Hn, HHn)

such that supp ϕ ⊆ A and ∥ϕ∥∞ ≤ 1, then
ˆ
Hn

ϕ · dwS
γ ≤

∣∣∣∣ˆ
Hn

ϕ · dwS
γ

∣∣∣∣ ≤ ˆ
Hn

|ϕ|HdaSγ ≤ aSγ (A).

Taking the sup among all the admissible ϕ on the left hand side and having
in mind (1.23), one get

|wS
γ |(A) ≤ aSγ (A), ∀A ⊆ Hn Borel set.

If in addition γ ∈ Π1(µ, ν), using Lemma 2.1.1 we may write

σ̇S
x,y(t) = |σ̇S

x,y(t)|H
σ̇S
x,y(t)

|σ̇S
x,y(t)|H

= −dSR(x, y)∇Hu(σ
S
x,y(t)),

where u ∈ Lip(Hn, dSR) is a Kantorovich potential. The previous equality
holds for every t ∈]0, 1[ and for γ-almost every (x, y), with x ̸= y (otherwise
both expressions vanish). This allows us to write

ˆ
Hn

ϕ · dwS
γ

=

ˆ
Hn×Hn

(ˆ 1

0

−dSR(x, y)
〈
∇Hu(σ

S
x,y(t)), ϕ(σ

S
x,y(t))

〉
H
dt

)
dγ(x, y)

= −
ˆ 1

0

(ˆ
Hn×Hn

〈
∇Hu(σ

S
x,y(t)), ϕ(σ

S
x,y(t))

〉
H
dSR(x, y)dγ(x, y)

)
dt

= −
ˆ 1

0

(ˆ
Hn

⟨∇Hu(z), ϕ(z)⟩H d(St)#(dSRγ)(z)

)
dt,
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for every ϕ ∈ C(Hn, HHn). With the same kind of computation one gets
that ˆ

Hn

φdaSγ =

ˆ 1

0

(ˆ
Hn

φ(z)d(St)#(dSRγ)(z)

)
dt,∀φ ∈ C(Hn).

Then, ˆ
Hn

ϕ · dwS
γ = −

ˆ
Hn

⟨ϕ,∇Hu⟩H da
S
γ = −

ˆ
Hn

ϕ · d
(
(∇Hu)a

S
γ

)
,

for every ϕ ∈ C(Hn, HHn). Since by definition wS
γ and aSγ are concentrated

on the set of differentiability points of the Kantorovich potential u, it follows
that −∇Hu is the density of the measure |wS

γ | w.r.t. aSγ ,

wS
γ = −(∇Hu)a

S
γ . (2.24)

Since |∇Hu|H ≤ 1 in the points where it exists, this confirms that |wS
γ | ≤ aSγ .

Theorem 2.3.1. If µ ≪ L2n+1, then there exists γ ∈ Π1(µ, ν) such that
wγ ∈ L1(Hn, HHn).

If µ ∈ Lp for some p ∈ [1,∞], it holds: if p < 2n+3
2n+2

then there exists γ ∈
Π1(µ, ν) such that wγ ∈ Lp (Hn, HHn); otherwise there exists γ ∈ Π1(µ, ν)

such that wγ ∈ Ls (Hn, HHn) for s < 2n+3
2n+2

.

Proof. The thesis follows from the argument above, Theorem 2.2.2 and The-
orem 2.2.4.

2.3.3 The Beckmann problem in Hn

Given any optimal transport plan γ ∈ Π1(µ, ν) and a γ-measurable se-
lection S, we can test the vector horizontal transport density wS

γ against
ϕ = ∇Hφ, for any φ ∈ C∞

ˆ
Hn

∇Hφ · dwS
γ =

ˆ
Hn×Hn

(ˆ 1

0

⟨∇Hφ
(
σS
x,y(t)

)
, σ̇S

x,y(t)⟩Hdt
)
dγ(x, y)

=

ˆ
Hn×Hn

(ˆ 1

0

d

dt

[
φ(σS

x,y(t))
]
dt

)
dγ(x, y)

=

ˆ
Hn×Hn

(φ(y)− φ(x))dγ(x, y) = −
ˆ
Hn

φd(µ− ν), (2.25)
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see (1.20).
Now, given a compactly supported vector measure w ∈ Mc(Hn, HHn)

we can define its distributional horizontal divergence divHw by the rule

⟨divHw, φ⟩ := −
ˆ
Hn

∇Hφ(x) · dw, ∀φ ∈ C∞.

With this definition in mind we can rewrite (2.25) in the following way:

divHwS
γ = µ− ν,

for any γ ∈ Π1(µ, ν) and any γ-measurable selection of geodesics S, i.e. the
horizontal divergence of the measure wS

γ is the signed Radon measure µ− ν.

Remark 3. Obviously, (2.25) is independent on the optimality of the trans-
port plan. It holds for any transport plan γ ∈ Π(µ, ν).

In [13] the author introduced a wide class of problems in the euclidean
setting, called continuous models of transportation. The Heisenberg version
of the simplest case of these problems reads as

min
{
∥w∥M(Hn,HHn) : w ∈ Mc(Hn, HHn), divHw = µ− ν

}
, (BP)

while we will give a more general formulation in Section 4.2. The aim of the
next theorem is to prove that (BP) admits the following dual reformulation

sup
u∈HW 1,∞

{ˆ
Hn

ud(µ− ν) : ∥∇Hu∥∞ ≤ 1

}
. (DP)

In order to do this, we will prove that (BP) is equivalent to the Monge-
Kantorovic problem (MKP), whose dual formulation is precisely the well-
known Kantorovich duality formula (DP). The equivalence between (BP)
and (DP) was first investigated in the euclidean setting in [91].

Theorem 2.3.2. The problem (BP) admits a solution. Moreover,

(BP) = (MKP) (2.26)

where
(MKP) = min

γ∈Π(µ,ν)

ˆ
Hn×Hn

dSR(x, y)dγ(x, y),

and a solution to (BP) can be built from a solution to (MKP).
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Proof. First we prove the equality between (MKP) and (BP). We start
by proving that (BP)≥(MKP). Take an arbitrary function φ ∈ C∞ ∩
Lip1(Hn, dSR). Theorem 1.1.5 implies that ∥∇Hφ∥∞ ≤ 1; hence, for any
w admissible we get

∥w∥M(Hn,HHn) = |w|(Hn) ≥
ˆ
Hn

(−∇Hφ) · dw =

ˆ
Hn

φd(µ− ν).

Now we take φε = ρε ∗ u, where u is a Kantorovich potential and ρε is a
mollifier for the group structure. It follows that φε ∈ C∞ ∩ Lip1(Hn, dSR)

and converges uniformly on compact sets to the Kantorovich potential u, see
[50, Proposition 2.14]. By letting ε tend to 0 we get that

∥w∥M(Hn,HHn) ≥
ˆ
Hn

ud(µ− ν) = (MKP), (2.27)

where we used Theorem 1.2.2 in the last equality. Since the previous in-
equality holds for any admissible w, we may take the minimum in the left
hand-side and get

(BP) ≥ (MKP).

Now we will prove the converse inequality: given γ ∈ Π1(µ, ν) and a
γ-measurable selection of geodesics S, we know that the vector horizontal
transport density wS

γ , defined in (2.22), is a compactly supported measure,
which satisfies the divergence constraint thanks to (2.25). Moreover from
(2.23) we know that

∥wS
γ∥M(Hn,HHn) ≤ (MKP).

Hence

(BP) ≤ ∥wS
γ∥M(Hn,HHn) ≤ (MKP).

Remark 4. For any γ ∈ Π1(µ, ν), any γ-measurable selection of geodesics S
and any Kantorovich potential u ∈ Lip1(Hn, dSR), the pair (aSγ , u) solves the
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Monge-Kantorovich system


divH((∇Hu)λ) = µ− ν,

|∇Hu|H = 1, λ− a.e.,

|∇Hu|H ≤ 1.

The second condition holds because |∇Hu|H = 1 on the transport set and aSγ
is supported on it.

2.4 Lagrangian formulation of the optimal trans-

port problem in Hn

In this section we introduce a Lagrangian formulation of the Monge-
Kantorovich problem (MKP), following [3, Lecture 9, section 3].

Let µ, ν ∈ Pc(Hn), we consider the problem

inf

{ˆ
C([0,1],R2n+1)

l(σ)dQ(σ) :

Q ∈ P(C([0, 1],R2n+1)), (e0)#Q = µ, (e1)#Q = ν

}
, (2.28)

where the functional l is defined in (1.10).

Theorem 2.4.1. If µ, ν ∈ Pc(Hn), then (2.28) admits a solution.

Moreover, it holds

(2.28) = min
γ∈Π(µ,ν)

{ˆ
Hn×Hn

dSR(x, y)dγ(x, y)

}
and Q is optimal if and only if Q is supported on the set of minimizing
horizontal curves and (e0, e1)#Q ∈ Π1(µ, ν).
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Proof. Let Q ∈ P(C([0, 1],R2n+1)) be admissible, then

ˆ
C([0,1],R2n+1)

l(σ)dQ(σ) ≥
ˆ
C([0,1],R2n+1)

dSR(σ(0), σ(1))dQ(σ) =

ˆ
Hn×Hn

dSR(x, y)d(e0, e1)#Q(x, y) ≥ min
γ∈Π(µ,ν)

{ˆ
Hn×Hn

dSR(x, y)dγ(x, y)

}
,

(2.29)

where the first inequality follows from the definition of l and the triangle
inequality, the second equality follows from the definition of push-forward
and the last inequality from the fact that (e0, e1)#Q ∈ Π(µ, ν) is admissible.

Let us prove the converse inequality. Let us take γ ∈ Π1(µ, ν) and a
γ-measurable selection of geodesic S : Hn × Hn → Geo(Hn). Then, the
measure

Q := S#γ ∈ P(C([0, 1],R2n+1))

and it is supported on Geo(Hn) by construction. Hence

min
γ∈Π(µ,ν)

{ˆ
Hn×Hn

dSR(x, y)dγ(x, y)

}
=

ˆ
Hn×Hn

dSR(x, y)dγ(x, y)

=

ˆ
Geo(Hn)

dSR(σ(0), σ(1))dQ(σ) =

ˆ
Geo(Hn)

l(σ)dQ(σ). (2.30)

Moreover Q ∈ P(C([0, 1],R2n+1)) is optimal for (2.28) if and only if (2.29)
holds with equalities, that happens if and only if Q is supported on the set
of minimizing horizontal curves and (e0, e1)#Q ∈ Π1(µ, ν).

Remark 5. This theorem is independent on the compactness of supports and
on the ambient space: it holds in more general metric space (M,d) with
µ, ν ∈ P(M) such that

ˆ
M

d(x, 0)dµ(x) +

ˆ
M

d(0, y)(y)dν(y) < +∞,

and l is the length induced by the distance d as in (1.10). Pay attention
to the fact that in (2.30) the key point is that for horizontal curves σ the
quantities l(σ) and lSR(σ) coincide.
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Remark 6. Let us just remark that, a posteriori, due to the second part of
the statement in Theorem 2.4.1 we can restate (2.28) as

inf

{ˆ
C([0,1],R2n+1)

lSR(σ)dQ(σ) : Q ∈ P(C([0, 1],R2n+1)), (e0)#Q = µ,

(e1)#Q = ν, Q is concentrated on H([0, 1],Hn)

}
.

In the next chapter we will call such Q’s horizontal traffic plans.



Chapter 3

Congested optimal transport

problem in Hn

We consider a regular bounded domain Ω ⊂ Hn with C1,1 boundary,
which models the geographical area on which the dynamic takes place, and
two probability measures µ, ν ∈ P(Ω), which represent, for instance, the
distributions of moving agents and destinations, respectively.

From a traffic point of view the classical Monge-Kantorovich problem is
not suitable to take into account congestion effects, because it depends only
on the initial and final position of the mass, but not on the paths followed
by it.

In the spirit of [43], in order to take into account congestion and to
describe how agents µ choose paths to reach destinations ν, we introduce the
concepts of horizontal traffic plans and horizontal traffic intensities : we will
prove the existence of equilibrium configurations of Wardrop-type, through
the minimization of a convex functional.

3.1 Weighted length of horizontal curves

Let Ω be a bounded domain of Hn, with regular C1,1 boundary, i.e. it
is a C1,1 manifold (in the Euclidean sense) and it has a well-defined tangent

55
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space at each point. We consider the set of continuous curves C([0, 1],Ω),
equipped with the topology of uniform convergence.

We denote by

H :=
{
σ ∈ AC([0, 1],Ω) : σ is horizontal

}
the subspace of horizontal curves, where AC([0, 1],Ω) denotes the subspace
of absolutely continuous curves with values in Ω. Let x, y ∈ Ω and

Hx,y := {σ ∈ H : σ(0) = x, σ(1) = y}

the set of horizontal curves connecting x and y.

Remark 7. Let us remark that the set

Hx,y ̸= ∅,

for any x, y ∈ Ω. Indeed, if x, y ∈ Ω, then there exists a curve σ ∈ C([0, 1],Ω)

such that σ(0) = x, σ(1) = y. Hence, one can find a piece-wise horizontal
curve σ̃ ∈ Hx,y, sufficiently close to σ, such that σ̃([0, 1]) ⊂ Ω.

Moreover, let us denote by C(∂Ω) the set of characteristic points of ∂Ω,
that is

C(∂Ω) := {x ∈ ∂Ω : Tx∂Ω = HxHn} .

At a non characteristic point z we denote Hz∂Ω = Tz∂Ω ∩ HzHn the hori-
zontal tangent space to ∂Ω at the point z. Then HzHn can be represented
as

HzHn = Hz∂Ω⊕ span{nH(z)},

where nH(z) is the horizontal normal at the point z ∈ ∂Ω, that is is the
orthogonal projection of the normal to Ω at z on the horizontal distribution
HHn. Hence, for any Xi ∈ hn1 , the vector Xi(z) ∈ HzHn admits an unique
projection π(Xi)(z) on the space Hz∂Ω.

Let us suppose now that x ∈ ∂Ω and y ∈ Ω. If x ∈ ∂Ω is not a charac-
teristic point, then the horizontal normal nH at the point x does not vanish.
As a result, if nH(x) :=

∑2n
i=1 niXi(x), one can consider the horizontal vector
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field Z :=
∑2n

i=1 niXi ∈ hn1 and δ > 0 such that σ(t) := exp(−tZ)(x), with
t ∈ [0, δ], is a horizontal curve in Ω and z := exp(−δZ)(x) ∈ Ω. Now, one
can consider a horizontal curve between x′ and y, such that it is contained
in Ω.

Let us suppose now that x ∈ C(∂Ω) is a characteristic point. From
[11, Theorem 1.2] it follows that Hausdorff dimension w.r.t. the Euclidean
metric is dimE C(∂Ω) < 2n. Then there exist v =

∑2n
i=1 viXi(x) ∈ Tx∂Ω

and δ > 0 such that the horizontal curve σ(t) = exp
(
t
∑2n

i=1 viπ(Xi)
)
(x) is

well defined, belongs to ∂Ω and is non characteristic for all t ∈ [0, δ]. Now,
using the previous arguments one can consider a horizontal curve between
z = σ(δ) and x′ ∈ Ω, and a horizontal curve between z and y, which is
contained in Ω. If x, y ∈ ∂Ω, using the previous arguments one can connect
them with x′, y′ ∈ Ω and then find a horizontal curve between x′ and y′,
which is contained in Ω.

Given σ ∈ H we will denote by σ̃ its constant-speed reparametrization:
hence, | ˙̃σ(t)|H = lSR(σ) = lSR(σ̃) for a.e. t ∈ [0, 1]. We denote by

H̃ := {σ̃ : σ ∈ H} ,

and by
H̃x,y := {σ̃ : σ ∈ Hx,y} .

Given φ ∈ C(Ω) and σ ∈ H, we denote by

Lφ(σ) :=

ˆ 1

0

φ(σ(t))|σ̇(t)|Hdt = lSR(σ)

ˆ 1

0

φ(σ̃(t))dt,

the weighted horizontal length of σ, with weight φ. This quantity is well
define since the curvilinear integral does not depend on the parametrization.

Let us notice that, if φ ≡ 1 and σ ∈ H, then

L1(σ) = lSR(σ).

Following [43, Lemma 2.7] we introduce the following lemma, which allows
us to define the weighted sub-Riemannian length Lφ(σ) also for curves σ ∈
C([0, 1],Ω) \H, when φ ∈ C(Ω), φ ≥ 0.
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Lemma 3.1.1. For any φ ∈ C(Ω), φ ≥ 0 and any σ ∈ H, it holds that

Lφ(σ) = sup
{ k∑

i=1

(
inf

[ti,ti+1]
(φ ◦ σ)

)
dSR(σ(ti), σ(ti+1)) :

([ti, ti+1])i is a subdivision of [0, 1]
}
=: Lφ(σ) ∈ [0,+∞]. (3.1)

Proof. For any subdivision ([ti, ti+1])i=1,...k, we have

Lφ(σ) =
k∑

i=1

ˆ ti+1

ti

φ(σ(t))|σ̇(t)|H dt ≥
k∑

i=1

inf
[ti,ti+1]

(φ ◦ σ)
ˆ ti+1

ti

|σ̇(t)|H dt ≥

≥
k∑

i=1

inf
[ti,ti+1]

(φ ◦ σ)dSR(σ(ti), σ(ti+1)),

where the last inequality follows from the definition of dSR and the fact that
φ ≥ 0. Taking the supremum over all such divisions one get

Lφ(σ) ≥ sup
{ k∑

i=1

inf
[ti,ti+1]

(φ ◦ σ)dSR(σ(ti), σ(ti+1)) :

([ti, ti+1])i is a subdivision of [0, 1]
}
.

Let us prove the converse inequality. Let ε > 0, the Heine-Cantor theorem
implies that φ◦σ is uniformly continuous, hence there exists δ > 0 such that

∀t, t′ ∈ [0, 1], |t− t′| ≤ δ ⇒ |φ(σ(t))− φ(σ(t′))| ≤ ε

2
.

For any subdivision ([ti, ti+1])i=1,...k, we know that ∃tε ∈ [ti, ti+1] such that
inf [ti,ti+1](φ ◦ σ) ≥ φ(σ(tε))− ε

2
. If we choose ([ti, ti+1])i=1,...k such that |ti −

ti+1| ≤ δ for all i, then

inf
[ti,ti+1]

(φ ◦ σ) ≥ φ(σ(tε))−
ε

2
= φ(σ(tε))− φ(σ(t)) + φ(σ(t))− ε

2
≥

≥ φ(σ(t))− ε, ∀t ∈ [ti, ti+1].
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Thus, using Lemma 1.1.2 we get

Lφ(σ) ≤
k∑

i=1

( inf
[ti,ti+1]

(φ ◦ σ) + ε)

ˆ ti+1

ti

|σ̇(t)|H dt =

=
n∑

i=1

( inf
[ti,ti+1]

(φ ◦ σ) + ε) sup

{∑
j

dSR(σ(τj), σ(τj+1)) :

([τj, τj+1])j is a subdivision of [ti, ti+1]

}
≤ sup

{∑
i

∑
j

( inf
[τj ,τj+1]

(φ ◦ σ) + ε)dSR(σ(τj), σ(τj+1)) :

([τj, τj+1])j is a subdivision of [ti, ti+1]

}
= sup

{ k∑
i=1

( inf
[ti,ti+1]

(φ ◦ σ) + ε)dSR(σ(ti), σ(ti+1)) :

([ti, ti+1])i is a subdivision of [0, 1]
}
.

As this last inequality is true for any ε > 0 we get (3.1).

This means that, if φ ≥ 0, the function Lφ : H → R+ can be defined on
the whole C([0, 1],Ω) as the function

Lφ : C([0, 1],Ω) → [0,+∞].

The space where Lφ is well-defined with values in R is the space R
(
[0, 1],Ω

)
of rectifiable curves. Moreover, σ 7→ Lφ(σ) is lower semi-continuous, hence
Borel, on R([0, 1],Ω) w.r.t. the topology of uniform convergence, since it is
the supremum of a family of l.s.c. functions.

If φ ∈ C(Ω), one can define

Lφ := Lφ+ − Lφ− : C([0, 1],Ω) → [0,+∞],

where φ+ := max{0, φ} and φ− := max{0,−φ}. With an abuse of notation
we will keep the symbol Lφ to denote the function defined on the whole space.
Moroever, the function σ 7→ Lφ(σ) is Borel.
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3.2 Horizontal traffic plans and horizontal traf-

fic intensities

Let µ, ν ∈ P(Ω) be two probability measures on Ω. We want to recover
an optimal mass transport problem,

inf
γ∈Π(µ,ν)

ˆ
Ω×Ω

c(x, y)dγ(x, y),

in which the cost function c : Ω × Ω → R+ depends on how the agents µ
use paths in H to get destinations ν. In order to do this one can consider
Borel probability measures Q ∈ P(C([0, 1],Ω)): roughly speaking, if A a
Borel set in C([0, 1],Ω), Q(A) is the proportion of agents that are using a
path σ ∈ A. In addition we want to take into account the sub-Riemannian
structure of Hn: to this aim we consider measures Q concentrated on the set
of horizontal curves, which we will call horizontal traffic plan, according to
the terminology introduced in [94].

Definition 3.1 (Horizontal traffic plan). A horizontal traffic plan is a
probability measure Q ∈ P(C([0, 1],Ω)) such that Q(H) = 1 and

ˆ
C([0,1],Ω)

lSR(σ)dQ(σ) < +∞. (3.2)

A horizontal traffic plan Q ∈ P(C([0, 1],Ω)) is admissible between µ and ν

if (e0)#Q = µ and (e1)#Q = ν.

We denote by

QH(µ, ν) = {horizontal traffic plans admissible between µ and ν} .

In order to take into account congestion effects one can associate to any
horizontal traffic plan Q ∈ QH(µ, ν) a positive and finite Radon measure on
Ω, which we will call horizontal traffic intensity.

Definition 3.2 (Horizontal traffic intensity). Let Q ∈ QH(µ, ν). One
can associate with Q a positive and finite Radon measure iQ ∈ M+(Ω)
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defined as
ˆ
Ω

φ(x)diQ(x) :=

ˆ
C([0,1],Ω)

Lφ(σ)dQ(σ), ∀φ ∈ C(Ω).

We will call this measure iQ horizontal traffic intensity induced by Q. More-
over, its total mass is

iQ(Ω) =

ˆ
C([0,1],Ω)

lSR(σ)dQ(σ). (3.3)

3.2.1 Some properties of traffic intensities

Let us denote by R : R([0, 1],Ω) → R([0, 1],Ω) the map σ 7→ σ̃, where σ̃
is a constant-speed reparametrization of σ.

If Q ∈ QH(µ, ν) is a horizontal traffic plan, we define the measure Q̃ ∈
P(C([0, 1],Ω)) as the push-forward of Q through the map R,

Q̃ := R#Q.

By definition Q̃(H̃) = 1 and iQ̃ = iQ, since Lφ(σ̃) = Lφ(σ) for any φ ∈ C(Ω).
Hence, the horizontal traffic intensity is invariant under reparametrization.

We introduce an important property of horizontal traffic intensities.

Lemma 3.2.1. Let us consider (Qn)n∈N ⊆ P(C([0, 1],Ω) such that Qn(H) =

1, ∀n ∈ N. Let us suppose that there exists M > 0 such that

sup
n∈N

ˆ
C([0,1],Ω)

lSR(σ) dQn(σ) ≤M.

Then, (Q̃n)n∈N admits a subsequence weakly converging to some
Q ∈ P(C([0, 1],Ω)) such that Q(H) = 1.

Proof. We will prove the tightness of (Q̃n)n∈N by using the Prokhorov theo-
rem, see for instance [3, Theorem 2.8]. Let us consider the sets

HK := {σ ∈ H : |σ̇(t)|H ≤ K} ⊂ C([0, 1],Ω),
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for anyK > 0. The Ascoli-Arzela Theorem implies that this sets are compact
w.r.t. the uniform convergence. Indeed, the equi-boundedness follows from

lSR(σ) =

ˆ 1

0

|σ̇(t)|Hdt ≤ K,

and the equi-continuity from

dSR(σ(t), σ(t
′)) ≤

ˆ t′

t

|σ̇(τ)|Hdτ ≤ K|t− t′|, ∀σ ∈ HK ,∀t, t′ ∈ [0, 1].

Hence, using the fact that Qn(H) = 1, ∀n ∈ N, and the Markov inequality,
it follows that

Q̃n

(
C([0, 1],Ω) \ {σ ∈ H̃ : |σ̇|H ≤ K}

)
= Qn

(
C([0, 1],Ω) \ {σ ∈ H : lSR(σ) ≤ K}

)
= Qn

(
{σ ∈ H : lSR(σ) > K}

)
≤ 1

K

ˆ
C([0,1],Ω)

lSR(σ) dQn(σ). (3.4)

By Prokhorov’s Theorem there exists a subsequence weakly converging to
some Q ∈ P(C([0, 1],Ω). It remains to show that Q(H) = 1 From (3.4), the
fact that the measures Q̃n are concentrated on H̃ and the previous argument,
it follows that

sup
n∈N

Q̃n(H \HK) = sup
n∈N

Q̃n(H̃ \HK) ≤
M

K
,

for any K > 0, which in turn implies

1 = lim sup
n→∞

Q̃n(H) ≤ lim sup
n→∞

Q̃n(HK) + lim sup
n→∞

Q̃n(H \HK)

≤ Q(HK) +
M

K
.

If K → +∞, we get that Q(H) ≥ 1. Since Q ∈ P(C([0, 1],Ω)), then
Q(H) = 1.

Lemma 3.2.2. Let (Qn)n∈N ⊆ QH(µ, ν) such that Qn ⇀ Q ∈ QH(µ, ν). If
there exists i ∈ M+

(
Ω
)

such that iQn ⇀ i, then iQ ≤ i as measures.
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Proof. Let us consider φ ∈ C(Ω,R+), then by definition of iQn and weak
convergence it follows thatˆ

Ω

φ(x)di(x) = lim
n→+∞

ˆ
Ω

φ(x)diQn(x) = lim
n→+∞

ˆ
C([0,1],Ω)

Lφ(σ)dQn(σ). (3.5)

From Lemma 3.1.1, we know that for any φ ∈ C(Ω), φ ≥ 0 the function Lφ is
l.s.c. for the topology of uniform convergence: hence, from the Portmanteau
Theorem, see for instance [17], and (3.5) it follows that
ˆ
Ω

φ(x)diQ(x) =

ˆ
C([0,1],Ω)

Lφ(σ)dQ(σ) ≤ lim inf
n→+∞

ˆ
C([0,1],Ω)

Lφ(σ)dQn(σ)

=

ˆ
Ω

φ(x)di(x), ∀φ ∈ C(Ω), φ ≥ 0.

3.3 Congested optimal transport problem in Hn

The aim of this section is to introduce the congested optimal transport
problem in Hn and to prove the existence of equilibrium configurations.

The first step is to define the weighted sub-Riemannian length for non-
negative q-summable functions, in order to define the congested metric. The
second step is to introduce a convex minimization problem over the set of
the horizontal traffic plans. Afterwards we will see why one can refer to this
problem as the congested optimal transport problem: in particular, following
[43, Section 3] we will see that solutions to the aforementioned minimization
problem are equilibrium configurations.

Given a horizontal traffic planQ ∈ QH(µ, ν), the congestion effects should
be captured by a metric associated with the traffic plan itself. Hence, we
consider a non-decreasing congestion function

g : R+ → R+, (3.6)

such that
lim

i→+∞
g(i) = +∞.
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We denote by

φQ(x) :=

g(iQ(x)), if iQ ≪ L2n+1,

+∞, otherwise,
(3.7)

where, with abuse of notation, iQ(x) is the density of the measure iQ with
respect to the Lebesgue measure.

Remark 8. The hypotheses on the congestion function g are quite natural
from a modeling viewpoint: the quantity g(i(x)) is the cost to be paid for
passing through x ∈ Ω, where there is an amount of traffic i(x). Hence, we
want that the cost increases as traffic increases; moreover, the hypothesis
limi→∞ g(i) = +∞ models the fact that, if there is too much traffic, one gets
stuck in it and won’t pass through the point x.

Remark 9. We remark that it is not very restrictive to suppose the existence
of Q ∈ QH(µ, ν) such that iQ ≪ L2n+1. For instance, if either µ≪ L2n+1 or
ν ≪ L2n+1 and the transport set T (which is compact) is such that

T ⊆ Ω; (3.8)

we know from Theorem 2.2.2 that there exists γ ∈ Π1(µ, ν) such that aγ ≪
L2n+1. Hence, if we consider the horizontal traffic plan

Q := S#γ ∈ QH(µ, ν),

its horizontal traffic intensity iQ is exactly aγ: indeed, if φ ∈ C(Ω)

ˆ
Ω

φ(x)diQ(x) =

ˆ
C([0,1],Ω)

Lφ(σ)dS#γ(σ) =

ˆ
Ω×Ω

Lφ(S(x, y))dγ(x, y)

=

ˆ
Ω

φ(x)daγ(x). (3.9)

The hypothesis (3.8) replaces the more classical geodesically convexity hy-
pothesis on the set Ω, since non-trivial geodesically convex subsets of Hn do
not exist, see [72].
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Let Q ∈ QH(µ, ν) such that iQ ≪ L2n+1, hence the quantity
ˆ
Ω

φQ(x)iQ(x)dx

represents the total cost paid by the agents µ to get destinations ν, given the
traffic assignment Q. In an optimal scenario one is interested in minimizing
the total cost

inf
Q∈QH(µ,ν)

ˆ
Ω

φQ(x)iQ(x)dx. (3.10)

One can also express (3.10) in terms of transport plans between the two
probability measures µ and ν. Any travel from x to y, which is performed
along a path σ ∈ Hx,y, costs

LφQ
(σ) =

ˆ 1

0

g
(
iQ(σ(t))

)
|σ̇(t)|Hdt. (3.11)

Again in an optimal scenario, one wants to minimize the previous cost

cφQ
(x, y) = inf

{
LφQ

(σ) : σ ∈ Hx,y
}
, (3.12)

hence the congested optimal transport problem in Hn is

inf
γ∈Π(µ,ν)

ˆ
Ω×Ω

cφQ
(x, y)dγ(x, y). (3.13)

Let us remark that both (3.11) and (3.12) are formal because we defined the
weighted sub-Riemannian length only for continuous functions. The aim of
the next subsection is to define both these quantities for non-negative φ ∈
Lq(Ω), where q = p

p−1
and p is the exponent that will appear in Subsection

3.3.2.

3.3.1 Weighted sub-Riemannian length and transport

cost for non-negative Lq functions

Let φ ∈ C(Ω), φ ≥ 0 be a non-negative continuous function. Let us
define

cφ(x, y) := inf{Lφ(σ) : σ ∈ Hx,y}, ∀(x, y) ∈ Ω× Ω. (3.14)
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Proposition 3.3.1. If q > N , then there exists C > 0 such that for any
φ ∈ C(Ω), φ ≥ 0 and any (x, y), (x′, y′) ∈ Ω× Ω, it holds

|cφ(x, y)− cφ(x
′, y′)| ≤ C∥φ∥Lq(Ω) (dSR(x, x

′)α + dSR(y, y
′)α) , (3.15)

where α := 1− N
q
.

Proof. Let φ ∈ C(Ω), φ ≥ 0 and x, y ∈ Ω. For k > 0 let σk ∈ Hx,y be such
that ˆ 1

0

φ(σk(t))|σ̇k(t)|Hdt ≤ cφ(x, y) +
1

k
.

In order to study the regularity of cφ with respect to the second variable y,
we choose a point zε that can be connected to y by a horizontal segment: i.e.
we fix a horizontal vector field Z ∈ hn1 , such that |Z|H = 1, and we choose
for all ε > 0 the points

zε := exp (εZ) (y),

such that zε ∈ Ω. Now we modify the curve σk into a curve σk,t0 ∈ Hx,zε : we
choose t0 ∈ (0, 1) and define

σk,t0(t) :=

σk
(

t
t0

)
if t ∈ [0, t0]

σ̃ε,y
(
t−t0
1−t0

)
if t ∈]t0, 1],

where
σ̃ε,y(t) = exp (t (εZ)) (y), t ∈ [0, 1].

We then have, for all k > 0

cφ(x, zε) ≤
ˆ 1

0

φ(σk,t0(t))|σ̇k,t0(t)|Hdt =

=

ˆ 1

0

φ(σk(t))|σ̇k(t)|Hdt+
ˆ 1

0

φ(σ̃ε,y(t))| ˙̃σε,y(t)|Hdt ≤

≤ cφ(x, y) +
1

k
+ ε

ˆ 1

0

φ(σ̃ε,y(t))dt.

Now, if k → +∞, we get

1

ε
[cφ (x, exp (εZ) (y))− cφ(x, y)] ≤

ˆ 1

0

φ(σ̃ε,y(t))dt,
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and, by similar argument:

1

ε
[cφ(x, y)− cφ (x, exp (εZ) (y))] ≤

ˆ 1

0

φ(σ̃ε,y(1− t))dt.

Integrating with respect to y, raising to the power q and using the fact
that the function y 7→ σ̃ε,y(t) has Jacobian determinant 1, we get that, for
any fixed x, Zcφ(x, ·) ∈ Lq

loc(Ω), and ∥Zcφ(x, ·)∥Lq(Ω) ≤ C∥φ∥Lq(Ω). Since
this holds for every Z ∈ hn1 we have cφ(x, ·) ∈ HW 1,q(Ω) and

∥∇Hcφ(x, ·)∥Lq(Ω) ≤ ∥φ∥Lq(Ω), ∀x ∈ Ω. (3.16)

By symmetry we also get that

∥∇Hcφ(·, y)∥Lq(Ω) ≤ ∥φ∥Lq(Ω), ∀y ∈ Ω. (3.17)

Since q > N , then if follows from (3.16), (3.17) and [61, Theorem 1.11], that
there exists C > 0 such that

|cφ(x, y)− cφ(x, y
′)| ≤ C∥φ∥Lq(Ω)dSR(y, y

′)α, ∀x, y, y′ ∈ Ω,

|cφ(x, y)− cφ(x
′, y)| ≤ C∥φ∥Lq(Ω)dSR(x, x

′)α, ∀x, x′, y ∈ Ω,

with α = 1− N
q
. This proves (3.15).

Proposition 3.3.2. If q > N , then for any φ ∈ C(Ω), φ ≥ 0, the function
cφ defined in (3.14) admits a unique continuous extension as a function

cφ : Ω× Ω → R+,

with the same modulus of continuity. Moreover the definition at (3.14) ex-
tends to all pairs (x, y) ∈ Ω× Ω.

Proof. The first part of the proof easily follows from (3.15).
Let now consider φ ∈ C(Ω), φ ≥ 0, ε0 > 0 and the continuous function

φ+ ε0 > 0. Given (x, y) ∈ Ω×Ω and (xn, yn)n∈N ⊂ Ω×Ω, (xn, yn) → (x, y),
we have

cφ+ε0(x, y) = lim
n→+∞

cφ+ε0(xn, yn).
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It means that ∀ε > 0, there exists n = n(ε) such that

|cφ+ε0(x, y)− cφ+ε0(xn, yn)| < ε, ∀n > n(ε).

By definition of cφ+ε0(xn, yn) and by the invariance of Lφ+ε0 under reparametriza-
tion, there exists σn ∈ H̃xn,yn such that

|cφ+ε0(xn, yn)− Lφ+ε0(σn)| < ε.

Hence, for any n > n(ε) it holds that

ε0|σ̇n|H = ε0lSR(σn) ≤ Lφ+ε0(σn) < cφ+ε0(xn, yn) + ε ≤M + ε,

whereM ≥ 0. Then, the Ascoli-Arzelà Theorem implies that (σn)n>n(ε0)
⊂ H

admits a subsequence σnk
→ σ uniformly as k → +∞, with σ ∈ Hx,y and

Lφ+ε0(σ) ≤ lim infk→+∞ Lφ+ε0(σnk
) = cφ+ε0(x, y), see [1, Theorem 3.41] and

Lemma 3.1.1. Then, we can conclude that ∀ε0 > 0, ∀(x, y) ∈ Ω × Ω, there
exists σ ∈ Hx,y, such that

Lφ+ε0(σ) ≤ cφ+ε0(x, y).

Moreover,

Lφ(σ) + ε0lSR(σ) = Lφ+ε0(σ) ≤ cφ+ε0(x, y)

= lim
n→+∞

cφ+ε0(xn, yn) ≤ lim
n→+∞

cφ(xn, yn) + o(ε0),

hence, letting ε0 → 0, Lφ(σ) ≤ cφ(x, y).
It remains to prove that cφ(x, y) ≤ Lφ(σ), for any σ ∈ Hx,y. Let us

suppose for simplicity that x ∈ Ω and y ∈ ∂Ω. Let us suppose that there
exists σ ∈ Hx,y such that cφ(x, y) > Lφ(σ). If σ ([0, 1)) ⊂ Ω, we may consider
(yn)n∈N ⊂ σ ([0, 1)), such that yn → y. If tn ∈ [0, 1) is such that σ(tn) = yn,
we call σn(t) := σ(tnt). Then clearly σn ∈ Hx,yn , hence

Lφ(σ) < cφ(x, y) = lim
n→+∞

c(x, yn) ≤ lim
n→+∞

Lφ(σn)

= lim
n→+∞

ˆ 1

0

tnφ(σ(tnt))|σ̇(tnt)|Hdt

= lim
n→+∞

ˆ tn

0

φ(σ(s))|σ̇(s))|Hds = Lφ(σ),
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which is a contradiction. If there exists t0 ∈ (0, 1) such that σ ([t0, 1]) ⊂ ∂Ω,
one can approximate σ with σn ∈ Hxn,yn such that σn ([0, 1)) ⊂ Ω, σn → σ

uniformly and one can apply the previous argument.

Corollary 3.3.3. Let (φn)n∈N ⊂ C(Ω), φn ≥ 0 ∀n ∈ N, bounded in Lq, then
(cφn)n∈N admits a subsequence that converges in C(Ω× Ω).

Proof. The existence of a subsequence of (cφn)n∈N that converges in C(Ω×Ω)

follows from Ascoli-Arzelà’s theorem. Indeed, equicontinuity follows from
Proposition 3.3.2, while the pointwise boundness is a consequence of the
identity cφn(x, x) = 0 and (3.15).

Let us suppose that q > N . For a non-negative function φ ∈ Lq(Ω) we
then define

cφ(x, y) := sup {c(x, y) : c ∈ A(φ)} , (3.18)

for any (x, y) ∈ Ω× Ω, where

A(φ) =

{
lim

n→+∞
cφn in C(Ω× Ω) : (φn)n∈N ⊂ C(Ω,R+), φn → φ in Lq

}
.

Remark 10. Let us consider (x, y) ∈ Ω × Ω. For any k > 0 there exists
c ∈ A(φ) such that

|cφ(x, y)− c(x, y)| < 1

k
.

Moreover, there exists (φn)n∈N ⊂ C(Ω), φn ≥ 0 for any n ∈ N, such that
limn→∞ cφn = c in C

(
Ω× Ω

)
. Hence, there exists n = n(k) such that∣∣∣cφ(x, y)− cφn(k)

(x, y)
∣∣∣ ≤ 2

k
.

Then, letting k → ∞ we get cφ(x, y) = limk→∞ cφn(k)
(x, y), and therefore the

supremum at (3.18) is indeed a maximum.

Moreover, the following lemma holds.

Lemma 3.3.4. If φ ∈ Lq(Ω), φ ≥ 0

A∗(φ) :=

{
lim

n→+∞
cφn in C(Ω× Ω) : (φn)n∈N ⊂ C(Ω,R+), φn ⇀ φ in Lq

}
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and

c∗φ(x, y) := sup {c(x, y) : c ∈ A∗(φ)} .

Then, c∗φ = cφ.

Proof. The inequality cφ ≤ c∗φ is obvious by definition of weak convergence.

Let us prove the converse inequality. Suppose that φn ⇀ φ in Lq and
also that cφn converges to c in C(Ω×Ω). Hence, using Mazur’s Lemma there
exists a function N : N → N and real numbers {αk,n}k=n,...,N (n) with αk,n ≥ 0

and
∑N (n)

k=n αk,n = 1 and such that the sequence

ηn :=

N (n)∑
k=n

αk,nφk, ∀n ∈ N,

converges strongly (i.e. in Lq) to φ. Since, for fixed (x, y) ∈ Ω×Ω, the func-
tion φ 7→ cφ(x, y) is concave, then ∀n ∈ N there exists mn ∈ {n, . . . ,N (n)}
such that cηn(x, y) ≥ cφmn

(x, y) and hence

c(x, y) = lim
n→∞

cφmn
(x, y) ≤ lim sup

n→∞
cηn(x, y) ≤ cφ(x, y). (3.19)

Taking the sup of the left-hand side over A∗(φ) we obtain that c∗φ ≤ cφ.

Remark 11. Note that, if we have a constant coefficient unitary horizontal
vectorW1 := a1X1+. . .+anXn+an+1Xn+1+. . .+a2nX2n ∈ h11, it is possible to
perform a change of variables which sends the vector W1 to the first element
of the canonical orthonormal basis. Indeed, if we denote by W2, . . . ,W2n a
basis of the orthogonal complement W⊥

1 in h11 with respect to ⟨·, ·⟩H , and by
x a point, we can consider the change of variables Ψ : R2n+1 → Hn,

Ψ(e1, . . . , e2n+1) = exp(e1W1) exp

(
2n∑
i=2

eiWi + e2n+1X2n+1

)
(x). (3.20)

The pullback of the vector field W1 by Ψ is Ψ∗W1 = ∂e1 , and the point x will
be the origin in the new coordinate system.
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Remark 12. Any function c ∈ A(φ) satisfies the triangular inequality. Indeed,
given a continuous function φ, and three points x, y, z ∈ Ω, it follows that

cφ(x, z) ≤ inf{Lφ(σ1) + Lφ(σ2) : σ1 ∈ Hx,y, σ2 ∈ Hy,z}

≤ inf{Lφ(σ) : σ ∈ Hx,y}+ inf{Lφ(σ) : σ ∈ Hy,z} = cφ(x, y) + cφ(y, z).

Hence, passing to the limit in the definition of c we obtain

c(x, z) = lim
n→+∞

cφn(x, z) ≤ lim
n→+∞

(cφn(x, y) + cφn(y, z))

= c(x, y) + c(y, z). (3.21)

Now we prove that if φ is continuous, then the two functions cφ and cφ

coincide.

Proposition 3.3.5. If φ ∈ C(Ω), φ ≥ 0, then cφ = cφ.

Proof. First we consider the constant sequence φn := φ, ∀n ∈ N. Then
cφ ∈ A(φ) and we get that cφ ≥ cφ.

Let us prove the converse inequality. Let x, y ∈ Ω, k > 0 and σ ∈ Hx,y

such that Lφ(σ) < cφ(x, y) + 1/k. Let us fix a sequence φn → φ in Lq such
that cφn converges uniformly to some c, we want to prove that c ≤ cφ. From
density of simple functions and continuity of φ we can assume that there
exists a finite decomposition {t0, t1, · · · tM} of the interval [0, 1] such that σ̇
is constant and horizontal on the interval [ti−1, ti]; in particular

Lφn(σ) =
M∑
i=1

ˆ ti

ti−1

φn(σ(t))|σ̇(t)|Hdt.

Let us consider a single interval [ti−1, ti]: up to a change of coordinates,
we can also assume that |σ̇|H = 1 on this interval. For this reason, in the
change of coordinates Ψi : R2n+1 → Hn, introduced in (3.20), we can choose
Φi(σ(ti−1)) = (ti−1, 0) so that Φi(σ(ti)) = (ti, 0), and

Φi ◦ σ : [ti−1, ti] → R2n+1, (Φi ◦ σ)(t) = (t, 0),

where Φi := Ψ−1
i : Hn → R2n+1.
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We now consider, for every δ > 0 and for every i, cylindrical neighbor-
hoods Ci,δ = {(t, ê) ∈ R2n+1 : t ∈ [ti−1, ti], |ê|R2n ≤ δ}, of the curve Φi ◦ σ,
with basis Si−1 = {(ti−1, ê) : |ê|R2n ≤ δ}. For every ê ∈ R2n, with |ê|R2n ≤ δ,
we call σe(t) = Ψi(t, ê). By definition

cφn

(
Ψi(ti−1, ê),Ψi(ti, ê)

)
≤ Lφn(σe ◦ θi),

where θi is a change of coordinate which sends [0, 1] to [ti−1, ti]. Note that

Lφn(σe ◦ θi) = Lφn◦Ψi
(Φi ◦ σe ◦ θi) =

ˆ ti

ti−1

(φn ◦Ψi)(t, ê)dt. (3.22)

Hence, integrating on Si−1 we get
ˆ
Si−1

cφn

(
Ψi(ti−1, ê),Ψi(ti, ê)

)
dL2n(ê) ≤

ˆ
Si−1

ˆ ti

ti−1

(φn ◦Ψi)(t, ê)dtdL2n(ê).

(3.23)
For n→ ∞ using the uniform convergence of cφn to c and the Lq convergence
of φn to φ we get that

ˆ
Si−1

c
(
Ψi(ti−1, ê),Ψi(ti, ê)

)
dL2n(ê) ≤

ˆ
Ci

(φ ◦Ψi)(t, ê)dL2n+1(t, ê).

Now we divide by the measure of Si−1 and pass to the limit as δ → 0+.
Using the fact that c is continuous

lim
δ→0+

1

dL2n(Si−1)

ˆ
Si−1

c
(
Ψi(ti−1, ê),Ψi(ti, ê)

)
)dL2n(ê)

= c
(
Ψi(ti−1, 0),Ψi(ti, 0)

)
= c(xi−1, xi),

where xi = σ(ti), Analogously the integral over Ci = [ti−1, ti]× Si−1 divided
by the measure of Si−1 converges to the integral on [ti−1, ti], which is the
integral along the curve Φi ◦ σ(t)

lim
δ→0+

1

dL2n(Si−1)

ˆ
Ci

(φ ◦Ψi)(t, ê)dL2n+1(t, ê)

=

ˆ ti

ti−1

(φ ◦Ψi)(t, 0)dt =

ˆ ti

ti−1

φ(σ(t))|σ̇(t)|Hdt.
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Then, using (3.23), we get that

c(xi−1, xi) ≤
ˆ ti

ti−1

φ(σ(t))|σ̇(t)|Hdt, ∀i = 1, . . . ,M,

and then, from (3.21),

c(x, y) ≤
M∑
i=1

c(xi−1, xi) ≤
M∑
i=1

ˆ ti

ti−1

φ(σ(t))|σ̇(t)|Hdt = Lφ(σ).

This gives
c(x, y) ≤ cφ(x, y) +

1

k

for the choice of σ and, since k is arbitrary, it follows that c(x, y) ≤ cφ(x, y).

Lemma 3.3.6. Let q > N , φ ∈ Lq(Ω), φ ≥ 0, then there exists a sequence
(φn)n∈N ⊂ C(Ω,R+), φn → φ in Lq(Ω), such that cφn converges to cφ in
C(Ω× Ω).

Proof. From the Remark 10 it follows that for every (x, y) ∈ Ω × Ω there
exists a sequence (φn)n∈N ⊂ C(Ω,R+) converging to φ in Lq(Ω), such that
cφn converges uniformly in Ω× Ω and cφ(x, y) = limn→∞ cφn(x, y).

Let I be a finite set, (xi, yi) ∈ Ω×Ω for all i ∈ I, and for every i let (φi
n)

be a sequence of non-negative continuous functions converging to φ in Lq(Ω)

such that cφ(xi, yi) = limn cφi
n
(xi, yi). Let us set φn := maxi∈I φ

i
n, then we

have a sequence (φn)n∈N that converges to φ in Lq(Ω), and

cφ(xi, yi) ≤ lim inf
n

cφn(xi, yi) ≤ lim sup
n

cφn(xi, yi) ≤ cφ(xi, yi).

We thus have cφ(xi, yi) = limn cφn(xi, yi) for every i ∈ I.
Let (xi, yi)i∈N be a dense sequence of points of Ω×Ω. From the previous

argument, ∀n ∈ N there exists φn ∈ C(Ω,R+) such that

∥φn − φ∥Lq(Ω) ≤
1

n
and |cφ(xk, yk)− cφn(xk, yk)| ≤

1

n
, ∀k ≤ n.

As in Corollary 3.3.3, we may assume that cφn converges in uniformly in Ω×Ω

to some c, up to a subsequence. Since it holds that c(xk, yk) = cφ(xk, yk) for
all k, and (xk, yk)k∈N is dense in Ω× Ω, then c = cφ.
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Now we can extend Lφ to the functions φ ≥ 0 that are only q-summable.
Moreover this Lφ behaves as if φ were a continuous function.

Let p = q
q−1

and let us denote by

Qp
H(µ, ν) := {Q ∈ QH(µ, ν) : iQ ∈ Lp(Ω)} .

Lemma 3.3.7. If q > N , Q ∈ Qp
H(µ, ν) and φ ∈ Lq(Ω), φ ≥ 0. Let (φn)n∈N,

φn ≥ 0, ∀n ∈ N converging to φ in Lq, it holds that:

(i) (Lφn)n∈N converges strongly in L1(C([0, 1],Ω), Q) to some limit, inde-
pendent of the approximating sequence (φn)n∈N, which will be denoted
by Lφ.

(ii) The following equality holds:
ˆ
Ω

φ(x)iQ(x)dx =

ˆ
C([0,1],Ω)

Lφ(σ)dQ(σ). (3.24)

(iii) The following inequality holds for Q-a.e. σ ∈ C([0, 1],Ω):

Lφ(σ) ≥ cφ(σ(0), σ(1)). (3.25)

Proof. For all n and m in N we have:
ˆ
C([0,1],Ω)

|Lφn(σ)− Lφm(σ)| dQ(σ) =

=

ˆ
C([0,1],Ω)

∣∣∣∣ˆ 1

0

(φn(σ(t))−φm(σ(t))) |σ̇(t)|H dt

∣∣∣∣ dQ(σ)
≤

ˆ
Ω

|φn(x)− φm(x)|iQ(x) dx

≤ ∥φn − φm∥Lq(Ω)∥iQ∥Lp(Ω).

Hence (Lφn)n∈N is a Cauchy sequence in L1(C([0, 1],Ω), Q), then it converges
to some limit that we denote by Lφ.

Let us suppose that (φ′
n)n∈N is another sequence of non negative functions

converging to φ in Lq(Ω). Let us denote by L′
φ the limit of the sequence
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(Lφ′
n
)n∈N in L1(C([0, 1],Ω), Q), then

ˆ
C([0,1],Ω)

|Lφ(σ)− L′
φ(σ)|dQ(σ)

≤
ˆ
C([0,1],Ω)

|Lφ′
n
(σ)− L′

φ(σ)|dQ(σ) +
ˆ
C([0,1],Ω)

|Lφn(σ)− Lφ(σ)|dQ(σ)

+
(
∥φn − φ∥Lq(Ω) + ∥φ′

n − φ∥Lq(Ω)

)
∥iQ∥Lp(Ω)

Letting n tend to +∞ in the right hand side, we get that Lφ = L′
φ Q-a.e.,

hence the L1(C([0, 1],Ω), Q) limit does not depend on the approximating
sequence (φn)n∈N.

The proof of (ii) follows from (i):

ˆ
Ω

φ(x)iQ(x) dx = lim
n→∞

ˆ
Ω

φn(x)iQ(x) dx = lim
n→∞

ˆ
C([0,1],Ω)

Lφn(σ) dQ(σ)

=

ˆ
C([0,1],Ω)

Lφ(σ) dQ(σ).

Finally, let (φn)n∈N be an approximating sequence as in Lemma 3.3.6;
from the definition of cφn it follows that for any σ ∈ H

Lφn(σ) ≥ cφn(σ(0), σ(1)).

Integrating against Q and letting n → ∞ in the previous inequality, we get
(iii).

3.3.2 The optimization problem

We consider the following optimization problem

inf
Q∈QH(µ,ν)

F(iQ), (3.26)

where

F(i) =


´
Ω
G(i(x))dx, if i≪ L2n+1,

+∞, otherwise,
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and the function G : R+ → R+ is convex, non-decreasing with p-growth

aip ≤ G(i) ≤ bip + 1, ∀i ∈ R+, (3.27)

for some p ∈ (1,∞) and such that

G(0) = 0. (3.28)

Moreover, if we suppose that

Qp
H(µ, ν) = {Q ∈ QH(µ, ν) : iQ ∈ Lp(Ω)} ≠ ∅, (3.29)

then the problem (3.26) reads as

inf
Q∈Qp

H(µ,ν)

ˆ
Ω

G(iQ(x))dx. (3.30)

Remark 13. Let us just remark that, if for instance µ, ν ∈ Lp(Ω), then
Qp

H(µ, ν) ̸= ∅, see Corollary 5.1.6.

At this point, one can prove that the problem (3.30) admits a solution.

Theorem 3.3.8. Let us suppose that

Qp
H(µ, ν) ̸= ∅,

then (3.30) admits a solution.

Proof. First of all, from (3.27) and (3.29) it follows that (3.30) is finite.
Let (Qn)n∈N be a minimizing sequence for (3.30). Since we are interested

in the sequence of the associated horizontal traffic intensities, which are in-
variant under reparametrization, we may assume that Qn = Q̃n for all n ∈ N.
We may assume that there exists C > 0 such thatˆ

Ω

G(iQn(x))dx ≤ C, ∀n ∈ N,

since (Qn)n∈N is a minimizing sequence. Hence, from (3.27) it follows that
(iQn)n∈N is uniformly bounded in Lp(Ω), which in turn implies uniform bound-
edness in L1(Ω), i.e. there is a constant M > 0 such thatˆ

C([0,1],Ω)

lSR(σ)dQn(σ) =

ˆ
Ω

iQn(x)dx ≤M.



3.3 Congested optimal transport problem in Hn 77

We are in the hypotheses of Lemma 3.2.1, hence we can assume that the
minimizing sequence (Qn)n∈N (up to subsequences) weakly converges to some
horizontal traffic plan Q ∈ Qp

H(µ, ν). Moreover, since the uniform bound-
edness of (iQn)n∈N in Lp(Ω) holds, we can assume that this sequence (up to
subsequences) weakly converges to some i ∈ Lp(Ω). By lemma 3.2.2 it fol-
lows that iQ ≤ i, that in turn implies that iQ ∈ Lp(Ω). Now one can use the
monotonicity and convexity properties of G to get

ˆ
Ω

G(iQ(x))dx ≤
ˆ
Ω

G(i(x))dx ≤ lim inf
n→+∞

ˆ
Ω

G(iQn(x))dx,

which proves that Q is a solution to (3.30).

If in addition G is strictly convex, and Q1 and Q2 are solutions to (3.30),
then it follows that iQ1 = iQ2 . Hence the optimal traffic intensity is unique
but this doesn’t imply that Q1 = Q2.

3.3.3 Variational inequalities

We suppose in addition that G is differentiable and that there exists a
positive constant c such that

0 ≤ G′(i) ≤ cip−1 + 1, p ∈ (1,∞).

Recall that q is the conjugate exponent of p, given by q = p
p−1

.

The variational inequalities characterizing solutions of the convex problem
(3.30) can be expressed as follows.

Proposition 3.3.9. Q ∈ Qp
H(µ, ν) solves (3.30) if and only if

ˆ
Ω

φ(x)iQ(x)dx = inf

{ˆ
Ω

φ(x)iQ(x)dx : Q ∈ Qp
H(µ, ν)

}
, (3.31)

with φ := G′(iQ) ∈ Lq(Ω).

Proof. Let us prove the first implication. If Q ∈ Qp
H(µ, ν) solves (3.30), then

for any Q ∈ Qp
H(µ, ν) and any ε > 0, it holds that Q+ ε(Q−Q) ∈ Qp

H(µ, ν).
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In particular iQ+ε(Q−Q) = iQ + ε(iQ − iQ) ∈ Lp(Ω). Hence,

0 ≤ lim
ε→0+

1

ε

[
F
(
iQ+ε(Q−Q)

)
−F(iQ)

]
=

= lim
ε→0+

1

ε

[
F(iQ + ε(iQ − iQ))−F(iQ)

]
=

=

ˆ
Ω

G′(iQ(x))(iQ(x)− iQ(x))dx =

ˆ
Ω

φ(x)(iQ(x)− iQ(x))dx.

We have just proven that
ˆ
Ω

φ(x)iQ(x)dx ≤
ˆ
Ω

φ(x)iQ(x)dx, ∀Q ∈ Qp
H(µ, ν),

which proves (3.31).
Conversely, if Q ∈ Qp

H(µ, ν) satisfies (3.31), then for every Q ∈ Qp
H(µ, ν),

one has
F(iQ)−F(iQ) ≥

ˆ
Ω

φ(x)(iQ(x)− iQ(x))dx ≥ 0,

where we used the convexity assumption on G, in the first inequality, and
the fact that Q solves (3.31), in the second one.

3.3.4 Characterization of minimizers

The aim of this subsection is to characterize minima of (3.26): the first
step consists in relating the optimality condition (3.31) with the Monge-
Kantorovich problem with cost cφ, where φ = G′(iQ) ∈ Lq(Ω) for some
optimal Q ∈ Qp

H(µ, ν) optimal for (3.30). In order to do this, we need the
following preliminary lemma.

Every λ ∈ M+(Ω) we will consider is supposed to be defined on the whole
Hn, extended by 0 outside Ω.

Lemma 3.3.10. Let us consider ρ ∈ C∞
c (Hn), ρ ≥ 0 such that

´
Hn ρ(x)dx =

1 and consider the problem

inf
Q∈QH(µ,ν)

ˆ
Hn

G(ρ ∗ iQ(x))dx, (3.32)

where ∗ is the convolution in Hn. Then, this problem admits a solution.



3.3 Congested optimal transport problem in Hn 79

Moreover, Q ∈ QH(µ, ν) solves (3.32) if and only if
ˆ
Hn

G′(ρ ∗ iQ)(ρ ∗ iQ)dx = inf
Q∈QH(µ,ν)

ˆ
Hn

G′(ρ ∗ iQ)(ρ ∗ iQ)dx. (3.33)

Proof. First of all we observe that (3.32) is finite: this follows from the fact
that ρ ∗ iQ ∈ C∞

c (Hn) and from (3.27). Moreover, for every Q ∈ QH(µ, ν)

the L1 norm of ρ ∗ iQ equals the total mass of iQ: indeed
ˆ
Hn

ρ ∗ iQ(x)dx =

ˆ
Hn

ˆ
Hn

ρ(y−1 · x)diQ(y)dx =

ˆ
Hn

diQ(y) = iQ
(
Ω
)
. (3.34)

Let (Qn)n∈N ⊂ QH(µ, ν) be a minimizing sequence, i.e.
ˆ
Hn

G(ρ ∗ iQn(x))dx −→
n→∞

inf
Q∈QH(µ,ν)

ˆ
Hn

G(ρ ∗ iQ(x))dx.

Since iQ = iQ̃, for any Q ∈ QH(µ, ν), we can assume that Qn = Q̃n,∀n ∈ N.
From the fact that (Qn)n∈N is a minimizing sequence, the fact that (3.32) is
finite and (3.27) it follows that (ρ ∗ iQn)n∈N is bounded in Lp, hence in L1.
Thanks to (3.34) we get a uniform bound on (iQn(Ω))n∈N so, using Banach-
Alaoglu’s Theorem and the compactness of Ω, we can assume that (iQn)n∈N

weakly converges to some finite measure i ∈ M+(Ω). Moreover

sup
n∈N

ˆ
C([0,1],Ω)

lSR(σ)dQn(σ) = sup
n∈N

ˆ
Ω

diQn(x) < +∞, (3.35)

hence form Lemma 3.2.1 it follows that Qn ⇀ Q ∈ QH(µ, ν). Lemma 3.2.2
implies that iQ ≤ i. From the monotonicity and the convexity of G we have

ˆ
Hn

G(ρ ∗ iQ(x))dx ≤
ˆ
Hn

G(ρ ∗ i(x))dx ≤ lim inf
n→∞

ˆ
Hn

G(ρ ∗ iQn(x))dx,

which proves that Q solves (3.32).
As for the second part of the statement, as in Proposition 3.3.9, suppose

that Q ∈ QH(µ, ν) solves (3.30), then for any Q ∈ QH(µ, ν)

0 ≤ lim
ε→0

1

ε

ˆ
Hn

(
G(ρ ∗ iQ+ε(Q−Q))−G(ρ ∗ iQ)

)
dx

=

ˆ
Hn

G′(ρ ∗ iQ)(ρ ∗ iQ − ρ ∗ iQ)dx.
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Conversely, if Q ∈ QH(µ, ν) satisfies (3.33), then by convexity of G
ˆ
Hn

(
G(ρ ∗ iQ)−G(ρ ∗ iQ)

)
dx ≥

ˆ
Hn

G′(ρ ∗ iQ)
(
ρ ∗ iQ − ρ ∗ iQ

)
dx ≥ 0,

for any Q ∈ QH(µ, ν).

We can do this under the additional hypothesis of strict convexity for the
function

G : R+ → R+.

Proposition 3.3.11. Let q > N and G strictly convex. If Q solves (3.30)
and φ := G′(iQ) ∈ Lq(Ω) then
ˆ
Ω

φ(x)iQ(x)dx = inf
Q∈Qp

H(µ,ν)

ˆ
Ω

φ(x)iQ(x)dx = inf
γ∈Π(µ,ν)

ˆ
Ω×Ω

cφ(x, y)dγ(x, y).

(3.36)

Proof. The first equality follows from (3.31).
Let us prove the second one. Let φ ∈ Lq(Ω), φ ≥ 0 andQ ∈ Qp

H(µ, ν). Us-
ing Lemma 3.3.7, the definition of push-forward measure and γQ := (e0, e1)#Q ∈
Π(µ, ν)ˆ

Ω

φ(x)iQ(x)dx =

ˆ
C([0,1],Ω)

Lφ(σ)dQ(σ) ≥
ˆ
C([0,1],Ω)

cφ(σ(0)), σ(1))dQ(σ)

=

ˆ
Ω×Ω

cφ(x, y)dγQ(x, y) ≥ inf
γ∈Π(µ,ν)

ˆ
Ω×Ω

cφ(x, y)dγ(x, y).

Then we get

inf
Q∈Qp

H(µ,ν)

ˆ
Ω

φ(x)iQ(x)dx ≥ inf
γ∈Π(µ,ν)

ˆ
Ω×Ω

cφ(x, y)dγ(x, y), ∀φ ∈ Lq(Ω), φ ≥ 0.

(3.37)
By a similar argument, if φ ∈ C(Ω), φ ≥ 0 and Q ∈ QH(µ, ν), using Lemma
3.3.5, the fact that Q is an admissible traffic plan between µ, ν again, and
(3.14)ˆ
Ω

φ(x)diQ(x) =

ˆ
C([0,1],Ω)

Lφ(σ)dQ(σ) ≥
ˆ
C([0,1],Ω)

cφ(σ(0), σ(1))dQ(σ) =

=

ˆ
C([0,1],Ω)

cφ(σ(0), σ(1))dQ(σ) ≥ inf
γ∈Π(µ,ν)

ˆ
Ω×Ω

cφ(x, y)dγ(x, y).
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Then we get

inf
Q∈QH(µ,ν)

ˆ
Ω

φ(x)diQ(x) ≥ inf
γ∈Π(µ,ν)

ˆ
Ω×Ω

cφ(x, y)dγ(x, y), ∀φ ∈ C(Ω), φ ≥ 0.

(3.38)

Let φ ∈ C(Ω), φ ≥ ε0 > 0, and ε > 0. For any x and y in Ω there exists
σε
x,y ∈ Hx,y such that

Lφ(σ
ε
x,y) ≤ cφ(x, y) + ε = cφ(x, y) + ε, (3.39)

where we used Proposition 3.3.2 and Proposition 3.3.5. The set

Hx,y :=
{
σε
x,y ∈ Hx,y : Lφ(σ

ε
x,y) ≤ cφ(x, y) + ε

}
is a closed subset of C([0, 1],Ω). Indeed, let (σn)n∈N ⊂ Hx,y that converges
uniformly to σ ∈ C([0, 1],Ω). The bound φ ≥ ε0 implies the bound

ε0lSR(σn) ≤ cφ(x, y)︸ ︷︷ ︸
≤M<+∞

+ε.

Hence σ ∈ Hx,y, see [1, Theorem 3.41], and Lφ(σ) ≤ cφ(x, y) + ε, thanks to
Lemma 3.1.1. This implies the closedness of the graph of the multivalued
map

Γε : Ω× Ω → C([0, 1],Ω),

(x, y) 7→ σε
x,y ∈ Hx,y, in Ω × Ω × C([0, 1],Ω). Then, for any γ ∈ Π(µ, ν),

there exists a map Sε : Ω × Ω → H, Sε(x, y) = σε
x,y ∈ Hx,y, which is γ-

measurable (see for instance [18, Theorem 6.9.13]). One can consider the
measure Qε := (Sε)#γ ∈ P

(
C([0, 1],Ω)

)
, concentrated on the set H by

construction. Moreover,
ˆ
C([0,1],Ω)

lSR(σ)dQε(σ) =

ˆ
Ω×Ω

lSR(σ
ε
x,y)dγ(x, y) < +∞,

thanks to the bound on φ. Hence Qε ∈ QH(µ, ν) and
ˆ
Ω

φ(x)diQε(x) =

ˆ
Ω×Ω

Lφ(Sε(x, y))dγ(x, y) ≤
ˆ
Ω×Ω

cφ(x, y)dγ(x, y) + ε.
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If φ is an arbitrary continuous function on Ω, without any strictly positive
lower bound, one can consider the function φ+ ε0 ≥ ε0 > 0 and get
ˆ
Ω

(φ+ ε0) (x)diQε(x) =

ˆ
Ω×Ω

Lφ+ε0(Sε(x, y))dγ(x, y)

≤
ˆ
Ω×Ω

cφ+ε0(x, y)dγ(x, y) + ε.

Letting ε0 tend to 0, since iQε is a finite measure and cφ+ε0 uniformly con-
verges to cφ = cφ, thenˆ

Ω

φ(x)diQε(x) ≤
ˆ
Ω×Ω

cφ(x, y)dγ(x, y) + ε.

Taking the inf over the set QH(µ, ν) on the left-hand side and using the fact
that γ and ε are abitrary and (3.38) we get

inf
Q∈QH(µ,ν)

ˆ
Ω

φ(x)diQ(x) = inf
γ∈Π(µ,ν)

ˆ
Ω×Ω

cφ(x, y)dγ(x, y), ∀φ ∈ C(Ω), φ ≥ 0.

(3.40)
Now, let (ρn)n∈N be a sequence of even mollifiers for the group structure, see
[59]. Lemma 3.3.10 implies that, for any n ∈ N\{0}, the regularized problem

inf
Q∈QH(µ,ν)

ˆ
Hn

G(ρn ∗ iQ(x))dx (3.41)

admits a solution Qn.
Define jn := ρn ∗ iQn

, φn := G′(jn), ηn := ρn ∗φn. From the Fubini’s The-
orem, changes of variables formula and the fact that ρn is an even function,
we get thatˆ

Hn

G′(ρn ∗ iQn
(x))(ρn ∗ iQn

(x))dx =

ˆ
Hn

φn(x)jn(x)dx =

ˆ
Hn

ηn(x)diQn
(x).

Moreover, Lemma (3.3.10) implies thatˆ
Hn

ηn(x)diQn
(x) = inf

Q∈QH(µ,ν)

ˆ
Hn

ηn(x)diQ(x). (3.42)

Combining (3.40) and (3.42), we then get:ˆ
Hn

ηn(x)diQn
(x) =

ˆ
Hn

φn(x)jn(x)dx = inf
γ∈Π(µ,ν)

ˆ
Ω×Ω

cηn(x, y)dγ(x, y).

(3.43)
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From the minimality of Qn, the convexity of G, the Fubini’s Theorem and
the fact that G(0) = 0, it follows that

ˆ
Hn

G(jn(x))dx ≤
ˆ
Hn

G(ρn ∗ iQ(x))dx ≤
ˆ
Hn

ρn ∗G(iQ)(x)dx < +∞ (3.44)

and hence that jn is bounded in Lp. Passing to subsequences, we may assume
that

jn ⇀ j in Lp, φn ⇀ φ in Lq, ηn ⇀ φ in Lq. (3.45)

Moreover, as in the proof of Lemma 3.3.10, we can get a uniform bound on
(iQn

(Ω))n∈N because the total mass of iQn
is the same of jn and jn is bounded

in Lp, and hence in L1. Hence, we may assume that

Qn ⇀ Q in M+(C([0, 1],Ω)), iQn
⇀ i in M+(Ω). (3.46)

It follows that i = jL2n+1 and Lemma 3.2.2 implies jL2n+1 ≥ iQ. Using the
monotonicity of G, the weak lower semicontinuity of convex functions and
(3.44) we get

ˆ
Ω

G(iQ(x))dx ≤
ˆ
Ω

G(j(x))dx ≤ lim inf
n→+∞

ˆ
Hn

G(jn(x))dx ≤
ˆ
Ω

G(iQ(x))dx.

(3.47)
Since Q is optimal and the strictly convexity of G implies the uniqueness of
minimum, it follows that

iQ = iQ = j ∈ Lp(Ω) and lim inf
n→+∞

ˆ
Hn

G(jn(x))dx =

ˆ
Hn

G(iQ(x))dx. (3.48)

From (3.48), from jn ⇀ j in Lp(Ω) and the fact that φ = G′(iQ) ∈ Lq(Ω) it
follows that, up to some subsequence,

G(jn)−G(iQ)− φ(jn − iQ) → 0 a.e. and in L1

and sine G is strictly convex, we get that jn converges a.e. to iQ. This implies
that φn converges a.e. to φ = G′(iQ) and that φ = φ. It follows from Fatou’s
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Lemma and (3.43), that:ˆ
Ω

φ(x)iQ(x)dx =

ˆ
Hn

G′(iQ(x))iQ(x)dx

≤ lim inf
n→+∞

ˆ
Hn

φn(x)jn(x)dx

= lim inf
n→+∞

inf
γ∈Π(µ,ν)

ˆ
Ω×Ω

cηn(x, y)dγ(x, y).

Since ηn ⇀ φ in Lq(Ω), using Lemma 3.3.4 we get that cηn uniformly con-
verges to c ≤ cφ. On sets of finite measure the uniform convergence implies
L1 convergence, henceˆ

Ω

φ(x)iQ(x)dx ≤ inf
γ∈Π(µ,ν)

ˆ
Ω×Ω

cφ(x, y)dγ(x, y).

The thesis follows from the last inequality together with (3.31) and (3.37).

Theorem 3.3.12. Let q > N and G strictly convex. Then Q ∈ Qp
H(µ, ν)

solves (3.30) if, and only if, γ := (e0, e1)#Q ∈ Π(µ, ν) solves the Monge-
Kantorovich problem

inf
γ∈Π(µ,ν)

ˆ
Ω×Ω

cφ(x, y)dγ(x, y), (3.49)

with φ := G′(iQ) ∈ Lq(Ω), and

Q ({σ ∈ H : Lφ(σ) = cφ(σ(0), σ(1))}) = 1. (3.50)

Proof. Let Q ∈ Qp
H(µ, ν) that solves (3.30). Let φ := G′(iQ) and γ :=

(e0, e1)#Q ∈ Π(µ, ν), then from the definition of push-forward measure,
Lemma 3.3.7 and Proposition 3.3.11 it follows thatˆ

Ω×Ω

cφ(x, y)dγ(x, y) =

ˆ
C([0,1],Ω)

cφ(σ(0), σ(1))dQ(σ)

≤
ˆ
C([0,1],Ω)

Lφ(σ)dQ(σ) =

ˆ
Ω

φ(x)iQ(x)dx

= inf
γ∈Π(µ,ν)

ˆ
Ω×Ω

cφ(x, y)dγ(x, y)

which proves that γ solves (3.49). It also follows that all the above inequalities
are equalities and then (3.50) follows from (3.25).
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Conversely, let Q ∈ Qp
H(µ, ν) be a horizontal traffic plan satisfying the

conditions (3.49) and (3.50). First of all, (3.24) and (3.50) implyˆ
Ω

φ(x)iQ(x)dx =

ˆ
C([0,1],Ω)

Lφ(σ)dQ(σ) =

ˆ
C([0,1],Ω)

cφ(σ(0), σ(1))dQ(σ) =

=

ˆ
Ω×Ω

cφ(x, y)dγ(x, y).

On the other hand, for any Q ∈ Qp
H(µ, ν), if γ := (e0, e1)#Q ∈ Π(µ, ν) it

holds thatˆ
Ω

φ(x)iQ(x)dx =

ˆ
C([0,1],Ω)

Lφ(σ)dQ(σ) ≥
ˆ
C([0,1],Ω)

cφ(σ(0), σ(1))dQ(σ) =

=

ˆ
Ω×Ω

cφ(x, y)dγ(x, y),

and hence ˆ
Ω

φ(x)iQ(x)dx ≤
ˆ
Ω

φ(x)iQ(x)dx, ∀Q ∈ Qp
H(µ, ν),

since γ solves (3.49). Then Proposition 3.3.3 implies that Q solves (3.30).

Remark 14. All the arguments in this Chapter still work if the function
G : Ω × R+ → R+ also depends on x ∈ Ω. It is enough to replace the
convexity hypotheses on G with the convexity for the function i 7→ G(x, i)

for any x ∈ Ω; moreover, one has to suppose that

1. G(x, 0) = 0, for any x ∈ Ω;

2. there exist a function h ∈ L1(Ω) and two constants a, b > 0 such that

aip ≤ G(x, i) ≤ bip + h(x),

for any (x, i) ∈ Ω× R+.

3.3.5 Existence of Wardrop equilibria

The aim of this subsection is to relate the previous results with the exis-
tence of equilibrium configurations for the congested optimal transport prob-
lem in Hn. These equilibria are known as Wardrop equilibria.
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Let us consider a congestion function

g : R+ → R+

as in (3.6). Let us suppose that g is continuous, strictly increasing and there
exist non-negative constants a and b such that

aip−1 ≤ g(i) ≤ bip−1 + 1

for all i ∈ R+ and some p ∈
(
1, N

N−1

)
.

Recall that, given Q ∈ Qp
H(µ, ν), we denote by φQ := g ◦ iQ ∈ Lq(Ω) and

by cφQ
the function defined as (3.18).

Definition 3.3. A Wardrop equilibrium is a horizontal traffic plan Q ∈
Qp

H(µ, ν) such that

1. Q
( {
σ ∈ H : LφQ

(σ) = cφQ
(σ(0), σ(1))

} )
= 1;

2. γQ := (e0, e1)#Q ∈ Π(µ, ν) solves the Monge-Kantorovich problem

inf
γ∈Π(µ,ν)

ˆ
Ω×Ω

cφQ
(x, y)dγ(x, y).

The first condition in Definition 3.3 is an equilibrium condition of Wardrop
type: given such a configuration Q no agent is interested in changing its path,
since everyone is paying the least. This equilibrium condition can be seen as
a particular case of Nash equilibrium, in a game where the players are the
agents and their goal is to minimize travelling costs. On the other hand, the
second condition means that the transport plan γQ is optimal for a Monge-
Kantorovic problem associated with a cost depending on Q itself. Hence,
Definition 3.3 can be viewed as a generalization of the notion of Wardrop
equilibrium to the case where no transport plan is given a priori.

Theorems 3.3.8 and 3.3.12 guarantee the existence of Wardrop equilibria.

Theorem 3.3.13. If Qp
H(µ, ν) ̸= ∅, there exists a Wardrop equilibrium.

Moreover Q ∈ Qp
H(µ, ν) is a Wardrop equilibrium if, and only if, it solves

inf
Q∈Qp

H(µ,ν)

ˆ
Ω

G(iQ(x))dx, (3.51)
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where G : R+ → R+ is a differentiable function such that G′(i) := g(i), ∀i ∈
R+ and G(0) = 0.

Remark 15. If not only the marginal µ and ν are given, but also the transport
plan γ ∈ Π(µ, ν) is, equilibria consist in the set of Q’s that satisfies the first
condition of definition 3.3. As before, if

Qp
H(γ) :=

{
Q ∈ P(C([0, 1],Ω)) : Q(H) = 1, (e0, e1)♯Q = γ

ˆ
C([0,1],Ω)

lSR(σ)dQ(σ) < +∞ and iQ ∈ Lq(Ω)

}
̸= ∅

then all the previous arguments can be adapted to this new situation and
one can get the existence of equilibria; moreover, Q is a Wardrop equilibrium
if, and only if, it solves

inf
Q∈Qp

H(γ)

ˆ
Ω

G(iQ(x))dx.
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Chapter 4

Equivalent formulations of

congested optimal transport

problem in Hn

In this chapter we want to model the transport activities of Chapter 3
through horizontal vector fields.

In order to do this we consider a regular bounded domain Ω in Hn, with
C1,1 boundary, and µ, ν ∈ P(Ω) two probability measures over the closure of
Ω. Moreover, we consider a total cost function

G : R2n → R+,

of the form

G := G ◦ | · |H , (4.1)

where the function G is as in Chapter 3.

Given a horizontal vector field w : Ω → HΩ, the quantity G(w(x)) gives
the total cost to let an amount of mass |w(x)|H to transit with direction

w(x)
|w(x)|H

through the point x. In this way the transportation process associated
with w has total cost ˆ

Ω

G(w(x))dx. (4.2)

89
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Moreover the vector field w turns out to satisfy a divergence-type constraint

divHw = µ− ν, (4.3)

for a suitable notion of divergence.

Since we are dealing with a cost function G with p-growth, we will be
interested in minimizing (4.2) over the set of p-summable horizontal vector
fields, subjected to the constraint (4.3)

inf
w∈Lp(Ω,HΩ)

{ˆ
Ω

G(w(x))dx : divHw = µ− ν

}
. (B)

First, we show under which assumptions this problem admits solutions. Sec-
ond, under the same assumptions we will show that (B) admits the following
dual formulation

max
φ∈HW 1,q(Ω)

{
−
ˆ
Ω

φd(µ− ν)−
ˆ
Ω

G∗(∇Hφ(x))dx

}
, (D)

where G∗ is the Legendre transform of G. If in addition G is strictly convex,
then G∗ is C1(R2n) and the unique solution w to the problem (B) is of the
form

w = DG∗(∇Hφ),

where D denotes the Euclidean gradient and φ ∈ HW 1,q(Ω) is a solution
to (D). Moreover, we will show that the problem (B) is equivalent to the
problem

inf
Q∈Qp

H(µ,ν)

ˆ
Ω

G(iQ(x))dx, (W)

defined in (3.30).

The main theorem of this Chapter is the following one.

Theorem 4.0.1. If

Qp
H(µ, ν) ̸= ∅,

then (W), (B) and (D) admit solutions and

(W) = (B) = (D).
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Moreover, any solution to (W) corresponds to a solution to (B); vice versa,
one can find a solution to (W) starting from a solution to (B); if (w, φ) is
a pair of optimizers for (B) and (D), they are linked by the relation

∇Hφ = DG(w).

In the limit case p = 1, (B) reads as

inf
w∈L1(Ω,HΩ)

{ˆ
Ω

|w(x)|dx : divHw = µ− ν

}
, (4.4)

which looks like the problem (BP) in Subsection 2.3.3.
As observed in [87, Subsection 4.2.2] this problem is not well-posed a

priori: due to the non reflexivity of L1, there may not exist any L1 hori-
zontal vector field minimizing the L1 norm under the divergence constraint.
This is why in Subsection 2.3.3 we stated the problem (4.4) in the space
of the compactly supported vector measures whose horizontal divergence is
the signed Radon measure µ− ν. We proved in Theorem 2.3.2 that its dual
reformulation is

sup
u∈HW 1,∞

{ˆ
Ω

ud(µ− ν) : ∥∇Hu∥∞ ≤ 1

}
and its Lagrangian reformulation is

inf
Q∈QH(µ,ν)

ˆ
C([0,1],Ω)

lH(σ)dQ(σ).

The equivalence between these three problems is the core of Chapter 2: we
studied the equivalence on the whole Hn, because otherwise the geodesically
convexity hypothesis on Ω would be necessary: as we already observed in
Remark 9, non-trivial geodesically convex subsets of Hn do not exist.

4.1 Vector horizontal traffic intensities

Let Ω be a regular bounded domain in Hn, with C1,1 boundary, and
µ, ν ∈ P(Ω).
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As for transport plans γ ∈ Π(µ, ν), one can associate with any horizontal
traffic plan Q ∈ QH(µ, ν) both a scalar and a vector measures. The scalar
measure is the traffic intensity iQ ∈ M+

(
Ω
)

we introduced in Definition 3.2.
As for the vector measure we can give the following definition.

Definition 4.1 (Vector horizontal traffic intensity). Let Q ∈ QH(µ, ν) be a
horizontal traffic plan admissible between µ and ν. One can associate with
Q the finite vector Radon measure wQ ∈ M(Ω, HΩ) defined as

ˆ
Ω

ϕ(x) · dwQ =

ˆ
C([0,1],Ω)

(ˆ 1

0

⟨ϕ(σ(t)), σ̇(t)⟩H dt
)
dQ(σ),

for any continuous horizontal vector field ϕ ∈ C(Ω, HΩ). We will call this
measure vector horizontal traffic intensity induced by Q.

Even in this case, the variation measure |wQ| satisfies

|wQ| ≤ iQ (4.5)

for any Q ∈ QH(µ, ν). Indeed, given Q ∈ QH(µ, ν), A ⊆ Ω Borel set and
ϕ ∈ Cc(Ω, HΩ), such that supp ϕ ⊆ A, and ∥ϕ∥∞ ≤ 1, it followsˆ

Ω

ϕ · dwQ ≤
∣∣∣∣ˆ

Ω

ϕ · dwQ

∣∣∣∣ ≤ ˆ
Ω

|ϕ|HdiQ ≤ iQ(A).

Hence, taking the sup among all the admissible ϕ on the left hand side and
having in mind (1.23), we get the desired result. The finitness of the vector
measure wQ immediately follows from the definition of horizontal traffic plan:
indeed it holds

∥wQ∥M(Ω,HΩ) ≤
ˆ
C([0,1],Ω)

lSR(σ)dQ(σ) < +∞,

for any Q ∈ QH(µ, ν).

Remark 16. In general the previous inequality is not an equality because
curves of Q may produce cancellations: this is due to the fact that wQ takes
into account the orientation of the curves, while iQ does not. Following [32,
Example 4.1], we can consider the two measures

µ := δx and ν := δy, for some x ∈ Hn and some y ∈ Hn \ Lx
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and the horizontal traffic plan

Q :=
1

2
δσ +

1

2
δσ̃ ∈ QH(µ, ν),

where σ : [0, 1] → Hn is the geodesic between x and y, as in Theorem 1.11,
and σ̃(t) := σ(−t). In this case it is easy to see that

iQ = H1⌞σ([0,1])

while
wQ ≡ 0.

As for the vector horizontal transport density, see Definition 2.3, one
can recover the signed Radon measure µ− ν, by testing the vector measure
wQ against the horizontal gradient ϕ = ∇Hφ of some φ ∈ C∞(Ω). More
explicitly, let φ ∈ C∞(Ω)

ˆ
Ω

∇Hφ(x) · dwQ =

ˆ
C([0,1],Ω)

(ˆ 1

0

⟨∇Hφ(σ(t)), σ̇(t)⟩H dt
)
dQ(σ)

=

ˆ
C([0,1],Ω)

(ˆ 1

0

d

dt
[φ(σ(t)))] dt

)
dQ(σ)

=

ˆ
C([0,1],Ω)

[φ(σ(1))− φ(σ(0))] dQ(σ)

=

ˆ
Ω

φd ((e1)#Q− (e0)#Q) = −
ˆ
Ω

φd(µ− ν). (4.6)

Hence, ˆ
Ω

∇Hφ(x) · dwQ = −
ˆ
Ω

φd(µ− ν), ∀φ ∈ C∞(Ω).

According to Subsection 2.3.3, this means that for any horizontal traffic plan
Q ∈ QH(µ, ν), the divergence of the vector measure wQ is the signed Radon
measure µ− ν

divHwQ = µ− ν.

Following [88], if in addition w ∈ Lp(Ω, HΩ) for some p ∈ (1,∞), we can
define the distributional horizontal divergence as a functional

divHw : HW 1,q(Ω) → R
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defined by the rule

⟨divHw, φ⟩ = −
ˆ
Ω

⟨w,∇Hφ⟩Hdx, ∀φ ∈ HW 1,q(Ω),

where q = p
p−1

. This is an element of (HW 1,q(Ω))
′ since

|⟨divHw, φ⟩| ≤ ∥w∥Lp(Ω,HΩ)∥φ∥HW 1,q(Ω), ∀φ ∈ HW 1,q(Ω).

Moreover ∥divHw∥(HW 1,q(Ω))′ ≤ ∥w∥Lp(Ω,HΩ).

Lemma 4.1.1. Let p > 1. If

Qp
H(µ, ν) := {Q ∈ QH(µ, ν) : iQ ∈ Lp(Ω)} ≠ ∅,

then
{w ∈ Lp(Ω, HΩ) : divHw = µ− ν} ≠ ∅. (4.7)

Moreover µ− ν ∈ (HW 1,q(Ω))
′.

Proof. Let Q ∈ Qp
H(µ, ν). Then, (4.5) and (4.6) imply that wQ ∈ Lp(Ω, HΩ)

and divHwQ = µ− ν. Moreover

+∞ > ∥wQ∥Lp(Ω,HΩ)

= sup

{∣∣∣∣ˆ
Ω

⟨ϕ,wQ⟩H dx
∣∣∣∣ : ϕ ∈ Lq(Ω, HΩ), ∥ϕ∥Lq(Ω,HΩ) ≤ 1

}
≥ sup

{∣∣∣∣ˆ
Ω

⟨∇Hφ,wQ⟩H dx
∣∣∣∣ : φ ∈ HW 1,q(Ω), ∥φ∥HW 1,q(Ω) ≤ 1

}
= sup

{∣∣∣∣ˆ
Ω

φ d(µ− ν)

∣∣∣∣ : φ ∈ HW 1,q(Ω), ∥φ∥HW 1,q(Ω) ≤ 1

}
= ∥µ− ν∥(HW 1,q(Ω))′ .

Remark 17. Let us remark that the non emptiness assumption on Qp
H(µ, ν)

fails for p ≥ N
N−1

when µ− ν is a discrete measure: indeed, in this case

µ− ν ∈
(
HW 1,q(Ω)

)′ ⇔ q > N ⇔ p <
N

N − 1
.

See [61, Theorem 1.11].
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4.2 The Beckmann-type problem in (HW 1,q)′⋄(Ω)

The aim of this section is to study the Beckmann-type problem (B) in its
natural functional analytic setting, following [30] and [88]: we show that (B)
is well-posed if and only if the right-hand side of (4.3) belongs to the dual of
some Sobolev space, whose elements are not measures in general.

In the rest of the section we will deal with a particular closed subspace
(HW 1,q)′⋄(Ω) of the space (HW 1,q(Ω))′,

(HW 1,q)′⋄(Ω) :=
{
f ∈ (HW 1,q(Ω))′ : ⟨f, 1⟩ = 0

}
.

Let f ∈ (HW 1,q)′⋄(Ω) then its norm

∥f∥(HW 1,q)′⋄(Ω) := ∥f∥(HW 1,q(Ω))′ .

If w ∈ Lp(Ω, HΩ), its distributional horizontal divergence divHw ∈ (HW 1,q(Ω))′.
Moreover it is trivial to prove that ⟨divHw, 1⟩ = 0, hence

divHw ∈ (HW 1,q)′⋄(Ω).

4.2.1 Characterization of the space (HW 1,q)′⋄(Ω)

In the spirit of [88, Section 2], if Ω ⊂ Hn is a regular bounded domain
with C1,1 boundary, then (1.22) holds on Ω and one can characterize the
space (HW 1,q)′⋄(Ω).

Proposition 4.2.1. Let Ω ⊂ Hn be a regular bounded domain with C1,1

boundary. Given f ∈ (HW 1,q)′⋄(Ω), then there exists a vector field w ∈
Lp(Ω, HΩ) such that

divHw = f.

Moreover ∥w∥Lp(Ω,HΩ) ≤ c(n, q,Ω)∥f∥(HW 1,q(Ω))′.

Proof. Consider the following minimization problem

min
φ∈HW 1,q(Ω)

F(φ),
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where
φ 7→ F(φ) :=

1

q

ˆ
Ω

|∇Hφ|qHdx+ ⟨f, φ⟩.

This problem admits at least a solution. Indeed, we restrict the minimization
to the subspace

HW 1,q
⋄ (Ω) :=

{
φ ∈ HW 1,q(Ω) :

ˆ
Ω

φ(x)dx = 0

}
, (4.8)

which is a convex subset and closed w.r.t. weak topology of HW 1,q(Ω). The
functional F is lower semicontinuous w.r.t. the weak topology of HW 1,q(Ω)

and it is coercive on HW 1,q
⋄ (Ω): indeed, if φ ∈ HW 1,q

⋄ (Ω), then from (1.22)
it follows the existence of a constant c = c(n, q,Ω) > 0 such that

|F(φ)| ≥ 1

q
∥∇Hφ∥qLq(Ω) − (c+ 1)∥f∥(HW 1,q(Ω))′∥∇Hφ∥Lq(Ω)

= ∥∇Hφ∥Lq(Ω)

(
1

q
∥∇Hφ∥q−1

Lq(Ω) − (c+ 1)∥f∥(HW 1,q(Ω))′

)
.

Hence, the existence of minimizers follows.
Computing Euler Lagrange equations, a solution φ of the problem above

turns out to satisfy

−
ˆ
Ω

⟨|∇Hφ|q−2∇Hφ,∇Hψ⟩Hdx = ⟨f, ψ⟩, ∀ψ ∈ HW 1,q.

This means that there exists w = |∇Hφ|q−2∇Hφ ∈ Lp(Ω, HΩ) such that
divHw = f . Moreover, testing f against φ we get

∥w∥pLp(Ω,HΩ) =

ˆ
Ω

|w|pHdx =

ˆ
Ω

|∇Hφ|qHdx = −⟨f, φ⟩

≤ ∥f∥(HW 1,q(Ω))′∥φ∥HW 1,q(Ω) ≤ c∥f∥(HW 1,q(Ω))′∥∇Hφ∥Lq(Ω,HΩ)

= c∥f∥(HW 1,q(Ω))′∥w∥p−1
Lp(Ω,HΩ),

as desired.

4.2.2 The Beckmann-type problem

Following [88] we show how the Beckmann-type problem (B) reads if the
right hand side of (4.3) belongs to (HW 1,q(Ω))′.



4.2 The Beckmann-type problem in (HW 1,q)′⋄(Ω) 97

Let
G : R2n → R+

be a convex function such that

G(0) = 0, (4.9)

and it has p-growth
a|w|p ≤ G(w) ≤ b|w|p + 1, (4.10)

for some p ∈ (1,∞) and some positive constants a, b.
Given a horizontal vector field w : Ω → HΩ, we identify the horizontal

vector field w =
∑2n

i=1 wiXi with its canonical coordinates w.r.t. the moving
frame {X1, . . . , X2n}

w = (w1, . . . ,w2n) : Ω → R2n.

We are interested in the Beckmann-type problem

inf
w∈Lp(Ω,HΩ)

{ˆ
Ω

G(w(x))dx : divHw = f

}
, (B′)

where for the moment f is any element of (HW 1,q(Ω))′, with q = p
p−1

.
One can prove that the previous problem is well-posed if and only if f ∈
(HW 1,q)′⋄(Ω).

Theorem 4.2.2. The problem (B′) admits a minimizer, with finite value, if
and only if f ∈ (HW 1,q)′⋄(Ω).

Proof. Let f ∈ (HW 1,q)′⋄(Ω), then Proposition 4.2.1 implies that there ex-
ists at least one vector field w ∈ Lp(Ω, HΩ) such that divHw = f : hence
(4.10) implies that (B′) < +∞. Let (wn)n∈N ⊆ Lp(Ω, HΩ) be a minimizing
sequence. From (4.10) it follows that this sequence is bounded in Lp(Ω, HΩ):
hence, up to a subsequence, it is weakly convergent to some w̃ ∈ Lp(Ω, HΩ).
This vector field is still admissible: indeed, by the weak convergence it follows
that

−
ˆ
Ω

⟨w̃,∇Hφ⟩H dx = − lim
n→∞

ˆ
Ω

⟨wn,∇Hφ⟩H dx = ⟨f, φ⟩, ∀φ ∈ HW 1,q(Ω).
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Since G is convex, the integral functional is convex, as well, and lower semi-
continuous; this implies the lower semicontinuity of the integral functional
w.r.t. the weak convergence in Lp(Ω, HΩ), hence

ˆ
Ω

G(w̃)dx ≤ lim inf
n→+∞

ˆ
Ω

G(wn)dx = (B′) < +∞.

This proves that w̃ is a minimum.

Conversely, if f ̸∈ (HW 1,q)′⋄(Ω) there are no admissible vector fields,
hence the problem is not well-posed.

Let us just remark that , if we suppose in addition that G is strictly
convex, then (B′) admits a unique minimizer.

Corollary 4.2.3. Let p > 1. If

Qp
H(µ, ν) ̸= ∅,

then µ− ν ∈ (HW 1,q)
′
⋄ (Ω). Moreover (B′)< +∞ and it admits solutions.

Proof. Lemma 4.1.1 and a simple computation imply that µ−ν ∈ (HW 1,q)
′
⋄ (Ω).

The existence of solutions follows from Theorem 4.2.2.

4.3 Dual formulation of the Beckmann-type prob-

lem in Hn

The aim of this section is to prove that the Beckmann-type problem (B′)
admits the dual formulation

sup
φ∈HW 1,q(Ω)

{
−⟨f, φ⟩ −

ˆ
Ω

G∗(∇Hφ(x))dx

}
, (D′)

where f ∈ (HW 1,q(Ω))′ and G∗ is the Legendre transform of the convex
function G, see Theorem 4.3.1 for its definition. For the proof of this result,
we follow the strategy in [30]. We recall the following important theorem in
convex analysis.
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Theorem 4.3.1 (Convex duality). [54, Proposition 5] Let F : Y → R a
convex and lower semicontinuous functional on a reflexive Banach space Y .
Let X be another reflexive Banach space and A : X → Y a bounded linear
operator, with adjoint operator tA : Y ′ → X ′. Then we have

sup
x∈X

⟨x′, x⟩ − F(Ax) = inf
y′∈Y ′

{F∗(y′) : A′y′ = x′} , x′ ∈ X ′, (4.11)

where F∗ : Y ′ → R denotes the Legendre-Fenchel transform of F .

Moreover, if the supremum in (4.11) is attained at some x0 ∈ X, then
infimum in (4.11) is attained at some y′0 ∈ Y ′ such that

y′0 ∈ ∂F(Ax0), (4.12)

where ∂F denotes the subdifferential.

Theorem 4.3.2. If f ∈ (HW 1,q)′⋄(Ω), then the problem (D′) admits a solu-
tion and

min
w∈Lp(Ω,HΩ)

{ˆ
Ω

G(w(x))dx : divHw = f

}
= max

φ∈HW 1,q(Ω)

{
−
ˆ
Ω

G∗(∇Hφ(x))dx− ⟨f, φ⟩
}
. (4.13)

Moreover, if w0 ∈ Lp(Ω, HΩ) in an optimizer for (B′) and φ0 ∈ HW 1,q(Ω)

is an optimizer for (D′), then we have the following primal-dual optimality
condition

w0 ∈ ∂G∗(∇Hφ0) a.e. in Ω. (4.14)

Proof. First we observe that the existence of a minimizer for the problem
(B′) follows from Theorem 4.2.2. Thanks to the Direct method in calculus
of variations also (D′) admits solutions belonging the space HW 1,q

⋄ (Ω) of
Sobolev functions with zero mean. First of all (4.10) implies the following
growth condition on G∗ holds

1

qbq
|z|q − 1 ≤ G∗(z) ≤ 1

qaq
|z|q. (4.15)
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Moreover, the convexity of G∗ implies that the functional

HW 1,q(Ω) ∋ φ 7→ F̃(φ) =

ˆ
Ω

G∗(∇Hφ(x))dx+ ⟨f, φ⟩.

is lower semicontinuous with respect to the weak topology of HW 1,q(Ω);
moreover it is coercive on HW 1,q

⋄ (Ω): let φ ∈ HW 1,q
⋄ (Ω) from (4.15) and

(1.22)

F̃(φ) ≥ 1

qbq−1
∥∇Hφ∥qLq(Ω,HΩ) − ∥f∥(HW 1,q(Ω))′∥φ∥HW 1,q(Ω) − L2n+1(Ω)

≥ 1

qbq−1
∥∇Hφ∥qLq(Ω,HΩ) − (c+ 1)∥f∥(HW 1,q(Ω))′∥∇Hφ∥Lq(Ω,HΩ) − L2n+1(Ω)

≥ ∥∇Hφ∥Lq(Ω,HΩ)

(
1

qbq−1
∥∇Hφ∥q−1

Lq(Ω,HΩ) − (c+ 1)∥f∥(HW 1,q(Ω))′

)
−L2n+1(Ω).

where c = c(n, q,Ω) is the constant appearing in (1.22). The existence of
solutions follows from the fact that minimizing F̃ or maximizing −F̃ is the
same.

Let now X = HW 1,q(Ω), Y = Lq(Ω, HΩ) and let us consider the operator

A : X → Y, A(φ) = ∇Hφ, ∀φ ∈ X.

This operator is linear; moreover it is bounded since

∥A(φ)∥Y = ∥∇Hφ∥Lp(Ω,HΩ ≤ ∥φ∥HW 1,q(Ω).

We denote by F : Y → R the functional

F(ϕ) :=

ˆ
Ω

G∗(ϕ(x))dx.

By the convexity and the lower semicontinuity of G it follows that F∗ :

Lp(Ω, HΩ) → R

F∗(w) =

ˆ
Ω

G∗∗(w(x))dx =

ˆ
Ω

G(w(x))dx.

We only miss to compute A′ : Y ′ → X ′. We define the operator Ψ :

Lp(Ω, HΩ) → (HW 1,q(Ω))′, defined by the following role

⟨Ψ(w), φ⟩ = −
ˆ
Ω

⟨w,∇Hφ⟩Hdx, ∀φ ∈ HW 1,q(Ω).
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We observe that Ψ is a linear operator whose image is contained in (HW 1,q)′⋄(Ω)

by construction and by Lemma 4.2.1. Moreover if we take φ ∈ HW 1,p(Ω)

and w ∈ Lp(Ω, HRn), then

⟨A(φ),w⟩ =
ˆ
Ω

⟨w,∇Hφ⟩Hdx = ⟨−Ψ(w), φ⟩.

This proves that −Ψ = A′ : Lp(Ω, HΩ) → (HW 1,q)′⋄(Ω) ⊂ (HW 1,q(Ω))′.

The rest of the thesis follows from the primal-dual optimality condition
(4.12).

Remark 18. Let us just remark that, in the Euclidean setting, another proof
of (4.13) is available in [88]. The latter proof still works in Hn and we will
use it in Chapter 5 for the proof of the analogous result in the orthotropic
case, see Theorem 5.1.2.

Remark 19. If the function G∗ ∈ C1(R2n), then the subgradient set ∂G∗

consists of a unique element DG∗. If φ0 ∈ HW 1,q(Ω) is a solution to (D′),
then it solves the following Euler Lagrange equation

divH(DG∗(∇Hφ)) = f, in Ω.

Moreover, if w0 is a minimizer for (B′) and φ0 is a maximizer for (D′), then

w0(x) = DG∗(∇Hφ0(x)) =
2n∑
j=1

DjG∗(∇Hφ0(x))Xj, for L2n+1 − a.e.x ∈ Ω.

Corollary 4.3.3. Let us suppose that

Qp
H(µ, ν) ̸= ∅

and G is strictly convex. Then,

min
w∈Lp(Ω,HΩ)

{ˆ
Ω

G(w(x))dx : divHw = µ− ν

}
= max

φ∈HW 1,q(Ω)

{
−
ˆ
Ω

φd(µ− ν)−
ˆ
Ω

G∗(∇Hφ(x))dx

}
.
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Moreover, if w0 ∈ Lp(Ω, HΩ) is the unique minimizer of (B) and φ0 ∈
HW 1,q(Ω) is an optimizer for (D), we have that

w0 = DG∗(∇Hφ) a.e. in Ω,

where φ0 is a weak solution to

divH(DG∗(∇Hφ)) = µ− ν, in Ω.

Proof. The strict convexity and the superlinearity of G imply that G∗ ∈
C1(R2n). The thesis follows from Remark 19.

4.3.1 Beckmann potential

Following [33], a Beckmann potential in Hn is a function φ0 ∈ HW 1,q(Ω)

satisfying (D). Let us denote by dφ0 the sub-Riemannian distance associated
with |∇Hφ0|H : given x, y ∈ Ω,

dφ0(x, y) = inf

{ˆ 1

0

|∇Hφ(σ(t))|H |σ̇(t)|Hdt : σ ∈ H, σ(0) = x, σ(1) = y

}
.

Since
ˆ 1

0

|∇Hφ0(σ(t))|H |σ̇(t)|Hdt ≥
ˆ 1

0

⟨∇Hφ0(σ(t)), σ̇(t)⟩Hdt

= φ0(σ(1))− φ0(σ(0)),

we get

dφ0(x, y) ≥ φ0(y)− φ0(x),

and the equality holds if and only if σ is an integral curve of ∇Hφ0 connecting
x and y. This means that φ0 acts as a Kantorovich potential for the optimal
transport problem

min

{ˆ
Ω×Ω

dφ0(x, y)dγ(x, y) : γ ∈ Π(µ, ν)

}
associated with the metric dφ0 induced by φ0 itself.
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Let G = G ◦ | · |H , where G : R+ → R+ is as in Chapter 3. The condition
(4.14) implies that the distance dφ0 is induced by

|∇Hφ0(x)|H = |DG(w0(x))|H = G′(|w0(x)|H),

where w0 is the solution to (B) (remember that this equality must be under-
stood as an equality a.e., even because G is not differentiable in 0), in the
same way in which the equilibrium metric in Wardrop’s problem is induced
by G′(iQ0(x)) for an optimal Q0 ∈ Qp

H(µ, ν). This suggests a connection
between this two problems and that one can prove the existence of Wardrop
equilibria by looking at the problem (B). The aim of the next Section is to
investigate the connection between this two problems.

4.4 Beckmann-type problem and congested op-

timal transport in Hn

Following [30], in this section we investigate the relation between the two
problems (B) and (W). Moreover we will show how to pass from a solution
to (W) to a solution to (B), and vice versa.

Let us consider the function G = G ◦ | · |H and the two optimization
problems (W) and (B). We know that for any Q ∈ Qp

H(µ, ν), it holds that

|wQ| ≤ iQ,

as measures; hence wQ ∈ Lp(Ω, HΩ), see Lemma 4.1.1. Since the function
G is non decreasing and wQ is admissible for (B), it follows that

(B) ≤ (W).

Hence, the equivalence between the two problems is reduced to the converse
inequality. In order to do this we have to pass through the well-known
superposition principle in Riemannian setting.
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4.4.1 The equivalence between the two problems

Superposition principle in Hn in Riemannian approximation

Let ϵ > 0 and let us consider a vector field wϵ ∈ Lp(Ω, TΩ), where TΩ is
the restriction to the domain Ω of the tangent bundle generated by the vector
fields {Xϵ

i }
2n+1
i=1 , see Subsection 1.1.6. We define its distributional divergence

by the rule

⟨divϵwϵ, φ⟩ = −
ˆ
Ω

bϵ (wϵ,∇ϵφ) dx, ∀φ ∈ W 1,q
ϵ (Ω). (4.16)

It follows that divϵwϵ ∈ (W 1,q
ϵ (Ω))

′.

If instead we consider a horizontal vector field w ∈ Lp(Ω, HΩ), in partic-
ular w ∈ Lp(Ω, TΩ); hence, its distributional divergence divϵw in the sense
of (4.16) is well-defined.

On the other hand, since ∥φ∥HW 1,q(Ω) ≤ ∥φ∥W 1,q
ϵ (Ω) we get

W 1,q
ϵ (Ω) ↪→ HW 1,q(Ω),

and divHw ∈ (W 1,q
ϵ (Ω))

′.

Hence, given φ ∈ W 1,q
ϵ (Ω),

⟨divϵw, φ⟩ = −
ˆ
Ω

bϵ (w,∇ϵφ) dx = −
ˆ
Ω

⟨w,∇Hφ⟩Hdx = ⟨divHw, φ⟩.

This means that, if w ∈ Lp(Ω, HΩ), then

divϵw = divHw|W 1,q
ϵ (Ω). (4.17)

We write down the Superposition principle for the Riemannian manifolds
(Hn, bϵ).

Theorem 4.4.1. [15, Theorem 5.8] Let V : [0, 1] × Hn → THn be a Borel
time dependent vector fields. For every probability measure λ on [0, 1] × Hn

that solves

∂tλ+ divϵ(λV ) = 0



4.4 Beckmann-type problem and congested optimal transport in Hn 105

in the sense of distributions and satisfies
ˆ
[0,1]×Hn

|Vt(x)|ϵdλt(x) < +∞,

there exists a probability measure Q ∈ P(C([0, 1],R2n+1)) such that λt =

(et)#Q,∀t ∈ [0, 1] and Q-a.e. σ ∈ C([0, 1],R2n+1) is an absolutely continuous
integral curve of the vector field V .

Theorem 4.4.2. Let us suppose that

Qp
H(µ, ν) ̸= ∅.

If µ, ν ∈ Lp(Ω) and they are bounded by below then

(B) = (W).

Moreover, Q ∈ Qp
H(µ, ν) solves (W) ⇐⇒ wQ solves (B) and |wQ|H = iQ.

Proof. The non-emptiness of the set Qp
H(µ, ν) implies the finiteness of the

infima of both problems and the existence of minimizers, otherwise there is
nothing to prove.

Now let us take a minimizer w of (B) and let us consider the time-
depending horizontal vector field

ŵt(x) =
w(x)

(1− t)µ(x) + tν(x)
, (4.18)

where we use the fact that µ and ν are p-summable functions bounded by
below.

Since w ∈ Lp(Ω, HΩ), in particular w ∈ Lp(Ω, TΩ) and (4.17) implies
that divϵw = µ − ν. Then the linear interpolating curve µt = (1 − t)µ + tν

is a positive distributional solution to the following initial value problem for
the Riemannian continuity equation∂tλ+ divϵ(ŵλ) = 0,

λ0 = µ.
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Indeed,

∂tµt + divϵ(ŵtµt) = µ− ν + divϵw = 0.

In the spirit of [65, Proposition 3.1], we can apply Theorem 4.4.1 in the
setting of the continuity equation on the Riemannian manifold (H, bϵ) as far
as ˆ 1

0

ˆ
Ω

|ŵt(x)|ϵdµt(x)dt =

ˆ
Ω

|w(x)|Hdx < +∞;

let us just notice that this holds true because w is admissible for (B), hence
it is in Lp(Ω, HΩ) for p > 1. Then, we can conclude that there exists a
probability measure Q ∈ P(C([0, 1],Ω)), such that Q(AC([0, 1],Ω)) = 1 and

µt = (et)#Q

such that Q-a.e. curve σ is an integral curve of ŵt. Since ŵt is a horizontal
vector field, then Q-a.e. σ is a horizontal curve and Q ∈ QH(µ, ν). Moreover

ˆ
Ω

φ(x)diQ(x) =

ˆ 1

0

ˆ
C([0,1],Ω)

φ(σ(t))|σ̇(t)|HdQ(σ)dt =

=

ˆ 1

0

ˆ
Ω

φ(x)|ŵt(x)|Hdµt(x)dt =

ˆ 1

0

ˆ
Ω

φ(x)|w(x)|Hdxdt,

for every φ ∈ C(Ω). This implies that iQ = |w|H and thus Q ∈ Qp
H(µ, ν).

The monotonicity of G implies that
ˆ
Ω

G(iQ(x))dx =

ˆ
Ω

G(|w(x)|H)dx = (B) ≤ (W),

hence Q solves (W) and the previous inequality is an equality.

The rest of the thesis follows by noticing that, if Q ∈ Qp
H(µ, ν), then

|wQ|H ≤ iQ a.e. in Ω and wQ is admissible for (B); hence the monotonicity
of G implies that

(B) ≤
ˆ
Ω

G(|wQ(x)|H)dx ≤
ˆ
Ω

G(iQ(x))dx.
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Remark 20. Let us just remark that the convexity assumption on the function
G : R+ → R+ is made to get the existence of minimizers for both problems
but it plays no role in the proof of the equality

(B) = (W).

Remark 21. In the proof of the Theorem 4.4.2 we started from a solution to
(B) and we get the existence of a solution to (W), by using the Superposition
Principle. In [29] the authors provide a different proof of the previous result
in the Euclidean setting: this proof is based on Moser’s flow argument, see
[51] and [73], together with a regularization procedure and it doesn’t require
any assumption on µ and ν. It also works in the Heisenberg setting and we
will use it to prove the analogous result in the orthotropic case, see Theorem
5.1.5.

Remark 22. All the arguments in this Chapter still work if the function
G : Ω× R2n → R+ also depends on x ∈ Ω. It is enough to suppose that

1. w 7→ G(x,w) is convex for any x ∈ Ω;

2. G(x, 0) = 0, for any x ∈ Ω;

3. there exist a function h ∈ L1(Ω) and two constants a, b > 0 such that

a|w|p ≤ G(x,w) ≤ b|w|p + h(x),

for any (x,w) ∈ Ω× R2n.
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Chapter 5

Congested optimal transport in

Hn with orthotropic cost

The first part of this chapter is devoted to the study of the equivalence
between the three problems (W), (B) and (D), when the cost function has p-
growth in each direction. In this case, in the Euclidean setting, the problem
(W) is known as the orthotropic congested optimal transport problem: it
arises from the discrete model on networks introduced in [94] and [14], when
the network becomes very dense. See [9] for more details about this topic.

In the second part we will study the Lipschitz regularity for solutions of a
homogeneous quasi-linear equation, arising from this new formulation of the
problem.

5.1 The three equivalent formulations

As in the previous chapters, we consider a regular bounded domain Ω ⊂
Hn, with C1,1 boundary.

First, we deal with the orthotropic Beckmann-type problem and its dual
formulation. Second, we treat the orthotropic congested optimal transport
problem and its relation with the Beckmann-type problem.

109
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5.1.1 Beckmann-type problem and dual formulation

Let u consider a non-decreasing and convex function G : R+ → R+ such
that

1. G(0) = 0;

2. there exist a, b ∈ R+ and p ∈ (1,∞) such that

aip ≤ G(i) ≤ bip + 1, ∀i ∈ R+. (5.1)

In the remainder of the chapter we will consider a function G : R2n → R+ of
the form

G(w) =
2n∑
i=1

G(|wi|), w ∈ R2n. (5.2)

Let us just observe that the convexity of the function G : R+ → R+ implies
the convexity of the function G : R2n → R+. Moreover (5.1) implies that

G(w) ≥ a
2n∑
i=1

|wi|p ≥ a

(
2n∑
i=1

(wi)
2

) p
2

= a|w|p, (5.3)

for some constant a = a(n), which in turn implies coercivity of the integral
functional

Lp(Ω, HΩ) ∋ w 7→
ˆ
Ω

2n∑
i=1

G(|wi(x)|)dx, (5.4)

where w =
∑2n

i=1 wiXi = (w1, . . . ,w2n) ∈ Lp(Ω, HΩ). Similarly

G(w) ≤
2n∑
i=1

(b|wi|p + 1) = b

2n∑
i=1

|wi|p + 2n ≤ b (|w|p + 1) , (5.5)

for some constant b = b(n).
Let f ∈ (HW 1,q(Ω))′, the Beckmann-type problem reads as

inf
w∈Lp(Ω,HΩ)

{ˆ
Ω

2n∑
i=1

G(|wi(x)|)dx : divHw = f

}
, (5.6)

The coercivity of the functional (5.4) implies a bound on minimizing
sequences, hence, following the proof of Theorem 4.2.2, one can get the exis-
tence of solutions.
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Theorem 5.1.1. The problem (5.6) admits solutions, with finite value, if
and only if f ∈ (HW 1,q)′⋄(Ω).

Dual Formulation

This problem admits the dual formulation

sup
φ∈HW 1,q(Ω)

{
−⟨f, φ⟩ −

ˆ
Ω

2n∑
i=1

G∗(|Xiφ(x)|)dx

}
, (5.7)

where G∗ is the Legendre transform of G: in particular it is a convex function
satisfying

1

qbq
sq − 1 ≤ G∗(s) ≤ 1

qaq
sq, ∀s ∈ R+,

where q = p
p−1

.

As anticipated in Remark 18, in the next theorem we follow [88] to prove
that

(5.7) = (5.6);

the rest of the thesis follows as in Theorem 4.3.2 and Corollary 4.3.3.

Theorem 5.1.2. If f ∈ (HW 1,q)′⋄(Ω), then

min
w∈Lp(Ω,HΩ)

{ˆ
Ω

2n∑
i=1

G(|wi(x)|)dx : divHw = f

}

= max
φ∈HW 1,q(Ω)

{
−⟨f, φ⟩ −

ˆ
Ω

2n∑
i=1

G∗(|Xiφ(x)|)dx

}
.

If in addition G : R+ → R+ is strictly convex, then the unique solution w0

is of the form

w0 = D

(
2n∑
i=1

G∗(|Xiφ0(x)|)

)
,

where φ0 is a solution to (5.7) an it solves

divH

(
D

(
2n∑
i=1

G∗(|Xiφ(x)|)

))
= f, in Ω. (5.8)



112 5. Orthotropic Congested OT in Hn

Proof. Let consider the functional

F : (HW 1,q(Ω))′ → R

defined as

F(h) := min
w∈Lp(Ω,HΩ)

{ˆ
Ω

2n∑
i=1

G(|wi(x)|)dx : divHw = f + h

}
.

If h ∈ (HW 1,q)′⋄(Ω), then F(h) is well-defined and real-valued thanks to (5.5),
the fact that we are minimizing over the set Lp(Ω, HΩ) and Proposition 4.2.1.

Let us compute F∗ : HW 1,q(Ω) → R

F∗(φ) = sup
{
⟨h, φ⟩ − F(h) : h ∈ (HW 1,q(Ω))′

}
= sup

{
⟨h, φ⟩ −

ˆ
Ω

2n∑
i=1

G(|wi(x)|)dx : h,w such that divHw = f + h

}

= sup
w

{
−
ˆ
Ω

⟨w,∇Hφ⟩Hdx− ⟨f, φ⟩ −
ˆ
Ω

2n∑
i=1

G(|wi(x)|)dx

}

= −⟨f, φ⟩+
ˆ
Ω

2n∑
i=1

G∗(|Xiφ(x)|)dx.

By definition F∗∗(0) = supφ∈HW 1,q(Ω) {−F∗(φ)}; moreover one can restrict
the minimization to the spaceHW 1,q

⋄ (Ω) of Sobolev functions with zero mean,
hence sup−F∗ < +∞. By taking the sup on −φ instead of φ we also have

F∗∗(0) = sup
φ∈HW 1,q(Ω)

{
−⟨f, φ⟩ −

ˆ
Ω

2n∑
i=1

G∗(|Xiφ(x)|)dx

}
.

If F is convex and l.s.c., then F∗∗(0) = F(0) and the thesis follows.
Let us prove convexity: let h0, h1 ∈ (HW 1,q)′⋄(Ω) and set ht := (1 −

t)h0 + th1. Let w0 and w1 optimal in the definition of F(h0) and F(h1), i.e.´
Ω

∑2n
i=1G(|wi|)dx = F(hi) and divHwi = f +hi. Let wt := (1− t)w0+ tw1.

Of course we have divHwt = f + ht and, by convexity of G we have

F(ht) ≤
ˆ
Ω

G(wt(x))dx ≤ (1− t)

ˆ
Ω

G(w0(x))dx+ t

ˆ
Ω

G(w1(x))dx =

= (1− t)F(h0) + tF(h1).
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Let us prove semicontinuity: let hn → h in (HW 1,q)′(Ω). We can suppose
that F(hn) ≤ C < +∞, ∀n ∈ N, otherwise there is nothing to prove. Hence
hn ∈ (HW 1,q)′⋄(Ω), ∀n ∈ N. Take the corresponding optimal wn, ∀n ∈ N.
We can take a subsequence (hnk

)k∈N such that

lim
k→∞

F(hnk
) = lim inf

n→∞
F(hn).

Moreover,

a∥wn∥pLp(Ω,HΩ) ≤
ˆ
Ω

G(wn)dx = F(hn) ≤ C, ∀n ∈ N,

where we have used (5.3) in the first inequality. Hence, up to an extra
subsequence extraction, we can assume that wnk

⇀ w in Lp(Ω, HΩ). It
holds that divHw = f + h and, since G is convex, the integral functional is
lower semicontinuous w.r.t. the weak convergence in Lp(Ω, HΩ), hence

F(h) ≤
ˆ
Ω

G(w(x))dx ≤ lim inf
k→∞

ˆ
Ω

G(wnk
(x))dx

= lim
k→∞

F(hnk
) = lim inf

n→∞
F(hn).

5.1.2 Orthotropic congested optimal transport problem

in Hn

As in Chapter 3 we consider µ, ν ∈ P(Ω). Remember that, given Q ∈
QH(µ, ν), we can define a vector measure wQ ∈ M(Ω, HΩ) defined by

ˆ
Ω

ϕ(x) · dwQ(x) =

ˆ
C([0,1],Ω)

(ˆ 1

0

⟨ϕ(σ(t)), σ̇(t)⟩H dt
)
dQ(σ),

for any ϕ ∈ C(Ω, HΩ).

We can think the measure as a vector wQ =
(
w1

Q, . . . ,w2n
Q

)
∈ M(Ω, HΩ),

where wi
Q ∈ M(Ω) is given by
ˆ
Ω

φ(x)dwi
Q(x) =

ˆ
C([0,1],Ω)

(ˆ 1

0

φ(σ(t))σ̇i(t)dt

)
dQ(σ),
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for any φ ∈ C(Ω). Let us also define the following non-negative finite Radon
measures mi

Q ∈ M+(Ω), i = 1, . . . , 2n:

H ∋ σ 7→
ˆ
Ω

φ(x)dmi
Q(x) :=

ˆ
C([0,1],Ω)

Li
φ(σ)dQ(σ),

where
Li

φ(σ) :=

ˆ 1

0

φ(σ(t))|σ̇i(t)|dt,

for any φ ∈ C(Ω).

For any ϕ =
∑2n

i=1 ϕiXi = (ϕ1, . . . , ϕ2n) ∈ C(Ω, HΩ), we denote by

H ∋ σ 7→ Lϕ(σ) :=
2n∑
i=1

Li
ϕi
(σ)

and by mQ the vector measure mQ = (m1
Q, . . . ,m

2n
Q ) ∈ M+

(
Ω, HΩ

)
,

ˆ
Ω

ϕ(x) · dmQ(x) =

ˆ
Ω

Lϕ(σ)dQ(σ).

In particular, for any Borel set A ⊆ Ω and any φ ∈ Cc(Ω) such that
supp φ ⊆ A and ∥φ∥∞ ≤ 1 it holds that∣∣∣∣ˆ

Ω

φ(x)dwi
Q(x)

∣∣∣∣ ≤ ˆ
C([0,1],Ω)

(ˆ 1

0

|φ(σ(t))| |σ̇i(t)|dt
)
dQ(σ)

=

ˆ
Ω

|φ(x)|dmi
Q(x) ≤ mi

Q(A),

hence
wi

Q ≤ |wi
Q| ≤ mi

Q, ∀i = 1, . . . , 2n

as measures. Similarly, one can prove that

wQ ≤ |wQ| ≤
2n∑
i=1

mi
Q,

as measures.
Let us denote by

Qp

H(µ, ν) :=
{
Q ∈ QH(µ, ν) : m

i
Q ∈ Lp(Ω), ∀i = 1, . . . , 2n

}
.



5.1 The three equivalent formulations 115

Let us just remark that, by definition, given φ ∈ C(Ω,R+)

ˆ
Ω

φdmj
Q =

ˆ
C([0,1],Ω)

(ˆ 1

0

φ(σ(t))|σ̇j(t)|dt
)
dQ(σ)

≤
ˆ
C([0,1],Ω)

(ˆ 1

0

φ(σ(t))|σ̇(t)|Hdt
)
dQ(σ)

(
=

ˆ
Ω

φ(x)diQ(x)

)
≤
ˆ
C([0,1],Ω)

(ˆ 1

0

φ(σ(t))

(
2n∑
j=1

|σ̇j(t)|

)
dt

)
dQ(σ) =

2n∑
j=1

ˆ
Ω

φ(x)dmj
Q(x).

Hence

mj
Q ≤ iQ ≤

2n∑
j=1

mj
Q, ∀i = 1, . . . , 2n

as measures. This implies that

Qp
H(µ, ν) ̸= ∅ ⇔ Qp

H(µ, ν) ̸= ∅. (5.9)

Moreover, if Q ∈ Qp

H(µ, ν) then wQ ∈ Lp(Ω, HΩ) and for any i = 1, . . . , 2n

|wi
Q| ≤ mi

Q a.e. in Ω, (5.10)

and

|wQ| ≤
2n∑
i=1

mi
Q a.e. in Ω.

The orthotropic congested optimal transport in Hn reads as

inf
Q∈Qp

H(µ,ν)

ˆ
Ω

2n∑
i=1

G(mi
Q(x))dx. (5.11)

Existence of solutions

Arguing as in Chapter 3 and [43] one can get existence of solutions.

Theorem 5.1.3. Let us suppose that

Qp

H(µ, ν) ̸= ∅.

Then, the problem (5.11) admits solutions.
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Sketch of the proof. The proof goes exactly as the proof of Theorem 3.3.8.
Here we highlight the main steps.

Let (Qn)n∈N ⊂ Q
p

H(µ, ν) be a minimizing sequence. Since the measures
mi

Q are invariant by reparametrization, for any i = 1, . . . , 2n, one may assume
that Qn = Q̃n, for any n ∈ N. Let us consider the corresponding sequences
(mQn)n∈N, for any i = 1, . . . , 2n: since (Qn)n∈N is a minimizing sequence,
(5.1) implies the boundedness in Lp(Ω) of the sequences (mi

Qn
)n∈N, for any

i = 1, . . . , 2n. Hence, up to subsequences, we may assume that mi
Qn

⇀ mi ∈
Lp(Ω). Since (mi

Qn
)n∈N is bounded in Lp(Ω), it is also bounded in L1(Ω),

for any i = 1, . . . , 2n. As for the proofs of Lemma 3.2.1 and Lemma 3.2.2,
Ascoli-Arzelà and Prokhorov’s theorems imply the existence of a measure
Q ∈ P(C([0, 1],Ω)) such that Qn ⇀ Q in M(C([0, 1],R2n+1)) and it is
concentrated on H. Moreover mi

Q ≤ mi for any i = 1, . . . , 2n. Hence Q ∈
Q

p

H(µ, ν) and thanks to the lower semi continuity of the integral functional
w.r.t. the weak convergence in Lp(Ω)

ˆ
Ω

2n∑
i=1

G(mi
Q)dx ≤

ˆ
Ω

2n∑
i=1

G(mi)dx

≤ lim inf
n→∞

ˆ
Ω

2n∑
i=1

G(mi
Qn

)dx = inf
Q∈QH(µ,ν)

ˆ
Ω

2n∑
i=1

G(mi
Q)dx.

Characterization of solutions

Arguing as in Chapter 3 and [43] one can characterize the solutions to
the problem (5.11).

If ϕ =
∑2n

i=1 ϕiXi = (ϕ1, . . . , ϕ2n) ∈ C(Ω, HΩ), ϕi ≥ 0, for any i =

1, . . . , 2n, we denote by

cϕ(x, y) := inf

{
2n∑
i=1

Li
ϕi
(σ) : σ ∈ Hx,y

}
, ∀(x, y) ∈ Ω× Ω,

compare with (3.14).
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Let p ∈
(
1, N

N−1

)
, i.e. q > N , then as in Lemma 3.3.3

|cϕ(x1, y)− cϕ(x2, y)| ≤ C∥ϕ∥Lq(Ω,HΩ)dSR(x1, x2)
α, ∀(x1, y), (x2, y) ∈ Ω×Ω,

and

|cϕ(x, y1)− cϕ(x, y2)| ≤ C∥ϕ∥Lq(Ω,HΩ)dSR(y1, y2)
α, ∀(x, y1), (x, y2) ∈ Ω×Ω.

for some constant C > 0, where α := 1− N
q
.

Hence, if (ϕn)n∈N is a bounded sequence in Lq(Ω, HΩ), then the sequence
(cϕn)n∈N admits a subsequence that converges in C(Ω× Ω).

For any horizontal vector field ϕ ∈ Lq(Ω, HΩ) such that ϕi ≥ 0, for any
i = 1, . . . , 2n, one can define

cϕ(x, y) = sup {c(x, y) : c ∈ C(ϕ)} , ∀(x, y) ∈ Ω× Ω,

where

C(ϕ) :=
{

lim
n→∞

cϕn in C(Ω× Ω) : (ϕn)n∈N ⊂ C(Ω, HΩ), ϕi,n ≥ 0,∀i, ∀n

ϕn → ϕ in Lq(Ω, HΩ)

}
.

In particular, if ϕ ∈ C(Ω, HΩ), ϕi ≥ 0 for any i = 1, . . . , 2n, then following
the proof of Proposition 3.3.5 one can prove that

cϕ = cϕ.

Let now consider Q ∈ Qp

H(µ, ν). Then, for any sequence (ϕn)n∈N ⊂
C(Ω, HΩ), ϕi,n ≥ 0, for any i = 1, . . . , 2n and ∀n ∈ N, which converges to ϕ
in Lq(Ω, HΩ), following the proof of Lemma 3.3.7, one can prove that:

(i) (Lϕn)n∈N converges strongly in L1(C([0, 1],Ω), Q) to some limit, inde-
pendent of the approximating sequence (ϕn)n∈N, which we denote by
Lϕ.

(ii)
´
Ω
ϕ(x) ·mQ(x)dx =

´
C([0,1],Ω)

Lϕ(σ)dQ(σ);
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(iii) Lϕ(σ) ≥ cϕ(σ(0), σ(1)), for Q-a.e. σ ∈ H.

Let us suppose that G : R+ → R+ is such that G(0) = 0 and it satisfies
(5.1) for some p ∈

(
1, N

N−1

)
. Let us suppose that in addition G is strictly

convex and differentiable, with

0 ≤ G′(i) ≤ cip−1 + 1, ∀i ≥ 0,

for some constant c > 0.

Theorem 5.1.4. A horizontal traffic plan Q ∈ Qp

H(µ, ν) ̸= ∅ is optimal if,
and only if,

1. γQ := (e0, e1)#Q ∈ Π(µ, ν) solves

inf
γ∈Π(µ,ν)

ˆ
Ω×Ω

cϕQ
(x, y)dγ(x, y),

where Lq(Ω, HΩ) ∋ ϕQ :=
∑2n

i=1G
′(mi

Q)Xi =
(
G′(m1

Q), . . . , G
′(m2n

Q )
)
;

2. Q
({
σ ∈ H : L(σ) = cϕQ

(σ(0), σ(1)
})

= 1.

Proof. See Proposition 3.3.11 and Theorem 3.3.12 for the proof.

Equivalence between Orthotropic Congested OT and the Beckmann-

type problem

As anticipated in Remark 21, following [29] and [85] we will use the
Dacorogna-Moser construction plus a regularization procedure to prove the
equivalence between the problems (5.11) and (5.6).

Theorem 5.1.5. If Qp

H(µ, ν) ̸= ∅, then

min
Q∈Qp

H(µ,ν)

ˆ
Ω

2n∑
i=1

G(mi
Q(x))dx

= min
w∈Lp(Ω,HΩ)

{ˆ
Ω

2n∑
i=1

G(|wi(x)|)dx : divHw = µ− ν

}
.

Moreover, Q ∈ Qp

H(µ, ν) solves (5.11) ⇐⇒ wQ solves (5.6) and |wi
Q| =

mi
Q, ∀i = 1, . . . , 2n.
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Proof. The non emptiness of the set Qp

H(µ, ν) implies that (5.11) < +∞,
(5.6) < +∞ and the existence of minimizers, otherwise there is nothing to
prove.

The inequality (5.10) and the monotonicity of G : R+ → R+ imply

min
Q∈Qp

H(µ,ν)

ˆ
Ω

2n∑
j=1

G(mj
Q(x))dx

≥ min
w∈Lp(Ω,HΩ)

{ˆ
Ω

2n∑
j=1

G(|wj(x)|)dx : divHw = µ− ν

}
.

Let us take a solution w =
∑2n

j=1 wjXj ∈ Lp(Ω, HΩ) to (5.6) and let us find
a traffic plan Q ∈ Qp

H(µ, ν) such that mj
Q ≤ |wj| for any j = 1, . . . , 2n, as

measures. Such a traffic plan will be a solution to (5.11).
We extend w by 0 outside Ω and we consider the horizontal vector field

wε =
∑2n

j=1 wε
jXj ∈ C∞

0 (Ωε, HΩε), where

wε
j(x) := ρε ∗ wj(x), ∀j = 1, . . . , 2n,

ρε is a mollifier for the group structure of Hn and

Ωε := {x · y : x ∈ Ω, y ∈ B(x, ε)} .

A simple computation implies that

divHwε = µε − νε,

where we are supposing that both µ and ν are extended by 0 outside Ω with

µε = ρε ∗ µ+ ε, νε = ρε ∗ ν + ε ∈ C∞.

Let us introduce the non-autonomous horizontal vector field

ŵε(t, x) :=
wε(x)

µε
t(x)

, ∀(t, x) ∈ [0, 1]× Ωε,

where

µε
t(x) := (1− t)µε(x) + tνε(x) > ε > 0, (t, x) ∈ [0, 1],×Ωε. (5.12)
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Let us notice that ŵε(t, ·) ∈ C∞
0 (Ωε, HΩε) for any t ∈ [0, 1] and

µε − νε = divHwε = divEwε,

where divE denotes the usual Euclidean divergence in R2n+1. Indeed,

wε =
2n∑
j=1

wε
jXj =

2n∑
j=1

wε
j∂xj

+
n∑

i=1

(
wε

n+i

xi
2
− wε

i

xn+i

2

)
∂x2n+1 .

Hence

divEwε =
2n∑
j=1

∂xj
wε

j + ∂x2n+1

(
n∑

i=1

(
wε

n+i

xi
2
− wε

i

xn+i

2

))

=
2n∑
j=1

∂xj
wε

j +
n∑

i=1

(
∂x2n+1w

ε
n+i

xi
2
− ∂x2n+1w

ε
i

xn+i

2

)
= divHwε

In particular, this implies that the curve µε
t satisfies the following initial

value problem for the Riemannian continuity equation∂tλ+ divE(ŵελ) = 0,

λ0 = µε.
(5.13)

Since ŵε is smooth, the unique solution to (5.13) is given by (Ψε(t, ·))# µε,
where

Ψε : [0, 1]× R2n+1 → R2n+1

is the flow of the vector field ŵε in the Euclidean sense, d
dt
Ψε(t, x) = ŵε(t,Ψε(t, x)),

Ψε(0, x) = x,

with Ψε
∣∣
[0,1]×R2n+1\(Ωε)

= id. Hence

(Ψε(t, ·))# µ
ε = µε

t , ∀t ∈ [0, 1].

If we denote by
Φε : Ωε → C([0, 1],Ωε),
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the trajectory map, i.e. Φε(x) := Ψε(·, x), then the measure

Qε := (Φε)# µ
ε ∈ M+(C([0, 1],Ωε)),

satisfies

(et)#Qε = (et ◦ Φε)# µ
ε = (Ψε(t, ·))# µ

ε = µε
t , ∀t ∈ [0, 1];

in particular,
(e0)#Qε = µε (e1)#Qε = νε. (5.14)

By construction Qε is supported on the integral curves of the horizontal
vector field ŵε and the definition of Qε = Φε

#µ
ε and a change of variables

imply

ˆ
C([0,1],Ωε)

lSR(σ)dQε(σ) =

ˆ
Ωε

(ˆ 1

0

|ŵε(t,Ψε(t, x))|Hdt
)
µε(x)dx

=

ˆ 1

0

(ˆ
Ωε

|ŵε(t, y)|HdΨε(t, ·)#µε(y)

)
dt =

ˆ 1

0

(ˆ
Ωε

|ŵε(t, y)|Hµε
t(y)dy

)
dt

=

ˆ
Ωε

|wε(y)|Hdy ≤ ∥w∥L1(Ω,HΩ) ≤ L2n+1(Ω)1/q∥w∥Lp(Ω,HΩ) < +∞,

because w is a solution to (5.6).
Hence, one can define the measures mj

Qε
∈ M+

(
Ωε

)
associated with Qε

as ˆ
Ωε

φ(x)dmj
Qε
(x) :=

ˆ
C([0,1],Ωε)

(ˆ 1

0

φ(σ(t))|σ̇i(t)|dt
)
dQε(σ),

for any φ ∈ C(Ωε). Moreover, the definition of Qε and a change of variables
imply

ˆ
Ωε

φ(x)dmj
Qε
(x) =

ˆ
Ωε

(ˆ 1

0

φ(Ψε(t, x))|ŵε
j(t,Ψ

ε(t, x))|Hdt
)
µε(x)dx

=

ˆ 1

0

(ˆ
Ωε

φ(y)|ŵε
j(t, y)|Hµε

t(y)dy

)
dt =

ˆ
Ωε

φ(y)|wε
j(y)|Hdy, (5.15)

for any φ ∈ C(Ωε); hence mj
Qε

= |wε
j| ∈ C∞

0 (Ωε) and again

∥mj
Qε
∥L1(Ωε) = ∥wε

j∥L1(Ωε) ≤ L2n+1(Ω)1/q∥w∥Lp(Ω,HΩ) < +∞. (5.16)
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Analogously we may define and compute the measure wQε ∈ M(Ωε, HΩε)

associated with Qε: given ϕ ∈ C(Ωε, HΩε)

ˆ
Ωε

ϕ(x) · dwQε(x) :=

ˆ
Ωε

(ˆ 1

0

⟨ϕ(Ψε(t, x)), ŵε(t,Ψε(t, x))⟩Hdt
)
µε(x)dx

=

ˆ
Ωε

⟨ϕ(y),wε(y)⟩Hdy,

hence wQε = wε ∈ C∞
0 (Ωε, HΩε).

We may consider (Qε)ε>0 as a sequence of measures in C([0, 1],Ω′), which
may not be probability measures, for some compact set Ω′ ⊂ Hn, such
that Ω ⊂ Ωε ⊂ Ω′, for any ε. Since both mQε and wQε are invariant by
reparametrization, we may suppose thatQε is supported on curves parametrized
with constant speed, for any ε. Hence, the sequence (Qε)ε>0 ⊂ M+(C([0, 1],Ω

′))

is tight. Indeed, the sets {σ ∈ H([0, 1],Ω′) : |σ̇|H ≤ K}, for any K > 0 are
compact by Ascoli-Arzelà Theorem. Moreover

Qε ({σ ∈ H([0, 1],Ω′) : |σ̇|H > K}) = Qε ({σ ∈ H([0, 1],Ω′) : lSR(σ) > K})

≤ 1

K

ˆ
Ω′
iQε(x)dx ≤ 1

K

2n∑
j=1

ˆ
Ω′
mj

Qε
(x)dx ≤ (2n)L2n+1(Ω)1/q

K
∥w∥Lp(Ω,HΩ),

thanks to (5.16). Hence, (Qε)ε>0 is tight, and thus admits a subsequence
that weakly converges to some Q ∈ M+(C([0, 1],Ω

′)). It is obvious that Q
is concentrated on curves valued in Ω. In particular

Q ∈ P(C([0, 1],Ω)), (5.17)

since by definition it holds that

Qε(C([0, 1],Ω
′)) =

ˆ
Ω′
µε(x)dx =

ˆ
Ωε

µε(x)dx = 1 + ε.

Letting ε tend to 0 we have the desired result.

Moreover, following the same proof of [43, Lemma 2.8], one can prove
that Q is concentrated on H([0, 1],Ω′); hence, letting ε tend to 0 and using
(5.17), it follows that in particular Q is concentrated on H.
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Since Qε ⇀ Q, then (5.14) passes to the limit, hence

Q ∈ QH(µ, ν).

In the end, mj
Qε

= |wε
j| converges to |wj| in Lp(Ω′), hence it converges to the

same limit in M+(Ω
′). Then, for any φ ∈ C(Hn),

ˆ
Ω′
φ(x)|wj(x)|dx = lim

ε→0

ˆ
Ω′
φ(x)|wε

j(x)|dx

= lim
ε→0

ˆ
C([0,1],Ω′)

(ˆ 1

0

φ(σ(t))|σ̇j(t)|dt
)
dQε(σ)

≥
ˆ
C([0,1],Ω′)

(ˆ 1

0

φ(σ(t))|σ̇j(t)|dt
)
dQ(σ) =

ˆ
Ω′
φ(x)dmj

Q(x),

by the lower semicontinuity of the map Q 7→
´ (´

φ(σ(t))|σ̇(t)|Hdt
)
dQ(σ)

with respect to the topology of uniform convergence. In particular this means
that

mj
Q ≤ |wj| ∈ Lp(Ω), ∀j = 1, . . . , 2n,

hence
Q ∈ Qp

H(µ, ν).

By using the monotonicity of G

ˆ
Ω

2n∑
j=1

G(mj
Q(x))dx ≤

ˆ
Ω

2n∑
j=1

G(|wj(x)|)dx = (5.6).

Hence, taking the infimum over the set Qp

H(µ, ν) on the left hand-side, we
get (5.11) ≤ (5.6) and hence the equality between the two minimal values
follows.

The rest of the thesis follows by noticing that, if Q ∈ Qp

H(µ, ν), then
|wj

Q| ≤ mj
Q a.e. in Ω, ∀j = 1, . . . , 2n, and wQ is admissible for (5.6); hence

the monotonicity of G implies

(5.6) ≤
ˆ
Ω

2n∑
j=1

G(|wj
Q(x)|)dx ≤

ˆ
Ω

2n∑
j=1

G(mj
Q(x))dx.
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Remark 23. The previous argument shows how to construct a minimizing
sequence for the problem (W), starting from a regularized solution w to
(B). In the Euclidean setting this regularization procedure is not needed if
the vector field w and µ, ν are smooth enough: this is why one can define
the flow in the classical sense, if w is Lipschitz, or at least in the weaker
DiPerna-Lion sense, if w is in some Sobolev space, see [30, Section 3.3]. In
the Heisenberg setting this regularization procedure is necessary, since the
notion of flow is not well-posed, even if σ ∈ Lip(Ω, dSR), see [68].

Corollary 5.1.6. Let p > 1 and q = p
p−1

, then

Qp
H(µ, ν) ̸= ∅ ⇐⇒ Qp

H(µ, ν) ̸= ∅ ⇐⇒ µ− ν ∈
(
HW 1,q

)′
⋄ (Ω).

Proof. Thanks to Lemma 4.1.1 and (5.9) it is enough to prove that, if µ−ν ∈
(HW 1,q)

′
⋄ (Ω), then Qp

H(µ, ν) ̸= ∅. This follows from the proof of Theorem
5.1.5: indeed, starting from a solution w ∈ Lp(Ω, HΩ) to (5.6) one can find
a sequence (Qε)ε>0 of measures weakly converging to a Q ∈ Qp

H(µ, ν).

5.2 Local Lipschitz regularity for solutions to a

pseudo q-Laplacian type equations in Hn

In this section we study the local Lipschitz regularity for solutions to an
equation of type (5.8), in the homogeneous case.

Let us consider 1 < p < 2 and the function G : R2n → R+,

G(w) =
n∑

i=1

((wi)
2 + (wi+n)

2)p/2

p
.

Hence, the function G∗ ∈ C2(R2n) is

G∗(z) =
n∑

i=1

((zi)
2 + (zi+n)

2)q/2

q
,

where q = p
p−1

> 2.
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Let us consider the equation

divH(DG∗(∇Hu)) = 0, in Ω. (5.18)

The gradient of DG∗ of the function G∗ is

DiG∗(z) =
(
z2i + z2i+n

) q−2
2 zi,

Di+nG∗(z) =
(
z2i + z2i+n

) q−2
2 zi+n,

(5.19)

for i = 1, . . . , n. Hence, the equation (5.18) reads as

n∑
i=1

[
Xi

((
|Xiu|2 + |Xn+iu|2

) q−2
2 Xiu

)
+Xn+i

((
|Xiu|2 + |Xn+iu|2

) q−2
2 Xn+iu

)]
= 0,

The eigenvalues of the Hessian matrix D2G∗ are

λi(z) := (z2i + z2i+n)
(q−2)/2,

λi+n(z) := (q − 1)(z2i + z2i+n)
(q−2)/2 = (q − 1)λi(z),

(5.20)

for i = 1, . . . , n, hence the following growth condition holds

n∑
i=1

λi(z)(ξ
2
i + ξ2n+i) ≤ ⟨D2G∗(z)ξ, ξ⟩ ≤ (q − 1)

n∑
i=1

λi(z)(ξ
2
i + ξ2n+i), (5.21)

for any ξ ∈ R2n.

Definition 5.1 (Weak Solution). We say that a function u ∈ HW 1,q(Ω) is
a weak solution to the equation (5.18) if

2n∑
i=1

ˆ
Ω

DiG∗(∇Hu)Xiψdx = 0,

for any ψ ∈ C∞
c (Ω).
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5.2.1 Riemannian approximation scheme

In the spirit of [38], [40] and [41], we introduce the Riemannian approx-
imation procedure in order to get a priori estimates for weak solutions of
(5.18).

Let us recall that q > 2. Then, for any δ ∈ (0, 1) we denote by

λi,δ(z) :=
(
δ + z2i + z2i+n

) q−2
2 ,

and
Ai,δ(z) := λi,δ(z)zi

Ai+n,δ(z) := λi,δ(z)zi+n.

for any i ∈ {1, . . . , n}.
It follows that

• λi,δ(z) → λi(z) uniformly for z ∈ R2n, as δ → 0.

• Ai,δ(z) → DiG∗(z) uniformly on compact subsets of R2n, as δ → 0.

Now, for any ϵ > 0 and for any z =
∑2n+1

i=1 ziX
ϵ
i (z) ∈ R2n+1 we denote by

zH =
∑2n

i=1 ziX
ϵ
i (z) =

∑2n
i=1 ziXi(z) ∈ R2n. Moreover, let us denote by

λϵi,δ(z) := (δ2 + z2i + z2i+n + z22n+1)
(q−2)/2,

for any i ∈ {1, . . . , n} and by

λϵ2n+1,δ(z) :=
n∑

i=1

λϵi,δ(z).

Let us consider now Aϵ
δ : R2n+1 → R2n+1 defined component-wise by

Aϵ
i,δ(z) := λϵi,δ(z)zi,

Aϵ
i+n,δ(z) := λϵi,δ(z)zi+n,

Aϵ
2n+1,δ(z) := λϵ2n+1,δ(z)z2n+1 =

n∑
j=1

λϵj,δ(z)z2n+1.

(5.22)
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for any i ∈ {1 . . . , n}. If we now denote zϵ =
∑2n

i=1 ziX
ϵ
i (z)+ ϵz2n+1X

ϵ
2n+1(z),

then

λϵi,δ(z
ϵ) −−−→

ϵ→0+
λi,δ(zH),

Aϵ
i,δ(z

ϵ) −−−→
ϵ→0+

Ai,δ(zH),

Aϵ
i+n,δ(z

ϵ) −−−→
ϵ→0+

Ai+n,δ(zH),

for any i ∈ {1, . . . , n}, while for i = 2n+ 1 one has

Aϵ
2n+1,δ(z

ϵ) = ϵλϵ2n+1,δ(z
ϵ)z2n+1 −−−→

ϵ→0+
0.

Let us take j ∈ {1, . . . , 2n+ 1} and i ∈ {1, . . . , n} and let us compute

DjA
ϵ
i,δ(z) = (q − 2)(δ + z2i + z2i+n + z22n+1)

(q−4)/2zi

(ziδj,i + zi+nδj,i+n + z2n+1δj,2n+1) + (δ + z2i + z2i+n + z22n+1)
(q−2)/2δj,i,

and

DjA
ϵ
i+n,δ(z) = (q − 2)(δ + z2i + z2i+n + z22n+1)

(q−4)/2zi+n

(ziδj,i + zi+nδj,i+n + z2n+1δj,2n+1) + (δ + z2i + z2i+n + z22n+1)
(q−2)/2δj,i+n.

If i = 2n+1, let us denote by Aϵ
2n+1,i,δ(z) := (δ+z2i +z

2
i+n+z

2
2n+1)

(q−2)/2z2n+1,

hence

Aϵ
2n+1,δ(z) =

n∑
i=1

Aϵ
2n+1,i,δ(z),

and

DjA
ϵ
2n+1,δ(z) =

n∑
i=1

DjA
ϵ
2n+1,i,δ(z)

=
n∑

i=1

[
(q−2)(δ+z2i +z

2
i+n+z

2
2n+1)

(q−4)/2z2n+1 (δj,izi + δj,i+nzi+nδj,2n+1z2n+1)

+ (δ + z2i + z2i+n + z22n+1)
(q−2)/2δj,2n+1

]
.
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We compute

DjA
ϵ
i,δ(z)ξiξj +DjA

ϵ
i+n,δ(z)ξi+nξj = (q − 2)(δ + z2i + z2i+n + z22n+1)

(q−4)/2

(ziξiξj + zi+nξi+nξj) (ziδj,i + zi+nδj,i+n + z2n+1δj,2n+1)

+ (δ + z2i + z2i+n + z22n+1)
(q−2)/2 (δj,iξiξj + δj,i+nξi+nξj) ,

and

DjA
ϵ
2n+1,δ(z)ξ2n+1ξj =

n∑
i=1

DjA
ϵ
2n+1,i,δ(z)ξ2n+1ξj

=
n∑

i=1

[
(q − 2)(δ + z2i + z2i+n + z22n+1)

(q−4)/2

z2n+1ξ2n+1ξj(ziδj,i + zi+nδj,i+n + z2n+1δj,2n+1)

+ (δ + z2i + z2i+n + z22n+1)
(q−2)/2δj,2n+1ξ2n+1ξj

]
.

Hence, for any ξ ∈ R2n+1

2n+1∑
i,j=1

DjA
ϵ
i,δ(z)ξiξj

=
2n+1∑
j=1

n∑
i=1

(
DjA

ϵ
i,δ(z)ξiξj +DjA

ϵ
i+n,δ(z)ξi+nξj

)
+

2n+1∑
j=1

DjA
ϵ
2n+1,δ(z)ξ2n+1ξj

=
n∑

i=1

[
(q − 2)(δ + z2i + z2i+n + z22n+1)

(q−4)/2(ziξi + zi+nξi+n + z2n+1ξ2n+1)
2

+ (δ + z2i + z2i+n + z22n+1)
(q−2)/2(ξ2i + ξ2i+n + ξ22n+1)

]
≥

n∑
i=1

λϵi,δ(z)(ξ
2
i + ξ2i+n + ξ22n+1).

Hence we can conclude that Aϵ
δ =

(
Aϵ

1,δ, . . . , A
ϵ
2n+1,δ

)
: R2n+1 → R2n+1 satis-

fies the following structure condition
n∑

i=1

λϵi,δ(z)(ξ
2
i + ξ2n+i + ξ22n+1) ≤

2n+1∑
i,j=1

DjA
ϵ
i,δ(z)ξiξj

≤ L
n∑

i=1

λϵi,δ(z)(ξ
2
i + ξ2n+i + ξ22n+1), (5.23)
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for any ξ ∈ R2n+1, where L = L(n, q) > 1 is a constant.

We now consider the equation

2n+1∑
i=1

Xϵ
i (A

ϵ
i,δ(∇ϵu)) = 0. (5.24)

Definition 5.2 (ϵ-Weak Solution). We say that a function uϵ ∈ W 1,q
ϵ (Ω),

see (1.21), is a weak solution to the equation (5.24) if

2n+1∑
i=1

ˆ
Ω

Aϵ
i,δ(∇ϵu

ϵ)Xϵ
iψdx = 0,

for any ψ ∈ C∞
c (Ω).

From the Euclidean and Riemannian elliptic theory it follows that every
ϵ-weak solution uϵ is smooth, that is uϵ ∈ C∞(Ω).

Caccioppoli type inequalities for the first derivatives of solutions

The aim of this subsection is to get higher regularity estimates for weak
solutions uϵ to (5.24) that are stable in ϵ and δ.

Through the whole subsection, with an abuse of notation, we will drop
the indexes ϵ and we will denote by u a weak solution to (5.24).

Lemma 5.2.1. [Caccioppoli for ∇ϵu] There exists a constant c = c(n, q, L) >

0, independent of ϵ and δ, such that, for every weak solution u ∈ W 1,q
ϵ (Ω) to

(5.24), for every β ≥ 0 and for every η ∈ C∞
c (Ω) one has

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2

n∑
i=1

λϵi,δ(∇ϵu)
(
|∇ϵX

ϵ
iu|2 + |∇ϵX

ϵ
i+nu|2 + |∇ϵX

ϵ
2n+1u|2

)
dx ≤

c

ˆ
Ω

(|∇ϵη|2 + η|X2n+1η|)
n∑

i=1

λϵi,δ(∇ϵu)
(
δ + |∇ϵu|2ϵ

)β+2
2 dx

+ c(β + 2)4
ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2

n∑
i=1

λϵi,δ(∇ϵu)|X2n+1u|2dx.
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Proof. We use ψ = Xϵ
l (η

2 (δ + |∇ϵu|2ϵ)
β
2 Xϵ

l u) as test function, with l ∈
{1, . . . , n} and β ≥ 0, in the weak formulation

0 =

ˆ
Ω

2n+1∑
i=1

Aϵ
i,δ(∇ϵu)X

ϵ
iψdx

=

ˆ
Ω

2n+1∑
i=1

Aϵ
i,δ(∇ϵu)X

ϵ
i (X

ϵ
l (η

2
(
δ + |∇ϵu|2ϵ

)β
2 Xϵ

l u))dx =

−
ˆ
Ω

2n+1∑
i=1

Xϵ
l (A

ϵ
i,δ(∇ϵu))X

ϵ
i (η

2
(
δ + |∇ϵu|2ϵ

)β
2 Xϵ

l u)dx

−
ˆ
Ω

Aϵ
n+l,δ(∇ϵu)X2n+1(η

2
(
δ + |∇ϵu|2ϵ

)β
2 Xϵ

l u)dx =

−
ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2

2n+1∑
i,j=1

∂jA
ϵ
i,δ(∇ϵu)X

ϵ
lX

ϵ
juX

ϵ
lX

ϵ
iudx

+

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2

2n+1∑
j=1

∂jA
ϵ
n+l,δ(∇ϵu)X

ϵ
lX

ϵ
juX2n+1udx

−
ˆ
Ω

Xϵ
l u

2n+1∑
i,j=1

∂jA
ϵ
i,δ(∇ϵu)X

ϵ
lX

ϵ
juX

ϵ
i (η

2
(
δ + |∇ϵu|2ϵ

)β
2 )dx

−
ˆ
Ω

Aϵ
n+l,δ(∇ϵu)X2n+1(η

2
(
δ + |∇ϵu|2ϵ

)β
2 Xϵ

l u)dx.

Hence

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2

2n+1∑
i,j=1

∂jA
ϵ
i,δ(∇ϵu)X

ϵ
lX

ϵ
juX

ϵ
lX

ϵ
iudx

+

ˆ
Ω

Xϵ
l uη

2

2n+1∑
i,j=1

∂jA
ϵ
i,δ(∇ϵu)X

ϵ
lX

ϵ
juX

ϵ
i (
(
δ + |∇ϵu|2ϵ

)β
2 )dx =

− 2

ˆ
Ω

ηXϵ
l u
(
δ + |∇ϵu|2ϵ

)β
2

2n+1∑
i,j=1

∂jA
ϵ
i,δ(∇ϵu)X

ϵ
lX

ϵ
juX

ϵ
i ηdx

+

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2

2n+1∑
j=1

∂jA
ϵ
n+l,δ(∇ϵu)X

ϵ
lX

ϵ
juX2n+1udx

−
ˆ
Ω

Aϵ
n+l,δ(∇ϵu)X2n+1(η

2
(
δ + |∇ϵu|2ϵ

)β
2 Xϵ

l u)dx = I l1 + I l2 + I l3.
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If l ∈ {n+ 1, . . . , 2n}

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2

2n+1∑
i,j=1

∂jA
ϵ
i,δ(∇ϵu)X

ϵ
lX

ϵ
juX

ϵ
lX

ϵ
iudx

+

ˆ
Ω

Xϵ
l uη

2

2n+1∑
i,j=1

∂jA
ϵ
i,δ(∇ϵu)X

ϵ
lX

ϵ
juX

ϵ
i (
(
δ + |∇ϵu|2ϵ

)β
2 )dx =

− 2

ˆ
Ω

ηXϵ
l u
(
δ + |∇ϵu|2ϵ

)β
2

2n+1∑
i,j=1

∂jA
ϵ
i,δ(∇ϵu)X

ϵ
lX

ϵ
juX

ϵ
i ηdx

−
ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2

2n+1∑
j=1

∂jA
ϵ
l−n,δ(∇ϵu)X

ϵ
lX

ϵ
juX2n+1udx

+

ˆ
Ω

Aϵ
l−n,δ(∇ϵu)X2n+1(η

2
(
δ + |∇ϵu|2ϵ

)β
2 Xϵ

l u)dx = I l1 + I l2 + I l3.

In the end, if l = 2n + 1, then [Xϵ
2n+1, X

ϵ
i ] = 0,∀i = 1, . . . , 2n + 1 implies

that I2n+1
2 = 0 and I2n+1

3 = 0. Hence

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2

2n+1∑
i,j=1

∂jA
ϵ
i,δ(∇ϵu)X

ϵ
2n+1X

ϵ
juX

ϵ
2n+1X

ϵ
iudx

+

ˆ
Ω

Xϵ
2n+1uη

2

2n+1∑
i,j=1

∂jA
ϵ
i,δ(∇ϵu)X

ϵ
2n+1X

ϵ
juX

ϵ
i (
(
δ + |∇ϵu|2ϵ

)β
2 )dx =

− 2

ˆ
Ω

ηXϵ
2n+1u

(
δ + |∇ϵu|2ϵ

)β
2

2n+1∑
i,j=1

∂jA
ϵ
i,δ(∇ϵu)X

ϵ
2n+1X

ϵ
juX

ϵ
i ηdx =: I2n+1

1 .

Let us consider the second integral in the left hand side, for any l = 1, . . . , 2n+
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1:

ˆ
Ω

Xϵ
l uη

2

2n+1∑
i,j=1

∂jA
ϵ
i,δ(∇ϵu)X

ϵ
lX

ϵ
juX

ϵ
i (
(
δ + |∇ϵu|2ϵ

)β
2 )dx

= β

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β−2
2

2n+1∑
i,j=1

∂jA
ϵ
i,δ(∇ϵu)X

ϵ
lX

ϵ
juX

ϵ
l u

2n+1∑
k=1

Xϵ
iX

ϵ
kuX

ϵ
kudx

= β

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β−2
2

n∑
i=1

2n+1∑
j=1

∂jA
ϵ
i,δ(∇ϵu)X

ϵ
lX

ϵ
juX

ϵ
l u

2n+1∑
k=1

Xϵ
iX

ϵ
kuX

ϵ
kudx

+β

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β−2
2

2n∑
i=n+1

2n+1∑
j=1

∂jA
ϵ
i,δ(∇ϵu)X

ϵ
lX

ϵ
juX

ϵ
l u

2n+1∑
k=1

Xϵ
iX

ϵ
kuX

ϵ
kudx

+β

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β−2
2

2n+1∑
j=1

∂jA
ϵ
2n+1,δ(∇ϵu)X

ϵ
lX

ϵ
juX

ϵ
l u

2n+1∑
k=1

Xϵ
2n+1X

ϵ
kuX

ϵ
kudx

where we just separated the summation in i. Since the only non-trivial
bracket-relations between Xi and Xk, for any i, k = 1 . . . , 2n+ 1, are[Xϵ

i , X
ϵ
k] = X2n+1, if k = i+ n and i ∈ {1, . . . , n},

[Xϵ
i , X

ϵ
k] = −X2n+1, if k = i− n and i ∈ {n+ 1, . . . , 2n},

we get

=β

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β−2
2

n∑
i=1

2n+1∑
j=1

∂jA
ϵ
i,δ(∇ϵu)X

ϵ
lX

ϵ
juX

ϵ
l u

2n+1∑
k=1

Xϵ
kX

ϵ
iuX

ϵ
kudx

+β

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β−2
2

n∑
i=1

2n+1∑
j=1

∂jA
ϵ
i,δ(∇ϵu)X

ϵ
lX

ϵ
juX

ϵ
l uX2n+1uX

ϵ
i+nudx

+β

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β−2
2

2n∑
i=n+1

2n+1∑
j=1

∂jA
ϵ
i,δ(∇ϵu)X

ϵ
lX

ϵ
juX

ϵ
l u

2n+1∑
k=1

Xϵ
kX

ϵ
iuX

ϵ
kudx

−β
ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β−2
2

2n∑
i=n+1

2n+1∑
j=1

∂jA
ϵ
i,δ(∇ϵu)X

ϵ
lX

ϵ
juX

ϵ
l uX2n+1uX

ϵ
i−nudx

+β

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β−2
2

2n+1∑
j=1

∂jA
ϵ
2n+1,δ(∇ϵu)X

ϵ
lX

ϵ
juX

ϵ
l u

2n+1∑
k=1

Xϵ
kX

ϵ
2n+1uX

ϵ
kudx,
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which in a more compact form is equal to

=β

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β−2
2

2n+1∑
i,j=1

∂jA
ϵ
i,δ(∇ϵu)X

ϵ
lX

ϵ
juX

ϵ
l u

2n+1∑
k=1

Xϵ
kX

ϵ
iuX

ϵ
kudx

+β

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β−2
2 X2n+1uX

ϵ
l u⟨DAϵ

δ(∇ϵu)X
ϵ
l∇ϵu,(

Xϵ
n+1u, . . . , X

ϵ
2nu,−Xϵ

1u, . . . ,−Xϵ
nu, 0

)
⟩dx,

where DAϵ
δ =

(
∂jA

ϵ
i,δ

)
ij
. Denoting by I l4 the last integral and summing the

above equations for all l from 1 to 2n+ 1 we get

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2

2n+1∑
i,j,l=1

∂jA
ϵ
i,δ(∇ϵu)X

ϵ
lX

ϵ
juX

ϵ
lX

ϵ
iudx

+ β

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β−2
2

2n+1∑
i,j=1

∂jA
ϵ
i,δ(∇ϵu)⟨∇ϵX

ϵ
j ,∇ϵu⟩⟨∇ϵX

ϵ
iu,∇ϵu⟩dx

=
2n+1∑
l=1

(
I l1 + I l2 + I l3 − I l4

)
.

The second integral in the left hand side is always positive, hence

(LHS) ≥
2n+1∑
l=1

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2

n∑
i=1

λϵi,δ(∇ϵu)(
(Xϵ

lX
ϵ
iu)

2 + (Xϵ
lX

ϵ
n+iu)

2 + (Xϵ
lX

ϵ
2n+1u)

2
)
dx

=

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2

n∑
i=1

λϵi,δ(∇ϵu)(
|∇ϵX

ϵ
iu|2 + |∇ϵX

ϵ
i+nu|2 + |∇ϵX

ϵ
2n+1u|2

)
dx.
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By the structure condition (5.21) and Young’s inequality it follows that

|I l1| ≤ 2

ˆ
Ω

η
(
δ + |∇ϵu|2ϵ

)β+1
2

2n+1∑
i,j=1

∂jA
ϵ
i,δ(∇ϵu)X

ϵ
lX

ϵ
juX

ϵ
i ηdx

≤ cτ

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2

n∑
i=1

λϵi,δ(∇ϵu)
(
|∇ϵX

ϵ
iu|2 + |∇ϵX

ϵ
i+nu|2 + |∇ϵX

ϵ
2n+1u|2

)
dx

+
c

τ

ˆ
Ω

(
δ + |∇ϵu|2ϵ

)β+2
2

n∑
i=1

λϵi,δ(∇ϵu)|∇ϵη|2dx,

for all l ∈ {1, . . . , 2n + 1}, where c = c(n, L, q) > 0. For τ small enough the
first term can be reabsorbed in the (LHS).

Let us estimate I l2, for l ∈ {1, . . . , 2n}: again by (5.21) and Young’s
inequality we have

|I l2| ≤ cτ

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2

n∑
i=1

λϵi,δ(∇ϵu)
(
|∇ϵX

ϵ
iu|2 + |∇ϵX

ϵ
i+nu|2 + |∇ϵX

ϵ
2n+1u|2

)
dx

+
c

τ

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2

n∑
i=1

λϵi,δ(∇ϵu)|X2n+1u|2dx.

As before, for τ small enough the first term can be reabsorbed in the (LHS).
In order to estimate I l3, for all l ∈ {1, . . . , 2n}, let us compute

X2n+1(η
2
(
δ + |∇ϵu|2ϵ

)β
2 Xϵ

l u) = 2ηX2n+1η
(
δ + |∇ϵu|2ϵ

)β
2 Xϵ

l u

+βη2Xϵ
l u
(
δ + |∇ϵu|2ϵ

)β−2
2

2n+1∑
k=1

Xϵ
kuX

ϵ
kX2n+1u+η

2
(
δ + |∇ϵu|2ϵ

)β
2 Xϵ

lX2n+1u.
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If l ∈ {1, . . . , n}

I l3 = −2

ˆ
Ω

ηX2n+1ηA
ϵ
n+l,δ(∇ϵu)

(
δ + |∇ϵu|2ϵ

)β
2 Xϵ

l udx

−
ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2 Aϵ

n+l,δ(∇ϵu)X
ϵ
lX2n+1udx

− β

ˆ
Ω

η2Xϵ
l u
(
δ + |∇ϵu|2ϵ

)β−2
2 Aϵ

n+l,δ(∇ϵu)
2n+1∑
k=1

Xϵ
kuX

ϵ
kX2n+1udx

=: I l3,1 + I l3,2 + I l3,3,

otherwise l ∈ {n+ 1, . . . , 2n}

I l3 = 2

ˆ
Ω

ηX2n+1ηA
ϵ
l−n,δ(∇ϵu)

(
δ + |∇ϵu|2ϵ

)β
2 Xϵ

l udx

+

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2 Aϵ

l−n,δ(∇ϵu)X
ϵ
lX2n+1udx

+ β

ˆ
Ω

η2Xϵ
l u
(
δ + |∇ϵu|2ϵ

)β−2
2 Aϵ

l−n,δ(∇ϵu)
2n+1∑
k=1

Xϵ
kuX

ϵ
kX2n+1udx

=: I l3,1 + I l3,2 + I l3,3,

By (5.19) it follows that

|I l3,1| ≤ L

ˆ
Ω

η|X2n+1η|
(
δ + |∇ϵu|2ϵ

)β
2 λϵl,δ(∇ϵu)|Xϵ

l u||Xϵ
n+lu|dx

≤ L

ˆ
Ω

η|X2n+1η|
(
δ + |∇ϵu|2ϵ

)β+2
2

n∑
i=1

λϵi,δ(∇ϵu)dx,

for any l ∈ {1, . . . , n}; analogously if l ∈ {n+ 1, . . . , 2n}

|I l3,1| ≤
ˆ
Ω

η|X2n+1η|
(
δ + |∇ϵu|2ϵ

)β+2
2

n∑
i=1

λϵi,δ(∇ϵu)dx.

Hence

|I l3,1| ≤ c

ˆ
Ω

η|X2n+1η|
(
δ + |∇ϵu|2ϵ

)β+2
2

n∑
i=1

λϵi,δ(∇ϵu)dx,

for any l ∈ {1, . . . , 2n}, where c = c(n, q, L).
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In order to estimate I l3,2, we integrate by parts and we compute the deriva-
tive of the integrand function: hence for l ∈ {1, . . . , n}

I l3,2 =

ˆ
Ω

Xϵ
l (η

2
(
δ + |∇ϵu|2ϵ

)β
2 Aϵ

n+l,δ(∇ϵu))X2n+1udx

=

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2

2n+1∑
j=1

∂jA
ϵ
n+l,δ(∇ϵu)X

ϵ
lX

ϵ
juX2n+1udx

+ 2

ˆ
Ω

ηXϵ
l ηA

ϵ
n+l,δ(∇ϵu)

(
δ + |∇ϵu|2ϵ

)β
2 X2n+1udx

+ β

ˆ
Ω

η2Aϵ
n+l,δ(∇ϵu)

(
δ + |∇ϵu|2ϵ

)β−2
2

2n+1∑
k=1

Xϵ
lX

ϵ
kuX

ϵ
kuX2n+1udx. (5.25)

The first integral in (5.25) can estimated as I l2, hence we will estimate the
last two of them: again by using (5.19) and Young’s inequality, the second
term in (5.25) can be bounded by

2L

ˆ
Ω

η|Xϵ
l η|λϵl,δ(∇ϵu)

(
δ + |∇ϵu|2ϵ

)β
2 |Xϵ

n+lu||X2n+1u|dx

≤ c

ˆ
Ω

η|∇ϵη|
n∑

i=1

λϵi,δ(∇ϵu)
(
δ + |∇ϵu|2ϵ

)β+1
2 |X2n+1u|dx

≤ c

ˆ
Ω

(
δ + |∇ϵu|2ϵ

)β+2
2 |∇ϵη|2

n∑
i=1

λϵi,δ(∇ϵu)dx

+ c

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2

n∑
i=1

λϵi,δ(∇ϵu)|X2n+1u|2dx.

for some constant c = c (n, q, L). While for the third one we use [Xϵ
l , X

ϵ
k] =

X2n+1 if k = l + n, then

β

ˆ
Ω

η2Aϵ
n+l,δ(∇ϵu)

(
δ + |∇ϵu|2ϵ

)β−2
2

2n+1∑
k=1

Xϵ
lX

ϵ
kuX

ϵ
kuX2n+1udx

= β

ˆ
Ω

η2Aϵ
n+l,δ(∇ϵu)

(
δ + |∇ϵu|2ϵ

)β−2
2

2n+1∑
k=1

Xϵ
kX

ϵ
l uX

ϵ
kuX2n+1udx

+ β

ˆ
Ω

η2Aϵ
n+l,δ(∇ϵu)

(
δ + |∇ϵu|2ϵ

)β−2
2 Xϵ

n+lu|X2n+1u|2dx (5.26)
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(by structure condition (5.19) and Young’s inequality)

≤ cβ

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2 λϵl,δ(∇ϵu)|∇ϵX

ϵ
l u||X2n+1u|dx

+ cβ

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2

n∑
i=1

λϵi,δ(∇ϵu)|X2n+1u|2dx

≤ cτ

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2 λϵl,δ(∇ϵu)|∇ϵX

ϵ
l u|2dx

+
cβ2

τ

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2

n∑
i=1

λϵi,δ(∇ϵu)|X2n+1u|2dx

+ c

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2

n∑
i=1

λϵi,δ(∇ϵu)|X2n+1u|2dx

≤ cτ

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2 λϵl,δ(∇ϵu)(

|∇ϵX
ϵ
l u|2 + |∇ϵX

ϵ
n+lu|2 + |∇ϵX

ϵ
2n+1u|2

)
dx

+ c

(
1 +

β2

τ

) ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2

n∑
i=1

λϵi,δ(∇ϵu)|X2n+1u|2dx,

where again c = c(n, q, L).

If l ∈ {n+ 1, . . . , 2n} the same bounds hold for I l3,2, hence:

|
2n∑
l=1

I l3,2| ≤ cτ

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2

n∑
l=1

λϵl,δ(∇ϵu)(
|∇ϵX

ϵ
l u|2 + |∇ϵX

ϵ
n+lu|2 + |∇ϵX

ϵ
2n+1u|2

)
dx

+ c

(
1 +

β2

τ

) ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2

n∑
i=1

λϵi,δ(∇ϵu)|X2n+1u|2dx.

I l3,3 can be estimated as (5.26).
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In the end, for I l4 it holds

|I l4| ≤ β

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β−1
2 |X2n+1u|

(
n∑

i=1

λϵi,δ(∇ϵu)

(
(Xϵ

lX
ϵ
iu)

2 + (Xϵ
lX

ϵ
n+iu)

2 + (Xϵ
lX

ϵ
2n+1u)

2
)) 1

2
(

n∑
i=1

λϵi,δ(∇ϵu)|∇ϵu|2ϵ

) 1
2

dx ≤

cτ

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2

n∑
i=1

λϵi,δ(∇ϵu)
(
(∇ϵX

ϵ
iu)

2 + (∇ϵX
ϵ
n+iu)

2 + (∇ϵX
ϵ
2n+1u)

2
)
dx

+
cβ2

τ

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2

n∑
i=1

λϵi,δ(∇ϵu)|X2n+1u|2dx,

and the thesis follows.

In order to handle the term

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2

n∑
i=1

λϵi,δ(∇ϵu)|X2n+1u|2dx,

we adapt to our case the mixed Caccioppoli-type inequality in Lemma [95,
Lemma 3.5]. The first step is to prove the following Caccioppoli-type in-
equality for Xϵ

2n+1u.

Lemma 5.2.2 (Caccioppoli forX2n+1u). There exists a constant c = c(n, q, L) >

0, independent of ϵ and δ, such that, for every weak solution u ∈ W 1,q
ϵ (Ω) to

(5.24), for every β ≥ 0 and for every η ∈ C∞
c (Ω) one has

ˆ
Ω

η2|X2n+1u|β

n∑
i=1

λϵi,δ(∇ϵu)
(
(Xϵ

iX2n+1u)
2 + (Xϵ

n+iX2n+1u)
2 + (Xϵ

2n+1X2n+1u)
2
)
dx

≤ c

(β + 1)2

ˆ
Ω

|∇ϵη|2|X2n+1u|β
n∑

i=1

λϵi,δ(∇ϵu)|X2n+1u|2dx.
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Proof. Let us consider ψ = X2n+1(η
2|X2n+1u|βX2n+1u) as test function in

the weak formulation.

0 =
2n+1∑
i=1

ˆ
Ω

Aϵ
i,δ(∇ϵu)X

ϵ
i (X2n+1(η

2|X2n+1u|βX2n+1u))dx.

Since the vector field X2n+1 commutes with Xϵ
i , for any i = 1, . . . , 2n+1, an

integration by parts gives

ˆ
Ω

η2|X2n+1u|β
2n+1∑
i,j=1

∂jA
ϵ
i,δ(∇ϵu)X

ϵ
jX2n+1uX

ϵ
iX2n+1udx

= −
ˆ
Ω

X2n+1u
2n+1∑
i,j=1

∂jA
ϵ
i,δ(∇ϵu)X

ϵ
jX2n+1uX

ϵ
i (η

2|X2n+1u|β)dx.

By derivating on the right hand side, one get

ˆ
Ω

η2|X2n+1u|β
2n+1∑
i,j=1

∂jA
ϵ
i,δ(∇ϵu)X

ϵ
jX2n+1uX

ϵ
iX2n+1udx

≤ 2

(β + 1)

ˆ
Ω

η|X2n+1u|β+1

2n+1∑
i,j=1

∂jA
ϵ
i,δ(∇ϵu)X

ϵ
jX2n+1uX

ϵ
i ηdx.

By the structure conditions it follows that the left hand side

(LHS) ≥
ˆ
Ω

η2|X2n+1u|β
n∑

i=1

λϵi,δ(∇ϵu)(
(Xϵ

iX2n+1u)
2 + (Xϵ

n+iX2n+1u)
2 + (Xϵ

2n+1X2n+1u)
2
)
dx

As for the right hand side

(RHS) ≤ τ

ˆ
Ω

η2|X2n+1u|β
2n+1∑
i,j=1

∂jA
ϵ
i,δ(∇ϵu)X

ϵ
jX2n+1uX

ϵ
iX2n+1udx

+
cτ

(β + 1)2

ˆ
Ω

|X2n+1u|β+2

2n+1∑
i,j=1

∂jA
ϵ
i,δ(∇ϵu)X

ϵ
jηX

ϵ
i ηdx = I1 + I2.
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I1 can be reabsorbed in the left hand side, for τ small enough while

I2 ≤
cτL

(β + 1)2

ˆ
Ω

|X2n+1u|β+2|∇ϵη|2
n∑

i=1

λϵi,δ(∇ϵu)dx.

The mixed Caccioppoli-type inequality in this case reads as:

Lemma 5.2.3. There exists a constant c = c(n, q, L) > 0, independent of ϵ
and δ, such that, for every weak solution u ∈ W 1,q

ϵ (Ω) to (5.24), for every
α, β ≥ 2 and for every η ∈ C∞

c (Ω) one has

ˆ
Ω

ηα+2|X2n+1u|β
n∑

i=1

λϵi,δ(∇ϵu)
(
|∇ϵX

ϵ
iu|2+|∇ϵX

ϵ
i+nu|2+|∇ϵX

ϵ
2n+1u|2

)
dx ≤

≤ c0

ˆ
Ω

ηα
(
δ + |∇ϵu|2ϵ

)
|X2n+1u|β−2

n∑
i=1

λϵi,δ(∇ϵu)
(
|∇ϵX

ϵ
iu|2 + |∇ϵX

ϵ
i+nu|2 + |∇ϵX

ϵ
2n+1u|2

)
dx,

where c0 = c(n, q, L)((α + 2)2 + (β + 1)2)∥∇ϵη∥2∞.
If α = β, then

ˆ
Ω

ηβ+2|X2n+1u|β
n∑

i=1

λϵi,δ(∇ϵu)
(
|∇ϵX

ϵ
iu|2+|∇ϵX

ϵ
i+nu|2+|∇ϵX

ϵ
2n+1u|2

)
dx ≤

≤ c0

ˆ
Ω

ηβ
(
δ + |∇ϵu|2ϵ

)
|X2n+1u|β−2

n∑
i=1

λϵi,δ(∇ϵu)
(
|∇ϵX

ϵ
iu|2 + |∇ϵX

ϵ
i+nu|2 + |∇ϵX

ϵ
2n+1u|2

)
dx,

with c0 = 2c(β + 2)2∥∇ϵη∥2∞.

Proof. Let η ∈ C∞
c (Ω) be a non negative cut-off function, l ∈ {1, . . . , 2n+1}

and consider ψ = Xϵ
l (η

α+2|X2n+1u|βXϵ
l u) as test function. Let us compute

the derivative

Xϵ
i (η

α+2|X2n+1u|βXϵ
l u) = (α + 2)ηα+1Xϵ

i η|X2n+1u|βXϵ
l u

+ βηα+2|X2n+1u|β−2X2n+1uX
ϵ
l uX

ϵ
iX2n+1u+ ηα+2|X2n+1u|βXϵ

iX
ϵ
l u.
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Let us suppose that l ∈ {1, . . . , n}, we obtain

2n+1∑
i=1

ˆ
Ω

Xϵ
l (A

ϵ
i,δ(∇ϵu))X

ϵ
lX

ϵ
iu|X2n+1u|βηα+2dx =

=

ˆ
Ω

Xϵ
l (A

ϵ
n+l,δ(∇ϵu))X2n+1u|X2n+1u|βηα+2dx−

− (α + 2)
2n+1∑
i=1

ˆ
Ω

Xϵ
l (A

ϵ
i,δ(∇ϵu))X

ϵ
l u|X2n+1u|βηα+1Xϵ

i ηdx+

+

ˆ
Ω

X2n+1(A
ϵ
n+l,δ(∇ϵu))|X2n+1u|βXϵ

l uη
α+2dx−

− β

2n+1∑
i=1

ˆ
Ω

Xϵ
l (A

ϵ
i,δ(∇ϵu)X

ϵ
iX2n+1uX

ϵ
l u|X2n+1u|β−2X2n+1uη

α+2dx

= I l1 + I l2 + I l3 + I l4. (5.27)

From the structure conditions it follows that

(LHS) ≥
ˆ
Ω

ηα+2|X2n+1u|β
n∑

i=1

λϵi,δ(∇ϵu)

((Xϵ
lX

ϵ
iu)

2 + (Xϵ
lX

ϵ
n+iu)

2 + (Xϵ
lX

ϵ
2n+1u)

2)dx.

We will prove that

|I lk| ≤ cτ

ˆ
Ω

ηα+2|X2n+1u|β
n∑

i=1

λϵi,δ(∇ϵu)(
|∇ϵX

ϵ
iu|2 + |∇ϵX

ϵ
n+iu|2 + |∇ϵX

ϵ
2n+1u|2

)
dx

+
c(α + 2)2∥∇ϵη∥2∞

τ

ˆ
Ω

ηα
(
δ + |∇ϵu|2ϵ

)
|X2n+1u|β−2

n∑
i=1

λϵi,δ(∇ϵu)(
|∇ϵX

ϵ
iu|2 + |∇ϵX

ϵ
i+nu|2 + |∇ϵX

ϵ
2n+1|2

)
dx, (5.28)

for some c = c(n, p, L) > 0, for any k = 1, 2, 3, 4.

Let us start by estimating I l4: via the Cauchy Schwartz inequality and
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the structure condition we have

|I l4| ≤
cτ

∥∇ϵη∥2∞

ˆ
Ω

ηα+4|X2n+1u|β
n∑

i=1

λϵi,δ(∇ϵu)(
(Xϵ

iX2n+1u)
2 + (Xϵ

n+iX2n+1u)
2 + (Xϵ

2n+1X2n+1u)
2
)
dx+

+
c((β + 1)2 + (α + 2)2)∥∇ϵη∥2∞

τ

ˆ
Ω

ηα|X2n+1u|β−2
(
δ + |∇ϵu|2ϵ

)
n∑

i=1

λϵi,δ(∇ϵu)
(
(Xϵ

lX
ϵ
iu)

2 + (Xϵ
lX

ϵ
n+iu)

2 + (Xϵ
l uX

ϵ
2n+1u)

2
)
dx,

where c = c(n, p, L) > 0. By Lemma 5.2.2 the first term can be bounded by

τc

ˆ
Ω

ηα+2|X2n+1u|β
n∑

i=1

λϵi,δ(∇ϵu)|X2n+1u|2dx. (5.29)

Let us observe that, by definition

n∑
i=1

λϵi,δ(∇ϵu)|X2n+1u|2 =
n∑

i=1

λϵi,δ(∇ϵu)|Xϵ
iX

ϵ
n+iu−Xϵ

n+iX
ϵ
iu|2

≤
n∑

i=1

λϵi,δ(∇ϵu)
(
|∇ϵX

ϵ
iu|2 + |∇ϵX

ϵ
n+iu|2

)
≤

n∑
i=1

λϵi,δ(∇ϵu)
(
|∇ϵX

ϵ
iu|2 + |∇ϵX

ϵ
n+iu|2 + |∇ϵX

ϵ
2n+1u|2

)
, (5.30)

where in the last inequality we simply added a positive term.

Hence, (5.29) can be bounded by

cτ

ˆ
Ω

ηα+2|X2n+1u|β
n∑

i=1

λϵi,δ(∇ϵu)(
|∇ϵX

ϵ
iu|2 + |∇ϵX

ϵ
n+iu|2 + |∇ϵX

ϵ
2n+1u|2

)
dx, (5.31)

which will be reabsorbed in the left hand side for τ small enough.
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Let us estimate I l3

I l3 =

ˆ
Ω

2n∑
j=1

∂jA
ϵ
n+l,δ(∇ϵu)X

ϵ
jX2n+1u|X2n+1u|βXϵ

l uη
α+2 ≤

≤ cτ

∥∇ϵη∥2∞

ˆ
Ω

ηα+4|X2n+1u|β
n∑

i=1

λϵi,δ(∇ϵu)(
(Xϵ

iX2n+1u)
2 + (Xϵ

n+iX2n+1u)
2 + (Xϵ

2n+1X2n+1u)
2
)
dx+

+
c∥∇ϵη∥2∞

τ

ˆ
Ω

ηα|X2n+1u|β
(
δ + |∇ϵu|2ϵ

)
λϵl,δ(∇ϵu)dx,

where c = c(n, q, L) > 0. The first term can be handled by using Lemma
5.2.2 and (5.30), hence it can be bounded by (5.31); while for the second we
use (5.30)

c∥∇ϵη∥2∞
τ

ˆ
Ω

ηα|X2n+1u|β−2
(
δ + |∇ϵu|2ϵ

)
λϵl,δ(∇ϵu)|X2n+1u|2dx ≤

c∥∇ϵη∥2∞
τ

ˆ
Ω

ηα|X2n+1u|β−2
(
δ + |∇ϵu|2ϵ

) n∑
i=1

λϵi,δ(∇ϵu)|X2n+1u|2dx ≤

c(α + 2)2∥∇ϵη∥2∞
τ

ˆ
Ω

ηβ|X2n+1u|β−2
(
δ + |∇ϵu|2ϵ

) n∑
i=1

λϵi,δ(∇ϵu)(
|∇ϵX

ϵ
iu|2 + |∇ϵX

ϵ
i+nu|2 + |∇ϵX

ϵ
2n+1u|2

)
dx.

Let us estimate

I l2 = −(α + 2)

ˆ
Ω

|X2n+1u|βηα+1

2n+1∑
i,j=1

∂jA
ϵ
i,δ(∇ϵu)X

ϵ
lX

ϵ
juX

ϵ
l uX

ϵ
i ηdx.

Again by Cauchy-Schwartz and Young’s inequality

|I l2| ≤
cτ

∥∇ϵη∥2∞

ˆ
Ω

ηα+2|X2n+1u|β+2

n∑
i=1

λϵi,δ(∇ϵu)((X
ϵ
i η)

2 + (Xϵ
n+iη)

2 + (Xϵ
2n+1η)

2)dx+

+
c(α + 2)2∥∇ϵη∥2∞

τ

ˆ
Ω

ηα
(
δ + |∇ϵu|2ϵ

)
|X2n+1u|β−2

n∑
i=1

λϵi,δ(∇ϵu)
(
|∇ϵX

ϵ
iu|2 + |∇ϵX

ϵ
i+nu|2 + |∇ϵX

ϵ
2n+1|2

)
dx.
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By using (5.30) the first term can be bounded by

cτ

ˆ
Ω

ηα+2|X2n+1u|β
n∑

i=1

λϵi,δ(∇ϵu)
(
|∇ϵX

ϵ
iu|2 + |∇ϵX

ϵ
n+iu|2 + |∇ϵX

ϵ
2n+1u|2

)
dx.

In the end

I l1 = −(β + 1)

ˆ
Ω

ηα+2|X2n+1u|βAϵ
n+l,δ(∇ϵu)X

ϵ
lX2n+1udx−

− (α + 2)

ˆ
Ω

ηα+1|X2n+1u|βX2n+1uA
ϵ
n+l,δ(∇ϵu)X

ϵ
l ηdx = I l1,1 + I l1,2.

As for I l1,1 the definition of Aϵ
δ (5.22), the Young’s inequality, (5.30) and

Lemma 5.2.2 imply that

|I l1,1| ≤ (β + 1)

ˆ
Ω

ηα+2|X2n+1u|β|Xϵ
lX2n+1u|λϵl,δ(∇ϵu)|Xϵ

n+lu|dx ≤

≤ cτ

∥∇ϵη∥2∞

ˆ
Ω

ηα+4|X2n+1u|βλϵl,δ(∇ϵu)(X
ϵ
lX2n+1u)

2dx

+
c(β + 1)2∥∇ϵη∥2∞

τ

ˆ
Ω

ηα|X2n+1u|β
(
δ + |∇ϵu|2ϵ

)
λϵl,δ(∇ϵu)dx

≤ cτ

∥∇ϵη∥2∞

ˆ
Ω

ηα+4|X2n+1u|β
n∑

i=1

λϵi,δ(∇ϵu)(
(Xϵ

iX2n+1u)
2 + (Xϵ

n+iX2n+1u)
2 + (Xϵ

2n+1X2n+1u)
2
)
dx

+
c(β + 1)2∥∇ϵη∥2∞

τ

ˆ
Ω

ηα|X2n+1u|β−2
(
δ + |∇ϵu|2ϵ

) n∑
i=1

λϵi,δ(∇ϵu)|X2n+1u|2dx

≤ cτ

ˆ
Ω

ηα+2|X2n+1u|β

n∑
i=1

λϵi,δ(∇ϵu)
(
|∇ϵX

ϵ
iu|2 + |∇ϵX

ϵ
n+iu|2 + |∇ϵX

ϵ
2n+1u|2

)
dx

+
c(β + 1)2∥∇ϵη∥2∞

τ

ˆ
Ω

ηα
(
δ + |∇ϵu|2ϵ

)
|X2n+1u|β−2

n∑
i=1

λϵi,δ(∇ϵu)
(
|∇ϵX

ϵ
iu|2 + |∇ϵX

ϵ
i+nu|2 + |∇ϵX

ϵ
2n+1|2

)
dx,

while for I l1,2, the definition of Aϵ
δ (5.22), the Young’s inequality and (5.30)
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imply that

|I l1,2| ≤ (α + 2)

ˆ
Ω

ηα+1λϵl,δ(∇ϵu)|∇ϵu|ϵ|∇ϵη||X2n+1u|β+1dx

≤ cτ

∥∇ϵη∥2∞

ˆ
Ω

ηα+2λϵl,δ(∇ϵu)|∇ϵη|2|X2n+1u|β+2dx

+
c(α + 2)2∥∇ϵη∥2∞

τ

ˆ
Ω

ηα|X2n+1u|β
(
δ + |∇ϵu|2ϵ

)
λϵl,δ(∇ϵu)dx

≤ cτ

ˆ
Ω

ηα+2|X2n+1u|β
n∑

i=1

λϵi,δ(∇ϵu)|X2n+1u|2dx

+
c(α + 2)2∥∇ϵη∥2∞

τ

ˆ
Ω

ηα|X2n+1u|β−2
(
δ + |∇ϵu|2ϵ

) n∑
i=1

λϵi,δ(∇ϵu)|X2n+1u|2dx

≤ cτ

ˆ
Ω

ηα+2|X2n+1u|β

n∑
i=1

λϵi,δ(∇ϵu)
(
|∇ϵX

ϵ
iu|2 + |∇ϵX

ϵ
n+iu|2 + |∇ϵX

ϵ
2n+1u|2

)
dx

+
c(α + 2)2∥∇ϵη∥2∞

τ

ˆ
Ω

ηα
(
δ + |∇ϵu|2ϵ

)
|X2n+1u|β−2

n∑
i=1

λϵi,δ(∇ϵu)
(
|∇ϵX

ϵ
iu|2 + |∇ϵX

ϵ
i+nu|2 + |∇ϵX

ϵ
2n+1|2

)
dx.

The bound (5.28) holds true even if l ∈ {n+ 1, . . . , 2n}.

If l = 2n+1, the test function reads as ψ = Xϵ
2n+1(η

α+2|X2n+1u|βXϵ
2n+1u):

since [Xϵ
2n+1, X

ϵ
i ] = 0,∀i = 1, . . . , 2n+1, in (5.27) the terms I2n+1

1 and I2n+1
3

will disappear. Hence

2n+1∑
i=1

ˆ
Ω

Xϵ
2n+1(A

ϵ
i,δ(∇ϵu))X

ϵ
2n+1X

ϵ
iu|X2n+1u|βηα+2dx =

− (α + 2)
2n+1∑
i=1

ˆ
Ω

Xϵ
2n+1(A

ϵ
i,δ(∇ϵu))X

ϵ
2n+1u|X2n+1u|βηα+1Xϵ

i ηdx+

− β
2n+1∑
i=1

ˆ
Ω

Xϵ
2n+1(A

ϵ
i,δ(∇ϵu))X

ϵ
iX2n+1uX

ϵ
2n+1u|X2n+1u|β−2X2n+1uη

α+2dx

= I2n+1
2 + I2n+1

4 .
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For I2n+1
2 and I2n+1

4 the bound (5.28) holds. As for the left hand side

(LHS) ≥
ˆ
Ω

ηβ+2|X2n+1u|β
n∑

i=1

λϵi,δ(∇ϵu)

((Xϵ
2n+1X

ϵ
iu)

2 + (Xϵ
2n+1X

ϵ
n+iu)

2 + (Xϵ
2n+1X

ϵ
2n+1u)

2)dx. (5.32)

Hence, summing for l = 1 to 2n + 1 and taking τ = 1
2

then the thesis
follows.

Corollary 5.2.4. There exists a constant c = c(n, q, L) > 0, independent of
ϵ and δ, such that, for every weak solution u ∈ W 1,q

ϵ (Ω) to (5.24), for every
α ≥ β ≥ 2 and for every η ∈ C∞

c (Ω) one has

ˆ
Ω

ηα+2|X2n+1u|β
n∑

i=1

λϵi,δ(∇ϵu)
(
|∇ϵX

ϵ
iu|2+|∇ϵX

ϵ
i+nu|2+|∇ϵX

ϵ
2n+1u|2

)
dx ≤

≤ c
β
2

β
((β + 1)2 + (α + 2)2)

β
2 ∥∇ϵη∥β∞

ˆ
Ω

ηα+2−β
(
δ + |∇ϵu|2ϵ

)β
2

n∑
i=1

λϵi,δ(∇ϵu)
(
|∇ϵX

ϵ
iu|2 + |∇ϵX

ϵ
i+nu|2 + |∇ϵX

ϵ
2n+1u|2

)
dx.

If α = β, then

ˆ
Ω

ηβ+2|X2n+1u|β
n∑

i=1

λϵi,δ(∇ϵu)
(
|∇ϵX

ϵ
iu|2+|∇ϵX

ϵ
i+nu|2+|∇ϵX

ϵ
2n+1u|2

)
dx ≤

≤ 2
β
2 c

β
2 (β + 2)β∥∇ϵη∥β∞

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2

n∑
i=1

λϵi,δ(∇ϵu)
(
|∇ϵX

ϵ
iu|2 + |∇ϵX

ϵ
i+nu|2 + |∇ϵX

ϵ
2n+1u|2

)
dx.

Proof. From Lemma 5.2.3 we know that

ˆ
Ω

ηα+2|X2n+1u|β
n∑

i=1

λϵi,δ(∇ϵu)
(
|∇ϵX

ϵ
iu|2+|∇ϵX

ϵ
i+nu|2+|∇ϵX

ϵ
2n+1u|2

)
dx ≤

≤ c0

ˆ
Ω

ηα−β+2
(
δ + |∇ϵu|2ϵ

)
|X2n+1u|β−2

n∑
i=1

λϵi,δ(∇ϵu)(
|∇ϵX

ϵ
iu|2 + |∇ϵX

ϵ
i+nu|2 + |∇ϵX

ϵ
2n+1u|2

)
dx.
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The statement follows by applying Hölder’s inequality ab ≤ ap

p
+ bp

′

p′
of

exponents p = β
β−2

and p′ = β
2

to the right hand-side and representing

ηα = η
(α+2)(β−2)

β η
2(α+2−β)

β

c0

ˆ
Ω

ηα|X2n+1u|β−2
(
δ + |∇ϵu|2ϵ

)
n∑

i=1

λϵi,δ(∇ϵu)
(
|∇ϵX

ϵ
iu|2 + |∇ϵX

ϵ
i+nu|2 + |∇ϵX

ϵ
2n+1u|2

)
dx ≤

2c
β
2
0

τβ
β−2
2

ˆ
Ω

ηα+2−β
(
δ + |∇ϵu|2ϵ

)β
2

n∑
i=1

λϵi,δ(∇ϵu)
(
|∇ϵX

ϵ
iu|2 + |∇ϵX

ϵ
i+nu|2 + |∇ϵX

ϵ
2n+1u|2

)
dx

+τ

ˆ
Ω

ηα+2|X2n+1u|β
n∑

i=1

λϵi,δ(∇ϵu)
(
|∇ϵX

ϵ
iu|2+|∇ϵX

ϵ
i+nu|2+|∇ϵX

ϵ
2n+1u|2

)
dx.

Choosing τ = 1
2

the thesis follows.

Now we are in position to get a uniform (in δ and ϵ) Caccioppoli-type
inequality for ∇ϵu, in which the term containing X2n+1u has disappeared.

Theorem 5.2.5. There exists a constant c = c(n, q, L) > 0, independent of
ϵ and δ, such that, for every weak solution u ∈ W 1,q

ϵ (Ω) to (5.24), for every
α ≥ 0 and β ≥ 2 and for every η ∈ C∞

c (Ω) one has

ˆ
Ω

ηα+2
(
δ + |∇ϵu|2ϵ

)β
2

n∑
i=1

λϵi,δ(∇ϵu)
(
|∇ϵX

ϵ
iu|2 + |∇ϵX

ϵ
i+nu|2 + |∇ϵX

ϵ
2n+1u|2

)
dx ≤

≤ c(β + α + 2)10K

ˆ
Ω

ηα
n∑

i=1

λϵi,δ(∇ϵu)
(
δ + |∇ϵu|2ϵ

)β+2
2 dx,

where K = (∥∇ϵη∥2∞ + ∥ηX2n+1η∥∞) and c = c(n, q, L) > 0.
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In particular, for α = 0 we get

ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2

n∑
i=1

λϵi,δ(∇ϵu)
(
|∇ϵX

ϵ
iu|2 + |∇ϵX

ϵ
i+nu|2 + |∇ϵX

ϵ
2n+1u|2

)
dx ≤

≤ c(β + 2)10K

ˆ
supp(η)

n∑
i=1

λϵi,δ(∇ϵu)
(
δ + |∇ϵu|2ϵ

)β+2
2 dx.

Proof. We apply Lemma 5.2.1 with η = η
α+2
2

1

ˆ
Ω

ηα+2
1

(
δ + |∇ϵu|2ϵ

)β
2

n∑
i=1

λϵi,δ(∇ϵu)
(
|∇ϵX

ϵ
iu|2 + |∇ϵX

ϵ
i+nu|2 + |∇ϵX

ϵ
2n+1u|2

)
dx

≤ c

(
α + 2

2

)2

K

ˆ
Ω

ηα1

n∑
i=1

λϵi,δ(∇ϵu)
(
δ + |∇ϵu|2ϵ

)β+2
2 dx

+ c(β + 2)4
ˆ
Ω

ηα+2
1

(
δ + |∇ϵu|2ϵ

)β
2

n∑
i=1

λϵi,δ(∇ϵu)|X2n+1u|2dx, (5.33)

where K = ∥η1∥2∞ + ∥η1X2n+1η1∥∞. We apply Hölder’s inequality ab ≤
ap

p
+ bp

′

p′
with exponents β+2

β
and β+2

2
to second term, noticing that ηα+2

1 =

η
2(α+β+2)

β+2

1 η
αβ
β+2

1 . Hence, calling

I = c(β + 2)4
ˆ
Ω

ηα+2
1

(
δ + |∇ϵu|2ϵ

)β
2

n∑
i=1

λϵi,δ(∇ϵu)|X2n+1u|2dx
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and using (5.30), we obtain

I ≤ τ

ˆ
Ω

ηα+β+2
1 |X2n+1u|β

n∑
i=1

λϵi,δ(∇ϵu)|X2n+1u|2dx

+
1

τ
2
β

c(β + 2)
4(β+2)

β

ˆ
Ω

ηα1

n∑
i=1

λϵi,δ(∇ϵu)
(
δ + |∇ϵu|2ϵ

)β+2
2 dx ≤

τ

ˆ
Ω

ηα+β+2
1 |X2n+1u|β

n∑
i=1

λϵi,δ(∇ϵu)
(
|∇ϵX

ϵ
iu|2 + |∇ϵX

ϵ
i+nu|2 + |∇ϵX

ϵ
2n+1u|2

)
dx

+
1

τ
2
β

c(α + β + 2)
4(β+2)

β

ˆ
Ω

ηα1

n∑
i=1

λϵi,δ(∇ϵu)
(
δ + |∇ϵu|2ϵ

)β+2
2 dx

(we continue by estimating the first term in the right hand side by using
Corollary 5.2.4 with α1 = α + β ≥ 2)

≤ τc(α + β + 2)β∥∇ϵη1∥β
ˆ
Ω

ηα+2
1

(
δ + |∇ϵu|2ϵ

)β
2

n∑
i=1

λϵi,δ(∇ϵu)
(
|∇ϵX

ϵ
iu|2 + |∇ϵX

ϵ
i+nu|2 + |∇ϵX

ϵ
2n+1u|2

)
dx

+
1

τ
2
β

c(α + β + 2)
4(β+2)

β

ˆ
Ω

ηα1

n∑
i=1

λϵi,δ(∇ϵu)
(
δ + |∇ϵu|2ϵ

)β+2
2 dx.

where c = c(n, q, L) > 0. Plugging this estimate to (5.33) and calling

J =

ˆ
Ω

ηα1

n∑
i=1

λϵi,δ(∇ϵu)
(
δ + |∇ϵu|2ϵ

)β+2
2 dx

we get

(LHS) ≤ cτ(α + β + 2)β∥∇ϵη1∥β∞(LHS)

+

(
1

τ
2
β

c(α + β + 2)
4(β+2)

β + c(α + β + 2)2K

)
J.

Choosing τ = 1/
(
2c(α + β + 2)β∥∇ϵη∥β∞

)
we obtain

(LHS) ≤ c(α + β + 2)2+
4(β+2)

β KJ

and the thesis follows.



150 5. Orthotropic Congested OT in Hn

Theorem 5.2.6 (L∞ estimate for ∇ϵu). Let 2 < q <∞ and u ∈ W 1,q
ϵ (Ω) be

a weak solution of (5.24). Then, for any ball Bϵ(0, r) such that Bϵ(0, 2r) ⊂ Ω

it holds that

∥∇ϵu∥L∞(Bϵ(0,r)) ≤ c

( 
Bϵ(0,2r)

(
δ + |∇ϵu|2ϵ

) q
2 dx

) 1
q

,

where c = c(n, q, L) > 0.

Proof. For any i = 1 . . . , 2n+ 1 let us consider the function

η
(
δ + |Xϵ

iu|2
) q+β

4

and let us compute

∇ϵ

(
η
(
δ + |Xϵ

iu|2
) q+β

4

)
= ∇ϵη

(
δ + |Xϵ

iu|2
) q+β

4

+

(
q + β

2

)
η
(
δ + |Xϵ

iu
2|
) q+β−4

4 Xϵ
iu∇ϵX

ϵ
iu, (5.34)

hence∣∣∣∇ϵ

(
η
(
δ + |Xϵ

iu|2
) q+β

4

)∣∣∣2 ≤ 2|∇ϵη|2
(
δ + |Xϵ

iu|2
) q+β

2

+
1

2
(q + β)2 η2

(
δ + |Xϵ

iu|2
) q+β−2

2 |∇ϵX
ϵ
iu|2. (5.35)

Since (
δ + |Xϵ

iu|2
) q−2

2 ≤ λϵi,δ(∇ϵu) ≤
(
δ + |∇ϵu|2ϵ

) q−2
2 , (5.36)

for any i = 1, . . . , 2n+ 1, then

(5.35) ≤ 2|∇ϵη|2
(
δ + |∇ϵu|2ϵ

) q+β
2

+
1

2
(q + β)2 η2

(
δ + |∇ϵu|2ϵ

)β
2 λϵi,δ(∇ϵu)|∇ϵX

ϵ
iu|2

≤ 2|∇ϵη|2
(
δ + |∇ϵu|2ϵ

) q+β
2

+
1

2
(q + β)2 η2

(
δ + |∇ϵu|2ϵ

)β
2 λϵi,δ(∇ϵu)

(
|∇ϵX

ϵ
iu|2 + |∇ϵX

ϵ
n+iu|2 + |∇ϵX

ϵ
2n+1u|2

)
,
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Hence, integrating and summing up the previous inequalities for all i =
1, . . . , 2n+ 1 we get

2n+1∑
i=1

ˆ
Ω

∣∣∣∇ϵ

(
η
(
δ + |Xϵ

iu|2
) q+β

4

)∣∣∣2 dx ≤ c∥∇ϵη∥2∞
ˆ

supp(η)

(
δ + |∇ϵu|2ϵ

) q+β
2 dx

+ c(q + β)2
ˆ
Ω

η2
(
δ + |∇ϵu|2ϵ

)β
2

n∑
i=1

λϵi,δ(∇ϵu)
(
|∇ϵX

ϵ
iu|2 + |∇ϵX

ϵ
n+iu|2 + |∇ϵX

ϵ
2n+1u|2

)
dx,

where c = c(n, L). Applying Theorem 5.2.5

2n+1∑
i=1

ˆ
Ω

∣∣∣∇ϵ

(
η
(
δ + |Xϵ

iu|2
) q+β

4

)∣∣∣2 dx
≤ cK(β + q)12

ˆ
supp(η)

(
δ + |∇ϵu|2ϵ

) q+β
2 dx, (5.37)

where c = c(n, L, q) and K = ∥∇ϵη∥2∞ + ∥ηX2n+1η∥∞.

Moreover, Theorem 1.1.7 implies that

(
η
(
δ + |∇ϵu|2ϵ

)β+q
4

) 2N
N−2

≤ c (2n+ 1)
N

N−2
(q+β)

2n+1∑
i=1

(
η
(
δ + |Xiu|2

)β+q
4

) 2N
N−2

,

(5.38)
where c = c(N, n).

Fix two concentric balls Bϵ(0, τr) ⊂ Bϵ(0, r), 0 < τ < 1, and consider a
sequence of decreasing radii

rj = τr +
r − τr

2j
↘ τr,

and cut-off functions ηj ∈ C∞(Bϵ(0, rj)) such that ηj ≡ 1 on Bϵ(0, rj+1) and
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∥∇ϵη∥∞ ≤ c
rj−rj+1

. Using (5.38), the Sobolev’s inequality and (5.37), we get

( 
Bϵ(0,rj)

(
η
(
δ + |∇ϵu|2ϵ

)β+q
4

) 2N
N−2

dx

)N−2
N

≤ c′(2n+ 1)q+β

2n+1∑
i=1

( 
Bϵ(0,rj)

(
η
(
δ + |Xϵ

iu|2
)β+q

4

) 2N
N−2

dx

)N−2
N

≤ c′(2n+ 1)q+β

2n+1∑
i=1

 
Bϵ(0,rj)

∣∣∣∇ϵ

(
η
(
δ + |Xϵ

iu|2
) q+β

4

)∣∣∣2 dx
≤ c̄K(β + q)12(2n+ 1)q+β

 
Bϵ(0,rj)

(
δ + |∇ϵu|2ϵ

) q+β
2 dx,

where c = c(q, n). If we denote by k = N
N−2

, by using the properties of the
cut-off functions ηi and (5.36), we get( 

Bϵ(0,rj+1)

(
δ + |∇ϵu|2ϵ

)β+q
2

k
dx

) 1
k

≤ c(β + q)12(2n+ 1)q+β

(1− τ)2

 
Bϵ(0,rj)

(
δ + |∇ϵu|2ϵ

)β+q
2 dx. (5.39)

Let us choose a sequence of increasing exponents

βj = (q + 2)kj − q ≥ 2;

by using these exponents in (5.39) and by raising both sides to the power
1

(q+2)kj
= 1

βj+q
, we get

( 
Bϵ(0,rj+1)

(
δ + |∇ϵu|2ϵ

) (q+2)kj+1

2 dx

) 1

(q+2)kj+1

≤
(

c

(1− τ)2

) 1

(q+2)kj

((q + 2)kj)
12

(q+2)kj (2n+ 1)( 
Bϵ(0,rj)

(
δ + |∇ϵu|2ϵ

) (q+2)kj

2 dx

) 1

(q+2)kj

, (5.40)

where we can change the constant c by including 2n + 1 in it. We will
denote again by c = c(q, n) this new constant. Moreover, if we denote by
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αj = (q + 2)kj and we iterate (5.40), we get( 
Bϵ(0,rm+1)

(
δ + |∇ϵu|2ϵ

)αm+1
2 dx

) 1
αm+1

≤
(

c

(1− τ)2

)∑m
j=0

1
αj

m∏
j=0

α
12
αj

j

( 
Bϵ(0,r)

(
δ + |∇ϵu|2ϵ

) q+2
2 dx

) 1
q+2

≤
(

c

(1− τ)2

)∑∞
j=0

1
αj

∞∏
j=0

α
12
αj

j

( 
Bϵ(0,r)

(
δ + |∇ϵu|2ϵ

) q+2
2 dx

) 1
q+2

.

Now
∞∑
j=0

1

αj

=
1

q + 2

∞∑
j=0

1

kj
=

k

(k − 2)(q + 2)
=

N

2(q + 2)
,

and

log(
∞∏
j=0

α
12
αj

j ) =
∞∑
j=0

12

αj

logαj = 12
log(q + 2)

q + 2

k

k − 1
+

12

q + 2
log k

∞∑
j=0

j

kj
,

that is a constant depending on q and N . We still keep the notation c =

c(N, n, q). Hence( 
Bϵ(0,rm+1)

(
δ + |∇ϵu|2ϵ

)αm+1
2 dx

) 1
αm+1

≤

(
c

(1− τ)
N

q+2

)( 
Bϵ(0,r)

(
δ + |∇ϵu|2ϵ

) q+2
2 dx

) 1
q+2

.

Now since αm → ∞ when m→ ∞, and the averages on the left hand side of
the previous inequality tend to the essential supremum of the integrand we
get

sup
Bϵ(0,τr)

(
δ + |∇ϵu|2ϵ

) 1
2 ≤

(
c

(1− τ)
N

q+2

)( 
Bϵ(0,r)

(
δ + |∇ϵu|2ϵ

) q+2
2 dx

) 1
q+2

,

where c = c(N, n, q) and this holds for all Bϵ(0, r) ⊂ Ω and for all 0 < δ < 1.
Another iteration argument, see for instance [80, Theorem 5.1] or [63,

Lemma 3.38] implies that

sup
Bϵ(0,τr)

(
δ + |∇ϵu|2ϵ

) 1
2 ≤

(
c′

(1− τ)
N
s

)( 
Bϵ(0,r)

(
δ + |∇ϵu|2ϵ

) s
2 dx

) 1
s

, (5.41)
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for any s > 0, where c′ = c′(n, L, s, q) > 0. The thesis follows by choosing
s = q.

Let us prove the following interpolation inequality that will be useful
later.

Lemma 5.2.7. There exists a constant c = c(n, q, L) > 0, independent of
ϵ and δ, such that for every u ∈ C∞

c (Ω), for every α, β ≥ 0 and for every
η ∈ C∞

c (Ω), one hasˆ
Ω

ηα+2
(
δ + |∇ϵu|2ϵ

) q+β+2
2 dx

≤ c(α + 2)2∥u∥2∞
ˆ
ηα
(
η2 + |∇ϵη|2ϵ

) (
δ + |∇ϵu|2ϵ

) q+β
2 dx

+ c(β + q + 1)2∥u∥2∞
ˆ
Ω

ηα+2
(
δ + |∇ϵu|2ϵ

)β
2

n∑
i=1

λϵi,δ(∇ϵu)
(
|∇ϵX

ϵ
iu|2 + |∇ϵX

ϵ
n+iu|2 + |∇ϵX

ϵ
2n+1u|2

)
dx.

Proof. Let i ∈ {1, . . . , 2n+ 1}, we write(
δ + |Xϵ

iu|2ϵ
) q+β+2

2 =
(
δ + |Xϵ

iu|2ϵ
) q+β

2
(
δ + |Xϵ

iu|2ϵ
)
,

hence, calling I =
´
Ω
ηα+2 (δ + |Xϵ

iu|2ϵ)
q+β+2

2 dx,

I = δ

ˆ
Ω

ηα+2
(
δ + |Xϵ

iu|2ϵ
) q+β

2 dx+

ˆ
Ω

ηα+2
(
δ + |Xϵ

iu|2ϵ
) q+β

2 Xϵ
iuX

ϵ
iudx

Now we integrate by parts the second term and we obtain

I = δ

ˆ
Ω

ηα+2
(
δ + |Xϵ

iu|2ϵ
) q+β

2 dx−
ˆ
Ω

Xϵ
i

(
ηα+2

(
δ + |Xϵ

iu|2ϵ
) q+β

2 Xϵ
iu
)
udx

= δ

ˆ
Ω

ηα+2
(
δ + |Xϵ

iu|2ϵ
) q+β

2 dx−(α+2)

ˆ
Ω

ηα+1Xϵ
i η
(
δ + |Xϵ

iu|2ϵ
) q+β

2 uXϵ
iudx

− (q + β)

ˆ
Ω

ηα+2u
(
δ + |Xϵ

iu|2ϵ
) q+β−2

2 (Xϵ
iu)

2Xϵ
iX

ϵ
iudx

−
ˆ
Ω

ηα+2u
(
δ + |Xϵ

iu|2ϵ
) q+β

2 Xϵ
iX

ϵ
iudx

≤
ˆ
Ω

ηα+2
(
δ + |Xϵ

iu|2ϵ
) q+β

2 dx+(α+2)∥u∥∞
ˆ
Ω

ηα+1|∇ϵη|ϵ
(
δ + |Xϵ

iu|2ϵ
) q+β+1

2 dx

+ (q + β + 1)∥u∥∞
ˆ
Ω

ηα+2
(
δ + |Xϵ

iu|2ϵ
) q+β

2 |Xϵ
iX

ϵ
iu|dx =: I i1 + I i2 + I i3
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The integral I1 can be trivially estimated as

I i1 ≤
ˆ
Ω

ηα+2
(
δ + |∇ϵu|2ϵ

) q+β
2 dx,

while for I i2 and I i3 we use Young’s inequality. In particular

I i2 ≤ (α + 2)∥u∥∞
ˆ
Ω

ηα+1|∇ϵη|ϵ
(
δ + |∇ϵu|2ϵ

) q+β
4
(
δ + |Xϵ

iu|2ϵ
) q+β+2

4 dx

≤ τ

ˆ
Ω

ηα+2
(
δ + |Xϵ

iu|2ϵ
) q+β+2

2 dx

+
1

τ
(α + 2)2∥u∥2∞

ˆ
ηα|∇ϵη|2ϵ

(
δ + |∇ϵu|2ϵ

) q+β
2 dx.

As for I3, if i ∈ {1, . . . , n}

I i3 ≤ τ

ˆ
Ω

ηα+2
(
δ + |∇ϵu|2ϵ

) q+β+2
2 dx

+
(β + q + 1)2∥u∥2∞

τ

ˆ
Ω

ηα+2
(
δ + |∇ϵu|2ϵ

)β
2 λϵi,δ(∇ϵu)|∇ϵX

ϵ
iu|2dx

≤ τ

ˆ
Ω

ηα+2
(
δ + |∇ϵu|2ϵ

) q+β+2
2 dx+

(β + q + 1)2∥u∥2∞
τˆ

Ω

ηα+2
(
δ + |∇ϵu|2ϵ

)β
2

n∑
j=1

λϵj,δ(∇ϵu)
(
|∇ϵX

ϵ
ju|2 + |∇ϵX

ϵ
j+nu|2 + |∇ϵX

ϵ
2n+1u|2

)
dx;

In the end we get that for any i ∈ {1, . . . , 2n+ 1}ˆ
Ω

ηα+2
(
δ + |Xϵ

iu|2ϵ
) q+β+2

2 dx

≤ (α + 2)2∥u∥2∞
ˆ
ηα
(
η2 + |∇ϵη|2ϵ

) (
δ + |∇ϵu|2ϵ

) q+β
2 dx

+ (β + q + 1)2∥u∥2∞
ˆ
Ω

ηα+2
(
δ + |∇ϵu|2ϵ

)β
2

n∑
j=1

λϵj,δ(∇ϵu)
(
|∇ϵX

ϵ
ju|2 + |∇ϵX

ϵ
n+ju|2 + |∇ϵX

ϵ
2n+1u|2

)
dx.

Using the fact that
ˆ
Ω

ηα+2
(
δ + |∇ϵu|2ϵ

) q+β+2
2 dx ≤ c(q, n)

2n+1∑
i=1

ˆ
Ω

ηα+2
(
δ + |Xϵ

iu|2ϵ
) q+β+2

2 dx,

we get the thesis.
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Corollary 5.2.8. There exists a constant c = c(n, q, L) > 0, independent of
ϵ and δ, such that for every weak solution u ∈ W 1,q

ϵ (Ω) to (5.24), for every
β ≥ 2 and for every η ∈ C∞

c (Ω) one has
ˆ
Ω

ηq+β+2
(
δ + |∇ϵu|2ϵ

) q+β+2
2 dx

≤ c∥u∥2∞(2β + q + 2)12K

ˆ
Ω

ηq+β
(
δ + |∇ϵu|2ϵ

) q+β
2 dx,

where K = (∥∇ϵη∥2∞ + ∥ηX2n+1η∥∞ + 1).

Proof. The thesis follows by Lemma 5.2.7 and Theorem 5.2.5 with α = q+β.
Indeed, Lemma 5.2.7 implies thatˆ

Ω

ηα+2
(
δ + |∇ϵu|2ϵ

) q+β+2
2 dx

≤ c(α + 2)2∥u∥2∞
ˆ
ηα
(
η2 + |∇ϵη|2ϵ

) (
δ + |∇ϵu|2ϵ

) q+β
2 dx

+ c(α + 1)2∥u∥2∞
ˆ
Ω

ηα+2
(
δ + |∇ϵu|2ϵ

)β
2

n∑
i=1

λϵi,δ(∇ϵu)
(
|∇ϵX

ϵ
iu|2 + |∇ϵX

ϵ
n+iu|2 + |∇ϵX

ϵ
2n+1u|2

)
dx

(we continue by estimating the second term in the right hand-side by using
Theorem 5.2.5)

≤ c(α + 2)2∥u∥2∞K
ˆ
ηα
(
δ + |∇ϵu|2ϵ

) q+β
2 dx

+ c(α + 1)2∥u∥2∞(β + α + 2)10K

ˆ
ηα
(
δ + |∇ϵu|2ϵ

) q+β
2 dx

≤ c∥u∥2∞(β + α + 2)12K

ˆ
ηα
(
δ + |∇ϵu|2ϵ

) q+β
2 dx,

where c = c(n, q, L).

Corollary 5.2.9. There exists a constant c = c(n, q, L) > 0, independent of
ϵ and δ, such that for every weak solution u ∈ W 1,q

ϵ (Ω) to (5.24), for every
β ≥ 2 and for every η ∈ C∞

c (Ω) one hasˆ
Ω

ηq+β+2
(
δ + |∇ϵu|2ϵ

) q+β+2
2 dx ≤ c∥u∥q+β+2

∞ (2β + q + 2)6(q+β+2)K
q+β+2

2

where K = (∥∇ϵη∥2∞ + ∥ηX2n+1η∥∞ + 1).
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5.2.2 Lipschitz regularity for solutions

We first state the weak comparison principle for weak solutions to (5.18).
This will be useful in the proof of the L∞ estimate for the gradient of solu-
tions.

Lemma 5.2.10 (Weak comparison principle). Let u, v be two weak solutions
to (5.18) in a sub-Riemannian ball BSR. If u ≤ v on the boundary ∂BSR,
then it holds that u ≤ v in BSR.

Proof. Since u, v are weak solutions to (5.18) in BSR, it holds that
ˆ
BSR

⟨DG∗(∇Hu),∇Hψ⟩dx = 0, ∀ψ ∈ HW 1,p
0 (BSR),

and ˆ
BSR

⟨DG∗(∇Hv),∇Hψ⟩dx = 0, ∀ψ ∈ HW 1,p
0 (BSR).

By subtracting the previous equalities and by choosing ψ = (u − v)+ =

max{u− v, 0} ∈ HW 1,p
0 (BSR)

0 =

ˆ
BSR∩{u>v}

⟨DG∗(∇Hu)−DG∗(∇Hv),∇Hu−∇Hv⟩dx

=

ˆ
BSR∩{u>v}

⟨
ˆ 1

0

d

dt
(DG∗ (t∇Hu+ (1− t)∇Hv)) dt,∇Hu−∇Hv⟩dx

=

ˆ
BSR∩{u>v}

⟨
ˆ 1

0

D2G∗ (t∇Hu+ (1− t)∇Hv) (∇Hu−∇Hv) dt,∇Hu−∇Hv⟩dx

=

ˆ
BSR∩{u>v}

⟨D2G∗ (t̄∇Hu+ (1− t̄)∇Hv) (∇Hu−∇Hv) ,∇Hu−∇Hv⟩dx

≥
ˆ
BSR∩{u>v}

n∑
i=1

λi(t̄∇Hu+(1−t̄)∇Hv)
(
(Xiu−Xiv)

2 + (Xn+iu−Xn+iv)
2) dx

Hence, either L2n+1 (BSR ∩ {u > v}) = 0 orXiu = Xiv a.e. in BSR∩{u > v},
for every i ∈ {1, . . . , 2n}. If the latter equality holds true, then u − v is
constant a.e. in BSR: since (u − v)+ ∈ HW 1,p

0 (BSR), then u − v = 0 a.e.
in BSR. Otherwise, L2n+1 (BSR ∩ {u > v}) = 0, which precisely means that
u ≤ v a.e. in BSR.
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Theorem 5.2.11 (L∞ estimate for the gradient of solutions). Let 2 ≤ q <

∞ and u ∈ HW 1,q(Ω) be a weak solution of (5.18), then ∇Hu ∈ L∞
loc(Ω).

Moreover, for any ball BSR(0, 2r) ⊂ Ω it holds that

∥∇Hu∥L∞(BSR(0,r)) ≤ c

( 
BSR(0,2r)

|∇Hu|qHdx
) 1

q

,

where c = c(n, q, L) > 0.

Proof. Let us first note that from [42, Theorem 3.4] we known that u ∈
L∞
loc(Ω).

Let BSR(0, r0) ⊂ Ω, such that BSR(0, 2r0) ⊂ Ω and let uϵ be the unique
weak solution to

∑2n+1
i=1 Xϵ

i (A
ϵ
i,δ(∇ϵu

ϵ)) = 0 in BSR(0, r0),

uϵ = u in ∂BSR(0, r0).
(5.42)

Then, uϵ is C∞ on the sub-Riemannian ball BSR(0, r0). From the weak maxi-
mum principle it follows that (uϵ)ϵ>0 is uniformly bounded in ϵ in L∞(BSR(0, r0)).
By Corollary 5.2.9 the sequence (∇ϵu

ϵ)ϵ>0 is bounded in Lq
loc(Ω), uniformly

in ϵ and δ. Moreover, Theorem 5.2.6 implies that for any ball Bϵ(0, 2r) ⊂
BSR(0, r0) it holds that

∥∇ϵu
ϵ∥L∞(Bϵ(0,r)) ≤ c

( 
Bϵ(0,2r)

(
δ + |∇ϵu

ϵ|2ϵ
) q

2 dx

) 1
q

, (5.43)

where c = c(n, q, L) > 0. Hence, from the previous remark there exists
M1 > 0 independent of ϵ such that

∥∇ϵu
ϵ∥L∞(Bϵ(0,r)) ≤M1

Ascoli-Arzela’s Theorem implies that uϵ → u0 uniformly on compact subsets
of BSR(0, r0) to a function u0. Then, up to subsequence, ∇ϵu

ϵ ∗
⇀ ∇Hu0 ∈

L∞(BSR(0, τr)), for any BSR(0, τr) ⊆ Bϵ(0, r), for every ϵ. Moreover The-
orem 5.2.5, Corollary 5.2.8 and Hölder’s inequality implies that there exists
M2 > 0, independent of ϵ, such that

∥∇ϵ

(
|Xϵ

iu
ϵ|q+β

)
∥L2(Bϵ(0,r)) ≤M1, ∀β ≥ 2.
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It follows that |Xϵ
iu

ϵ|q+β converges in Lr(BSR(0, τr)), up to subsequences,
for any r < 2∗. Hence, Xϵ

iu
ϵ converges in Ls(BSR(0, τr)) for any s ∈ (1,∞).

It follows that Xϵ
iu

ϵ admits a subsequence converging pointwise a.e., hence
∇ϵu→ ∇Hu0 a.e. and we can pass to the limit in

∥∇ϵu
ϵ∥L∞(BSR(0,τr)) ≤ c

( 
BSR(0,2τr)

(
δ + |∇ϵu

ϵ|2ϵ
) q

2 dx

) 1
q

,

both in ϵ and δ, and get

∥∇Hu0∥L∞(BSR(0,τr)) ≤ c

( 
BSR(0,2τr)

|∇Hu0|qdx
) 1

q

,

and using the fact that(
Aϵ

1,δ(ξ
ϵ), . . . , Aϵ

2n+1,δ(ξ
ϵ)
)

−→
ϵ,δ→0+

(D1G∗(ξ1, . . . , ξ2n), . . . , D2nG∗(ξ1, . . . , ξ2n), 0) ,

we can take the limit in the weak formulation of (5.42) and we get that u0
is a weak solution to (5.18). The comparison principle implies that u0 = u

in BSR(0, r).

Corollary 5.2.12 (Lipschitzianity). Let 2 ≤ q < ∞ and u ∈ HW 1,q(Ω)

be a weak solution of (5.18), then u is locally Lipschitz continuous in Ω.
Moreover, for any ball BSR(0, 2r) ⊂ Ω it holds that

|u(x)− u(y)| ≤ c

( 
BSR(0,2r)

|∇Hu|qHdz
) 1

q

dSR(x, y),

where c = c(n, q, L) > 0.
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