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Abstract

Introduction

Mechanical thrombectomy is well-established as the gold standard treatment for acute
ischemic stroke secondary to a large vessel occlusions. With expanding inclusion cri-
teria and treatment success seemingly reaching a ceiling effect, it becomes crucial to
explore innovative solutions for cases where standard treatment falls short. Vascular
tortuosity may preclude fast access to the occlusion site, causing procedural delays and
occasionally leading to treatment failure. A rapid and automated analysis of the vascu-
lar anatomy prior to arterial puncture could inform potential risks of treatment delays
or failure, providing decision support for practitioners to modify treatment approach by
choosing an alternative access to the default femoral puncture. However, understanding
of which specific anatomical markers are strongly associated with treatment difficulties
remains unclear. Moreover, the absence of an automated vascular characterization anal-

ysis toolkit hinders practical implementation and large-scale studies.

Objectives

The primary goal of this thesis is to develop an automated tool for vascular tortuosity
analysis based on pre-intervention imaging in the context of acute ischemic stroke. Sec-
ondary objectives are using this tool to explore the associations of anatomical markers
with procedural complications, and investigating predictive models for difficult access

to the occlusion site in mechanical thrombectomy.

Methods

The ARTERIAL framework was developed for automatic vascular tortuosity analysis

based on CT angiography. A segmentation 3D U-Net and a node classification graph
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U-Net were trained and validated for vascular segmentation and vessel labelling, respec-
tively, serving as the primary engines of the framework. Ground truths for segmenta-
tion and vessel labelling were manually generated by three experts. A feature extraction
module was designed on top of segmentation and vessel labelling to extract anatomi-
cally meaningful features from CT angiography without human intervention. A total of
33 vascular features of the aortic, and supra-aortic regions were automatically extracted
with ARTERIAL. Measurements were validated against two human observers. The
intra-class correlation coefficient, Cohen’s kappa and Bland-Altman plots were used to
evaluate the agreement between ARTERIAL and human observers.

A random forest model with extreme gradient boosting based on vascular features
extracted using ARTERIAL was implemented for difficult transfemoral access (DTFA)
prediction in endovascular treatment. A dataset comprising patients who received en-
dovascular treatment from transfemoral access in Hospital Vall d’Hebron between 2017
and 2022 due to a large vessel occlusion in anterior circulation was used. A recursive
feature elimination algorithm identified markers strongly associated with DTFA. The
model was validated using Monte Carlo cross-validation with 100 folds, and the area
under the receiver operating characteristic curve (AUROC) was used to assess discrim-
ination performance. The model was also directly compared to three expert raters on a
subset of cases, who independently evaluated DTFA using CT angiography and a 3D

vessel reconstruction automatically generated using ARTERIAL.

Results

A dataset of 566 CT angiographies was used to train and validate ARTERIAL. Within
the sample, 30 cases were held out for testing. State-of-the-art results were obtained
for segmentation (Dice [mean =+ std]: 0.93 4 0.02) and for vessel labelling (case-wise
accuracy: 0.95 4 0.06). Good or excellent agreement between ARTERIAL and experts
was observed for the majority of features (21/33, 63.6%), and only 3 showed poor re-

liability (9.1%). Bland-Altman plots showed comparable error distributions between
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humans and ARTERIAL, with a slight increase in the number of outliers for the latter.
Mean case processing time was below 5 min.

For DTFA prediction, 513 patients were included in the study. Patients with delayed
(43, 8.4%) or impossible (16, 3.1%) transfemoral access amounted up to 11.5% of the
dataset (59/513). A total of 6 features descriptive of aortic and cervical tortuosity were
included in the final model following feature selection. The predictive model for DTFA
achieved a validation AUROC of 0.76 (95% CI 0.75-0.76). In a subset of 116 cases,
superior performance compared to human raters was displayed by the model, using
either CT angiography or 3D vascular reconstruction [F1-score (95% CI) CTA: 0.43
(0.37t0 0.50); 3D segmentation: 0.50 (0.46 to 0.54); and model: 0.70 (0.65t0 0.75)]. At
the operating point, particularly high sensitivity was achieved for detecting impossible

transfemoral access (0.90, 95% CI 0.81-0.94).

Conclusions

A robust and automatic feature extraction framework based on deep learning models for
vascular segmentation on CT angiography and vessel labelling was developed and vali-
dated, showing high agreement with human observers on geometrical measurements in
aortic and supra-aortic vessels. A model-based analysis identified a set of 6 anatomical
descriptors associated with DTFA. State-of-the-art results for DTFA prediction were
achieved by a machine learning model, based on automatically computed vascular tor-
tuosity markers. Compared to human experts, the model significantly improved pre-
procedural prediction of DTFA in a retrospective setting.

These results could enhance image-based stroke endovascular treatment planning by
providing practitioners with valuable pre-intervention decision support derived from
advanced anatomical analysis in the acute setting. Effective analysis could result in
reduced intervention times in selected patients, potentially leading to improved clinical

outcomes.
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Resum

Introduccié

La trombectomia mecanica esta establerta com el tractament gold standard per a I’ictus
isquémic agut secundari a oclusions de grans vas. Amb I’expansi6 dels criteris d’inclusio
1 un efecte sostre en la millora de 1’éxit d’intervencio, explorar solucions innovadores
per a casos on el tractament estandard falla es converteix en crucial. La tortuositat vas-
cular pot impedir un accés rapid al vas ocluit, causant retards en els procediments i
fins 1 tot fracas del tractament de manera ocasional. Una analisi rapida i automatitzada
de I’anatomia vascular abans de la puncio arterial podria informar sobre els riscs po-
tencials de retards o fracas del tractament, proporcionant suport de decisio als profes-
sionals medics, que podrien modificar el tractament escollint un accés alternatiu a la
puncio femoral que s’usa per defecte. No obstant, no hi ha un conscens sobre quins
marcadors anatomics especifics estan associats amb dificultats en el tractament. A més,
I’abseéncia d’eines d’analisi de caracteritzaci6 vascular automatitzat dificulta la imple-

mentacio practica i els estudis a gran escala.

Objectius

El principal objectiu d’aquesta tesi €s desenvolupar una eina automatitzada per a 1I’analisi
de la tortuositat vascular basada en imatges pre-intervencio en el context de I’ictus
isquémic agut. Els objectius secundaris son utilitzar aquesta eina per explorar les asso-
ciacions de marcadors anatomics amb complicacions procedimentals i investigar mod-

els predictius per a I’accés dificil al lloc d’oclusid en la trombectomia mecanica.
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Meétodes

Es va desenvolupar ARTERIAL, un marc per a I’analisi automatica de la tortuositat vas-
cular basada en angiografia per TC. Es van entrenar i validar models de segmentacio
(3D U-Net) i de classificacid de nodes (graph U-Net) per a la segmentacio vascular 1
I’etiquetatge de vasos, respectivament, actuant com a motors principals d’ARTERIAL.
Exemples per a la segmentacid i I’etiquetatge de vasos van ser generats manualment
per tres experts. Es va dissenyar un modul d’extracci6 de caracteristiques sobre la seg-
mentacio i I’etiquetatge de vasos per extreure atributs anatomicament significatius de
I’angiografia per TC sense intervenci6 humana. Es van extreure automaticament un
total de 33 caracteristiques vasculars de les regions aortica i supra-aortica amb AR-
TERIAL. Les mesures van ser validades comparant-les amb les de dos observadors
humans. El coeficient de correlaci6 intraclasse, la kappa de Cohen 1 els diagrames de
Bland-Altman es van utilitzar per avaluar el grau d’acord entre ARTERIAL i els obser-
vadors humans.

Es va implementar un model de random forest amb extreme gradient boosting basat
en caracteristiques vasculars extretes utilitzant ARTERIAL per a la prediccié d’accés
transfemoral dificil (DTFA) en tractament endovascular. Es va utilitzar un conjunt de
dades que compren pacients que van rebre tractament endovascular amb accés trans-
femoral a 1’Hospital Vall d’Hebron entre 2017 1 2022 a causa d’una oclusié de gran
vas en la circulacié anterior. Marcadors associats amb DTFA vas ser identificats mit-
jancant un algoritme d’eliminacio recursiva. El model va ser validat utilitzant validacio
creuada de Monte Carlo amb 100 repeticions, i1 I’area sota la corba ROC (AUROC) es
va utilitzar per avaluar-ne el rendiment. El model també va ser comparat amb tres aval-
uadors experts en un subconjunt dels casos, qui van avaluar independentment el risc de
DTFA utilitzant angiografia per TC, a més d’una reconstrucci6 vascular 3D generada

automaticament utilitzant ARTERIAL de manera independent.
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Resultats

Es van utilitzar 566 angiografies per TC per entrenar i validar ARTERIAL. Dins de la
mostra, 30 casos van ser reservats per a proves. Es van obtenir resultats d’avantguarda
per a la segmentacid (Dice [mitjana + std]: 0.93 £ 0.02) i per a I’etiquetatge de vasos
(precisio [accuracy] per cas: 0.95 £ 0.06). Es va observar un bon o excel-lent acord
entre ARTERIAL i els experts per a la majoria de les caracteristiques (21/33, 63.6%), 1
només 3 van mostrar una fiabilitat pobre (9.1%). Els diagrames de Bland-Altman van
mostrar distribucions d’error comparables entre humans i ARTERIAL, amb un lleuger
increment en el nombre de valors fora de la distribucid (outliers) per al darrer. El temps
mitja de processament per cas va ser inferior a 5 minuts.

Per a ’estudi de prediccié de DTFA, es van incloure un total de 513 pacients. Els
pacients amb accés transfemoral retardat (43, 8.4%) o impossible (16, 3.1%) suposaven
el 11.5% del conjunt de dades (59/513). Un total de 6 caracteristiques descriptives de
la tortuositat aortica i cervical van ser incloses en el model final després del procés de
seleccid de caracteristiques. El model predictiu per DTFA va aconseguir una AUROC
de validacio de 0.76 (CI del 95% 0.75-0.76). En un subconjunt de 116 casos, el model
va mostrar un rendiment superior comparat amb els avaluadors humans, utilitzant tant
I’angiografia per TC com la reconstruccié vascular 3D [F1-score (CI del 95%) CTA:
0.43 (0.37 a 0.50); segmentacio 3D: 0.50 (0.46 a 0.54); i model: 0.70 (0.65 a 0.75)].
En el punt d’operacid6, es va aconseguir una sensibilitat particularment alta per detectar

accés transfemoral impossible (0.90, CI del 95% 0.81-0.94).

Conclusions

Es va desenvolupar i validar un processat d’extraccié de caracteristiques robust i au-
tomatic basat en models de deep learning per a la segmentacio vascular en angiografia
per TC i I’etiquetatge de vasos, mostrant un alt acord amb observadors humans en
mesures geometriques en vasos aortics 1 supra-aortics. Es van identificar un conjunt de

6 descriptors anatomics associats amb DTFA. Es van aconseguir resultats d’avantguarda
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per a la prediccié de DTFA per un model de machine learning, basat en marcadors de
tortuositat vascular calculats automaticament. Comparat amb experts humans, el model
va millorar significativament la prediccid pre-intervencié de DTFA en un entorn retro-
spectiu.

Aquests resultats podrien millorar la planificacié del tractament endovascular basat
en imatges per a l’ictus, proporcionant als professionals un suport de decisi6 pre-intervencio
valués derivat de I’analisi anatomica avancgada en la fase aguda. Una analisi efectiva
podria resultar en temps d’intervencié reduits en pacients seleccionats, potencialment

resultant en millor estat clinic dels afectats.
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Introduction



1.1 Stroke: definition and subtypes

Stroke is a family of neurological diseases caused by a focal lesion in the brain derived
from a vascular disorder. Prolonged lesions can result in brain tissue necrosis caus-
ing neurological symptoms, potentially leading to disability or death!. It is typically
characterized by a sudden onset of symptoms and a fast progression of the neurological
affectation. It is estimated that 1 in every 4 people will experience a stroke at some
point in their lives?.

Depending on the nature of the underlying vascular injury, stroke can be broadly
divided into two main subtypes. The first subtype is ischemic stroke. In ischemic stroke,
the narrowing or occlusion of an artery interrupts normal blood irrigation to a region in
the brain, causing focal ischemia'. The deprivation of blood to the cerebral tissue causes
cell death within minutes, which prevents normal activity of the central nervous system
and originates neurological symptoms.

The second subtype is hemorrhagic stroke. A hemorrhagic stroke is caused by the
rupture of leakage of a blood vessel creating a hematoma in or around the brain. These
are typically presented as intracranial hemorrhages (ICHs), when the hematoma is formed
inside the brain, or subarachnoid hemorrhages (SAHs) when the bleeding occurs be-
tween the brain and its surrounding membranes. ICHs account for 29% of all global
stroke cases in terms of incidence, while SAH is less frequent (6%). Hemorrhagic
strokes is less common in high-income countries, representing an 18% of the total stroke
incidence for ICH and 8% in the case of SAH?. Hemorrhagic strokes are associated to

higher morbidity and mortality than ischemic stroke.

1.2 Ischemic stroke

As defined above, ischemic stroke results from a focal ischemia in the brain originated
from an underlying vascular disorder, typically a large or medium vessel occlusion

(LVO/MeVO0), small vessel occlusions, a stenosis® or an artery dissection®. Cell necro-
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sis progresses quickly in the region close to the vascular lesion, and progressively ex-
pands to the surrounding brain tissue primarily irrigated by the affected vascular branch.
This creates two differentiated regions that are either irreversibly damaged by the is-
chemia (the infarct core) or at risk of permanent damage (penumbra) if left untreated”.
The progression of penumbral tissue to core varies from patient to patient and is highly
dependent on the leptomeningeal collateral flow®.

Ischemic stroke is the most prevalent type of stroke. Globally, it accounts for ap-
proximately 65% of all total registered strokes and 50% of all deaths’. The absolute
number of ischemic stroke-related deaths is projected to increase by 50% by 2030%. In
the European Union and the United States, the incidence is higher at 78% and 87% of

all strokes, respectively 1.

1.2.1 Etiologies

Ischemic stroke can be caused by several mechanisms depending on the underlying
vascular disorder. The Trial of Org 10172 in Acute Stroke Treatment (TOAST) crite-
ria is widely used to categorize the stroke etiology in 5 different classes'!: large-artery
atherosclerosis (LAA), cardioembolic (CE), small vessel disease (SVD), other deter-
mined cause and undetermined or cryptogenic stroke.

LAA or macroangiopathy is defined as the presence of large-artery stenosis caus-
ing a lumen reduction larger than 50% leading to significant hemodynamic changes'2.
Atherosclerosis is a buildup of atheromatous plaques made up of fats, cholesterol, fibrin
and other substances in the arterial walls, and can be systemic or local. It is estimated as
the underlying cause in approximately 15-25% of all acute ischemic strokes (AISs)'%!3,
and its prevalence greatly varies depending on race and ethnicity, being less common in
Caucasians than in Asians, Blacks or Hispanics'*. LAA causing AIS can be presented
in several mechanisms, including artery-artery embolism, hypoperfusion derived from
severe stenosis or branch atheromatous disease '°.

Ischemic strokes from CE sources account for approximately 20-30% of all AISs'®!”

26



and is increasingly more prevalent due to a global age-related rise of atrial fibrillation
(AF)'8. In CE ischemic stroke, a blood clot or debris originated due to a cardiac disor-
der is released into brain circulation eventually occluding an arterial branch. There are
numerous high-risk CE causes, including AF (most common), systolic heart failure, re-
cent myocardial infarction, patent foramen ovale, aortic arch (AA) atheroma, prosthetic
heart valve or endocarditis'”. The diagnostic workup consists on studying the pres-
ence of any of the potential underlying pathologies, mainly through ultrasound cardiac
imaging and ECG monitoring .

SVD or microangiopathy is the underlying cause of about 20% of all AIS'®?° and
manifests in the form of lacunar stroke. Most common causes for SVD are lipohyali-
nosis and fibrohyalinosis of small perforating arteries?’.

Ischemic strokes from other known, less frequent etiologies such as artery dissection,
vasculitis, genetic microangiopathies and other conditions account for approximately
5% of all AIS. The remaining group is formed by AIS caused by either unknown (cryp-

togenic) or multiple plausible etiologies, and represents about 30% of all AIS'¢.

1.3 Acute ischemic stroke diagnosis

When a patient is suspected to be suffering from a stroke, hospitalization is carried out by
the emergency medical services (EMS) in coordination with the medical centers. Upon
admission, stroke diagnosis begins with a clinical evaluation by a neurologist, which
can be conducted via a telemedicine solution in absence of an in-house specialist’'. The
National Institutes of Health Stroke Scale (NIHSS) is recommended to rapidly evaluate
stroke severity??. Pre-hospitalary stroke severity scales have been proposed to evaluate
the likelihood of LVO as the underlying cause of the stroke??, but neuroimaging is
necessary to understand the stroke subtype with certainty and make accurate decisions

towards treatment.
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1.3.1 Imaging in acute ischemic stroke diagnosis

Although advanced imaging is needed, the exact neuroimaging protocol can vary from
center to center depending on availability of resources, time duration and preferences.
The recommended protocols are designed to answer two fundamental questions: 1) can
we rule out or confirm hemorrhagic stroke?, and 2) is an arterial occlusion responsi-
ble for the ischemic attack??*. Additionally, advanced perfusion imaging can provide
further information on the degree of infarct progression in AIS.

Computed tomography (CT) or magnetic resonance imaging (MRI) are the two rec-
ommended imaging technologies employed to non-invasively diagnose AIS. Despite
the radiation dose received by the patient, CT is the most widely used among the two
for a number of reasons. Most importantly, CT is time- and cost-wise more efficient,
it is widely available even in developing regions and primary care hospitals, does not
have as many contraindications, is not as prone to motion artifacts as MRI and, although
MRI can be more sensitive for the detection of ischemic lesions?’, the use of CT alone
is non-inferior to MRI regarding patient prognosis®.

Neuroimaging pipelines typically include a non-contrast CT (NCCT) or MRI, a CT
or magnetic resonance angiography (CTA or MRA) and CT or magnetic resonance per-
fusion (CTP or MRP). MRI sequences typically include diffusion-weighted imaging

(DWI), which allows clear visualization of early ischemia?®’.

Non-contrast CT (NCCT)

The primary use of NCCT in the early window is to discriminate between a hemor-
rhagic and ischemic stroke*. ICHs and SAHs appear hyperintense in NCCT?’, and are
typically distinguished effectively by medical professionals (see figure 1.1A). The use
of NCCT became recommended in the guidelines in 1996 after the publication of mul-
tiple trials demonstrating a better long-term clinical outcome in patients treated with
intravenous thrombolysis (IVT) compared to medical management’. Thrombolytic

treatment was demonstrated effective for AIS secondary to a vessel occlusion, but is
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contraindicated for hemorrhagic stroke.

The brain parenchyma is also evaluated in NCCT to assess early ischemic changes
typically by means of the Alberta Stroke Program Early CT Score (ASPECTS)?! (figure
1.1B). Other findings in NCCT include the presence of a hyperdense sign in the proximal
middle cerebral artery (MCA)**, which is associated to an LVO of an embolic source**
(see figure 1.1C), or hypodense regions at follow-up, indicative of established infarct

(figure 1.1D).

[N

Figure 1.1: Stroke-related findings in NCCT. (A) ICH in NCCT appears as a hyperintense
region (red arrow). (B) Automated ASPECTS evaluation on NCCT. Area painted red represents
infarcted region. (C) Frontal view of NCCT with a hyperdense artery sign in the right proximal
MCA. (D) Follow-up NCCT at 24h with established infarct in the left MCA territory (hypodense
area, red arrow). NCCT: non-contrast computed tomography. ICH: intracranial hemorrhage.
MCA: middle cerebral artery.

CT angiography (CTA)

CTA is acquired by administering an intravenous bolus of a radio-opaque contrast solu-
tion to the patient upon CT scanning. The fundamental use of CTA is to identify a vessel
occlusion as the cause of the ischemic attack?®. It is estimated that around 20-30% of
all AIS are caused by a vessel occlusion visible in CTA, although there is variability in
the reports due to non-standardized definition of AIS and LVO/MeVO?3*33,

Another use of CTA is the evaluation of the vascular anatomy. In contrast to NCCT,
which is typically acquired only for the head, CTA acquisition typically encompasses
both head and neck down to the AA. This allows for an evaluation the AA shape, as well
as both extra- and intracranial vascular anatomy. This will be further expanded during

the thesis, as it is the primary focus of this research. Assessment of stenosis, dissection
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and vascular pathologies as well as cerebral collateral flow can also be assessed by

CTA?%. Figure 1.2 shows an overview of the uses of CTA in the acute phase of stroke.

Figure 1.2: Examples of potential findings in CTA. (A1) Axial view of a CTA with a maxi-
mum intensity projection thick-slab reconstruction showing an MCA proximal occlusion. (A2)
Sagittal view of a CTA showing a distal MCA occlusion. (B1 & B2) Sagittal and frontal view of
the aortic and supra-aortic regions on thick-slab CTA. (B3) Three-dimensional reconstruction of
the arteries imaged in CTA. CTA: computed tomography angiography. MCA: middle cerebral
artery.

CT perfusion (CTP)

CTP is advanced imaging technique that aims to quantify the blood perfusion in all re-
gions of the brain, as a method to assess the severity of blood supply deprivation in
the regions suffering from ischemia. CTP is done by injecting intravenous contrast to
the patient and repeating a normal cranial CT during several seconds. From this 4-
dimensional acquisition and through postprocessing algorithms, curves of several CTP
parameters can be drawn for all voxels in the brain. Typical CTP parameters include
cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT) or
time to maximum (T,y,). The brain volume with CBF below 30% is typically con-
sidered the core of the brain infarction. The term ischemic penumbra describes the
surrounding regions of the core that maintain normal levels of CBF and CBYV, but have

36

delayed perfusion as measured by MTT or T,,,"°. Patients with a large volume dif-
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ferential between both present a mismatch, a concept associated with the presence of
salvageable tissue that may likely benefit from EVT?’. Figure 1.3 shows examples of

potential findings in CTP.

e: 109 mi
228

Left MCA-M1 occlusion. Forecasted infarct core (pink) with large penumbra (green)

Figure 1.3: Examples of parameter map patterns derived from CTP. (A) Ty, map for a right
TICA occlusion. In Ty, red (>10 s), yellow (>8 s), green (>6 s) and yellow (>4 s) colors
show brain voxels affected by large peak perfusion delays. (B) Tz, maps for a left MCA-M2
occlusion, (C) aright MCA-M1 occlusion and (D) a left MCA-M1 occlusion with good collateral
flow. (E) CBF map, on the left, showing settled infarct core (pink) and Ty, map, on the right,
showing volume with delayed perfusion or penumbra. The difference between both volumes
defines the mismatch. CTP: computed tomography perfusion. Tyy,,: time to maximum. TICA:
terminus internal carotid artery. MCA: middle cerebral artery. CBF: cerebral blood flow.

X-ray fluoroscopy and digital subtraction angiography (DSA)

Patients with an arterial occlusion and/or other relevant findings (e.g., carotid stenosis,
aneurysm) detected on CTA may be transferred to the angiosuite to undergo diagnostic

angiography or EVT. Digital subtraction angiography (DSA) is an X-ray fluoroscopy
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technique used in interventional radiology to examine blood vessels in high detail.

In stroke, cerebral DSA is the gold standard for stenosis and vessel occlusion di-
agnosis. It is fundamentally used to assess a hypoperfusion baseline and evaluate re-
canalization success following IVT or EVT successive passes. To this end, the modified
Thrombolysis In Cerebral Infarction (mTICI) score is typically employed?’. The mTICI
score evaluates the reperfusion degree using 6 different grades (0, 1, 2A, 2B, 2C and 3).
An score greater than 2B (reperfusion >50% of arterial territory without initial perfu-
sion) is traditionally considered successful reperfusion, while grades 2C (90-99%) and
3 (complete reperfusion) are considered excellent treatment outcomes. Modifications
of the mTICI scale have been proposed overtime to include finer reperfusion grades
that present better association to clinical outcomes?’-**. High mTICI is an independent

predictor of good functional outcomes %,

1.4 Treatment in acute ischemic stroke

AIS treatment has significantly evolved in the last 30 years, experiencing a revolution
in the last decade. We can distinguish two treatment strategies that have proven to be
effective for AIS by multiple randomized controlled trials (RCTs): intravenous throm-
bolysis (IVT) and endovascular treatment (EVT).

The clinical outcome of the patient is typically measured by the degree of disabil-
ity of the patient after the stroke. To that end, the modified Rankin scale (mRS) has
been adopted as a universal method to test treatment effectiveness*’. The mRS is an
ordinal scale with 7 different levels (0-6) that describe increasing degrees of disability
or dependence. A mRS of 0 indicates that the patient experiences no symptoms at all,
while an mRS of 5 is indicative of severe disability requiring permanent nursing, and 6
is reserved for death. A mRS of 0-2 is usually indicative of satisfactory outcomes, with

0-1 being excellent.
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Baseline mTICI 3
Baseline mTICI 2B
Baseline mTICI 2C

Figure 1.4: Examples of successful reperfusion patterns assessed by the mTICI scale on DSA.
Red arrows point to occlusion sites or reperfused vessels. (A) Full reperfusion (mTICI 3)
achieved for a distal left MCA-M1 occlusion. (B) Successful reperfusion (mTICI 2B) in a prox-
imal left MCA-M1 occlusion. (C) Excellent revascularization (mTICI 2C) for a proximal right
MCA-M2 occlusion. mTICI: modified Thrombolysis In Cerebral Infarction. DSA: digital sub-
traction angiography. MCA: middle cerebral artery.

1.4.1 Intravenous thrombolysis (IVT)

IVT consists on the systemic administration of a thrombolytic drug, typically alteplase,
in the hyperacute phase of AIS*'. IVT is recommended to start in eligible patients
as soon as evidence of AIS (absense of ICH or SAH in NCCT) is available?'**. It

was first added to the guidelines for AIS treatment in 1996, when a series of RCTs
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demonstrated its efficacy in the first 3 hours from symptoms onset*’. In 2008, the results
of the ECASS III trial demonstrated the efficacy of alteplase administered in the first
4.5 hours*, which is the reccommended window in current guidelines?!**.

In recent years, several RCTs have tested the effectiveness of tenecteplase, a genet-
ically engineered mutant of alteplase, as an alternative drug for IVT**. Trials testing
the effectiveness of tenecteplase compared to alteplase in the early window reached
mixed conclusions**’. The TIMELESS trial found no difference in treatment effect
of tenecteplase administered within 4.5 to 24 hours using selection criteria based on per-
fusion imaging compared to placebo, most of the times in combination with thrombec-
tomy in both arms*®, while TRACE-III found a benefit of tenecteplase compared to

placebo in the extended window (4.5 to 24h), in absence of additional treatment™’.

1.4.2 Endovascular treatment (EVT)

EVT for stroke, in particular mechanical thrombectomy (MT), is an invasive therapeu-
tic procedure for AIS secondary to an emergent vessel occlusion. It consists on the
mechanical retrieval of the thrombus as a mechanism to reverse ischemia. EVT is ap-
plied by introducing a set of coaxial catheters in the arterial system of the patient via
a trans-arterial access, usually through the femoral artery. Catheters are navigated to
the occlusion site where one or multiple thrombectomy passes are performed. The pur-
pose of EVT is to achieve complete recanalization of the occluded arterial branch as
typically assessed by the mTICI scale (see section 1.3.1). The term EVT also includes

intra-arterial thrombolysis>’, angioplasty and arterial stenting>'.

Early days of EVT: first-generation devices

The unveiling of the MERCI Retrieval System (Concentric Medical, San Francisco, CA,
USA), a triaxial catheter system composed of a balloon guide catheter (BGC), a micro-
catheter and the Merci retriever, marked the beginning of MT in 2001. The MERCI

retriever was a flexible nitinol coil with a spiral shape reminiscent of a corkscrew, de-
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ployed through a microcatheter. MERCI received FDA approval for its first-generation
device in 2004, and was first used in the MERCI 1 trial®>. This phase 1 study showed
that MT was relatively safe and that successful recanalization presented a benefit for
the patient. However, recanalization rates were modest (43%), although higher when
combined with intra-arterial alteplase (64%). The benefit of revascularization in pa-
tients treated with MT within 8 hours from symptoms onset was further evidenced in
Multi MERCI*? in terms of reduced mortality and better clinical outcomes. However,
overall mortality (34%) and rate of transformation to symptomatic ICH (sICH) (9.8%)
were high.

Another first-generation device was the Penumbra System (Penumbra Inc, Alameda,
CA, USA), the first aspiration device for MT. The Penumbra Pivotal Stroke Trial was
published in 2009°* and demonstrated the safety and effectiveness of aspiration as an
alternative mechanism to the MERCl retriever, with higher recanalization rates (81.6%)
and comparable mortality (32.8%) and rate of sSICH transformations (11.2%) compared
to Multi MERCI.

Published in 2013, IMS-III*°, SYNTHESIS® and MR RESCUE®’ investigated the
superiority of EVT (alone or in combination with IVT) compared to IVT alone. These
RCTs were unable to show added benefit of EVT in terms of functional outcomes. De-
vice choice was left at the interventionalist discretion. Inability to show superiority of
EVT was most likely influenced by immaturity of available devices for MT, combina-
tion of intra-arterial thrombolysis and MT in the EVT branch as opposite to MT alone,

and broad selection criteria* .

EVT as gold standard: second-generation devices and HERMES trials

The inclusion period of IMS-III, SYNTHESIS and MR RESCUE was contemporary
with the appearance of second-generation MT devices. In 2012, the simultaneous pub-

lication of the SWIFT>? and TREVO 2°° randomized trials supposed a milestone in the

*For example, SYNTHESIS included patients with very low baseline NIHSS, likely to show good
functional outcome regardless of treatment.
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evolution of EVT for stroke. In these two trials, the Solitaire Flow Restoration device
(Covidien/ev3, Dublin, Ireland) and Trevo Retriever (Stryker neurovascular, Mountain
View, CA, USA), respectively, were introduced and compared to the first-generation
MERCI device. Both second-generation devices were stent-retrievers, self-expanding
stents meant to be deployed within the thrombus designed to entrap the clot. Successful
recanalization rates were dramatically better using the newer-generation devices com-
pared to MERCI (SWIFT: 89% vs. 67%; TREVO 2: 92% vs. 77%) leading to a higher
rate of favorable outcomes (90-day mRS 0-2 SWIFT: 37% vs. 29%; TREVO 2: 40%
vs. 22%). Complications and mortality were lower using newer MT devices as well.
Following these results, stent-retrievers became standard for MT.

The year 2015 saw the publication of MR CLEAN®!| EXTEND IA%?, ESCAPE®,
SWIFT PRIME® and REVASCAT®, five RCTs that assessed the efficacy of MT in
patients with LVO compared to medical therapy (IVT if eligible or medical manage-
ment otherwise). The results from all trials were positive in favor of MT, as shown by
a significant ordinal shift in the distribution of mRS in favor of reduced disability in the
population treated with MT. Results from all RCTs were pooled in the HERMES col-
laboration, including 1,287 patients, with 634 patients being treated with MT. Benefit of
MT was significant regardless of age, sex, baseline NIHSS, site of occlusion®, adminis-
tration of IVT, baseline ASPECTS and time from symptoms onset to randomization®®,
with patients treated up to 12 hours in the ESCAPE trial ®.

HERMES trials generally demonstrated the efficacy of stent-retriever MT in patients
with anterior circulation LVO, treated up to 8-12 hours from symptoms onset, in com-
bination or absence of IVT, in patients with significant symptoms severity upon arrival
(low NIHSS were generally excluded) and ASPECTS larger than 6 (small to medium
infarct core). This established EVT as the gold standard treatment for AIS. Succes-
sive large RCTs would focus on expanding this selection criteria to larger populations

groups.

*Only anterior circulation LVO locations were included.
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Current state of EVT and next frontiers

In the following years, aspiration catheters eventually caught up with stent-retrievers in
terms of successful recanalization rates®”*®. Nowadays, A Direct Aspiration First Pass
Technique (ADAPT), stent-retriever alone or a combination of the two (stent-retriever
assisted vacuum-locked extraction or SAVE technique) have become standard®’, left to
preference of the interventionalist.

DAWN"? and DEFUSE-3"! investigated the use of perfusion imaging criteria to se-
lect patients susceptible of benefiting from MT in the late window, with times from last
known well (LKW) to randomization from 6 up to 16 to 24 hours. Both trials were ter-
minated early based on pre-specified criteria in an interim analysis, and were published
in 2018 demonstrating the benefit of MT over medical therapy alone in the extended
window, subject to core size and the existence of ischemic penumbra. This benefit was
shown by reduced long-term disability, but also reduced mortality without a significant
increase in the rate of complications in the MT group. As of June 2024, results from
these trials led to the last comprehensive guideline update involving recommended MT
inclusion criteria®!"’?.

The latest breakthrough for MT arrived in 2023 with the publication of SELECT-
273, ANGEL-ASPECTS and RESCUE-Japan LIMIT®, three RCTs that tested the
efficacy of MT in patients with large ischemic core within an extended window of 24h
from symptoms onset. These patients were selected by infarct core size based on CTP or
DWI or ASPECTS 3-5 on basal NCCT. Again, all three RCTs proved the benefit of MT
over medical management in terms of a higher percentage of patients with good clinical
outcomes, with a significant association to higher risk of complications and ICH. Similar
results were obtained in the LASTE® trial, published in 2024, where MT was assessed
in patients with unrestricted core size (ASPECTS 0-5). These results support the thesis
that imaging criteria should not be used to strictly exclude patients from receiving MT,

even in the late window”’.
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There are multiple questions that still need answering to fully understand the limi-
tations and use cases of MT. Current frontiers with open RCTs include assessing the
effectiveness of MT in distal or medium vessel occlusions compared to best medical

t78781

treatmen , assessing whether EVT alone is non-inferior to EVT+IVT in the early

82,83

window or testing the adequacy of practicing MT in patients with mild stroke, as

assessed by low baseline NIHSS **,

1.4.3 Optimizing AlS treatment circuits for time

Time is a key factor in AIS®. The rapid progression of brain tissue necrosis effectively
means that reversal of ischemia will lead to better clinical outcomes if achieved quickly
after onset. The appearance of effective treatments for AIS has stimulated patient man-
agement protocols with the goal of optimizing AIS patient management for time, both

in pre- and intra-hospital patient management.

Intra-hospital management

Upon admission, patients should generally undergo diagnostic imaging, receive IVT if
and when eligibility is confirmed by imaging, and then begin EVT (if eligible) soon
thereafter. The time intervals between admission and each of these steps are power-
ful metrics that are collected by medical centers and monitored for further optimization
when comparing different circuits or paradigms. These typicaaly include the door-to-
imaging time (DIT), for diagnostic imaging, the door-to-needle time (DNT), for the
start of IVT, and the door-to-puncture time (DPT), comprising the time from admis-
sion to transarterial puncture for EVT procedures. Shorter DPT and door-to-reperfusion
(DRT) times have been associated with good treatment effect and improved clinical out-
comes**%7,

With growing experience by medical teams and a constant streamlining of patient

management circuits, DPT has consistently improved during the last decade®®. EMS

pre-notification, single-call activation systems or mixing alteplase ahead of patient ar-
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rival are successful examples that have been widely implemented in stroke care systems
to reduce DNT and DPT®’. The most impactful strategies have focused on optimizing
the imaging workflow”. Bypassing the emergency department and transferring the
patient directly to the CT room (CT Code) was a first measure that has been widely
adopted in stroke management protocols’'. In CT code, IVT is typically administered
in the CT room right after ICH is ruled out in AIS patients with NCCT. CTA and CTP
are then acquired for further diagnosis and, if eligible, the patient is then transferred to
the angiosuite for EVT.

Direct transfer to angiosuite (DTAS) has been proposed as alternative imaging proto-
col to optimize DPT®>?*. In DTAS, the CT room is bypassed and the patient is directly
transferred to the angiosuite. There, a flat-panel CT is acquired confirm AIS diagnosis,
and arterial puncture is performed immediately after. LVO diagnostic is confirmed by
either a flat-panel CTA or an angiogram, after arterial puncture. In the RCT ANGIO-
CAT, the implementation of DTAS as compared to the CT code paradigm resulted in
a median DPT reduction of 24 min, more than half the DPT in CT code (DTAS: 18
min interquartile range [IQR] 15-24, CT 42 min IQR 35-51)°*. This time difference
held for DRT and was associated with a significant improvement the long-term mRS
distribution in patients treated with EVT in the early window (<6 hours).

In recent years, more advanced angiosuites are becoming available in stroke centers,
with the inclusion of CT machines in the room itself. This enables a new paradigm
where patients can be directly transferred to the angiosuite but still receive advanced
neuroimaging without a significant DPT reduction (Hybrid code). Figure 1.5 shows a
visual comparison of the different door to puncture workflows implemented in Hospital

Universitari Vall d’Hebron.

39



CT Code DTAS Code Hybrid Code

S St St
ER
%‘
-
AS ~ AS = AS (with CT)
| | |
\\.z. " \u; . \“ —

Figure 1.5: Visual comparison between intra-hospital imaging circuits (codes) ahead of EVT.
In the hybrid code, a CT scan is acquired upon arrival at the angiosuite. After CT acquisition,
the patient is rellocated to the angiosuite bed, where MT is practiced. DTAS: direct transfer to
angiosuite. ER: emergency room. AS: angiosuite.

1.5 Vascular anatomy and tortuosity in stroke

1.5.1 Vascular anatomy in stroke

MT relies on the endovascular catheterization of the arterial system and navigation from
the transarterial access to the occlusion site. The relevant vasculature in EVT for stroke
comprises the arterial system that irrigates the brain, from the aortic arch (AA) and the

supra-aortic vessels to the intracranial arteries.

Extracranial vascular anatomy

Both anterior and posterior systems stem from the AA. The AA is placed immediately

above the heart, and receives the systemic circulation flow from the left ventricle. The
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supra-aortic vessels or trunks branch from the AA. These typically include, from right
to left, the brachiocephalic trunk (BT), otherwise known as the innominate artery, the
left common carotid artery (L-CCA) and the left subclavian artery (L-SA). The BT then
quickly bifurcates into the right CCA (R-CCA), and the right subclavian artery (R-SA).
Each CCA bifurcates to form the external carotid artery (ECA) and internal carotid
artery (ICA). The ICAs provide the bulk of blood supply to the brain (about 72% of
the total CBF?°), forming the foundations of the cerebral anterior circulatory system.
The right and left vertebral arteries (R-VA and L-VA) originate from the R-SA and L-
SA, respectively, feeding the posterior circulation of the brain (the remaining 28% of
the CBF?). Figure 1.6 shows a schematic overview of the extracranial arteries. It is
estimated that the adult brain typically receives a CBF of 750 ml/min or 15-20% of the
cardiac output”®.

It is not uncommon to find anatomical variants of the AA and supra-aortic vessel
configurations. A systematic review of branching pattern variations of the AA found
that the normal pattern as described has an approximate prevalence of 80%°’. The next
most common variant is the bovine arch, which refers to the LCCA originating from
the BT or both arteries having a common origin’®. This anatomical variant is the most

prevalent at 14%, and can be more frequent in African populations, up to almost 30% .

Intracranial vascular anatomy

The ICAs enter the skull through the carotid canal in the temporal bone. The first branch
of the ICA is the ophthalmic artery, which originates after exiting the carotid canal after
the cavernous sinus. At the ICA terminus (TICA), the ICA bifurcates into the middle
cerebral artery (MCA) and the anterior cerebral artery (ACA), the main providers of
blood supply to the anterior territories in the brain. The ACAs from either side are
connected through the anterior communicating artery (AComA).

In posterior circulation, the VAs converge to form the basilar artery (BA). The BA

distally bifurcates into the posterior cerebral arteries (PCA) that supply blood to the
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Figure 1.6: Extracranial vascular anatomy of the aortic and supra-aortic region on a thick-slab
maximum intensity projection of a CTA (left) and a 3D vascular segmentation on CTA (right).
The ICA, ECA, VA, CCA and SA arteries are present in both sides (right and left), despite only
one being highlighted in the figure. BA: basilar artery. [CA: interal carotid artery. ECA: external
carotid artery. VA: vertebral artery. CCA: common carotid artery. SA: subclavian artery. BT:
brachiocephalic trunk. AA: aortic arch.
posterior territory of the brain. The posterior communicating arteries (PComA) emerge
from the PCA and are joint at the distal ipsilateral ICA before the TICA to form the
circle of Willis (CoW), a circulatory anastomosis that ensures redundant blood supply
to the brain. A high number of anatomical variants of the CoW have been identified,
and only half of the population are estimated to present the CoW as described””.

The main arteries of the brain, i.e., MCA, ACA and PCA, successively bifurcate into
increasingly complex branching patterns. The most proximal branch of the MCA is
the M1 segment, stemming from the TICA and running horizontally along the frontal

anatomical axis. The M1 then reaches the insula and branches into the M2 or insular

segments. From the M1, the smaller lentriculostriate arteries perforate the brain and
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supply blood to the basal ganglia. Distal bifurcations of the M2 segments are the M3 or
opercular segments, that extend from the insula to the cortex. Finally, the M4 or cortical
segments branch from M3 to provide blood to the cortex.

The ACA and PCA follow a similar convention. The first segment of the ACA (A1)
originates from the TICA and runs up to the AComA, where is becomes the A2 or verti-
cal segment. The A2 then further bifurcates into the A3 or pericallosal segment. Further
bifurcations are termed using growing natural numbers (A4, AS) after each successive
bifurcation. In turn, the P1 is the first segment of the PCA, extending from the BA bi-
furcation to the PComA. Successive bifurcations define the P2 or post-communicating
segment, the P3 or quadrigeminal segment and the P4 or cortical segment. Figure 1.7

shows the intracranial vascular anatomy on CTA and a 3D reconstruction of the CoW.

Epidemiology of vessel occlusion in AlS

It is estimated that 20-40% of all AIS are caused by a vessel occlusion visible on an-
giographic imaging*>'°%-192_ Although there is a lack of a standard definition, and there
is significant patient variability in cerebral vascular anatomy, the term LVO typically
encompasses vascular occlusions in the ICA, M1, proximal M2, A1, VA, BA and P1 seg-
ments. Under this or similar definitions, it is estimated that 55-65% of vessel occlusions
are LVOs, with the rest being MeVOs, and that 70-80% of all visible vessel occlusions
happen in anterior circulation®>!%%1%! Tt is also estimated that currently about 30-40%
of LVO+MeVO undergo MT in the US, which represents about 5% of the total number
of AIS**. The majority of detected occlusions are located in the M1 (30-40%) and M2
(15-20%) segments. Due to differences in the definition of distal MCA in the literature,
it is difficult to estimate the prevalence of distal MCA occlusions with accuracy, but de-
pending on different definitions estimates range from 1-15%. ACA occlusions are rare
(1-5%) and are most frequent in the A2 segment. In posterior circulation, occlusions
are split across the VA, BA and PCA (5-10% each), and distal PCA occlusions (>P1)

are rare (1-2%)35100:101,103
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Figure 1.7: Intracranial arteries on CTA, reconstructed using thick-slab maximum intensity
projection (left) and a 3D segmentation of the intracranial arteries (right). ICA: internal carotid
artery. All arterial segments except for AComA and BA are presents for right and left side.
AComA: anterior communicating artery. BA: basilar artery. PComA: posterior communicating
artery. M1/2: M1/2 segment of the middle cerebral artery. A1/2: A1/2 segment of the anterior
cerebral artery. P1/2: P1/2 segment of the posterior cerebral artery.

Population-based studies in Europe and the US reveal a low prevalence of TICA
occlusions (2-6%3%!91:19%) " However, these account for approximately 15-20% of all
LVOs treated with MT %, Extracranial and intracranial ICA occlusions are more com-
mon at 15-20% '°%!°" and account for an additional 5% of all MTs!'%*. Extracranial ICA

occlusions are usually presented as tandem occlusions, meaning that the M1 segment is

also occluded, and occurs in less than 10% of all vessel occlusions 2.

1.5.2 Effects of challenging vascular anatomies in thrombectomy

Expertise and devices have improved over that past few years as MT has become ubig-
uitous, with successful recanalization rates (mTICI>2B) in anterior LVO being as high

as 90% as reported in some of the latest RCTs®*2. With successful recanalization reach-
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ing a ceiling effect, the broad objectives of MT outcomes have shifted to achieving
recanalization in the first pass, what is known as first pass effect (FPE), or excellent re-
canalization (mTICI 2C/3), both associated to better functional outcome than successful
reperfusion %1%,

However, there is still an important percentage of procedures where EVT fails to
achieve reperfusion. Failed recanalization rates (mTICI 0/1) have been reported at 10-
11%, rising up to 17% when mTICI 2A is considered as failure. In 20-30% of these
cases (2-5% of all anterior-circulation MTs), the cause of unsuccessful reperfusion was
attributed to failure to reach the occlusion site'*7-!10,

Reports suggest that, in an additional 15% of failed cases, the thrombus could be
reached but not passed'?. This has been partly attributed to the mechanics of the device-
clot interaction, with intracranial vascular anatomy playing a crucial role in how forces
are transmitted for effective removal of the clot and safe device-vessel wall interac-
tion'!"!1* . A tendency towards treating more distal occlusions with MT could further
accentuate the role of arterial tortuosity as a determinant factor for treatment decisions,
as tortuosity seems to present higher correlation with safety complications in distal oc-
clusions ',

Failed reperfusion is not the only area of improvement for MT. Long procedural
time (PT) in recanalized patients is an important predictor of unfavorable outcome in
MT 15-117 "regardless of number of attempts and intra-procedural complications''®. A
large multi-centric study (n=1,359) showed that likelihood of good functional outcomes
significantly decreases at PT>30 min and plateaus after 60 min. At the same time, rates
of SICH and complications grow exponentially with PT''>. Time from imaging to re-
canalization, which encompasses PT, has been more strongly associated to functional
outcomes than time from symptoms onset to imaging, at least in the early window ''’.

Extracranial vascular tortuosity has been repeatedly associated to the impossibility to

access the occlusion site 0710811112021 and Jonger PT 227127, Studies show that the 60
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min mark is met for PT in approximately 20-30% of cases, although high variability is
observed 15124126

PT can be further broken down into three time intervals that describe different parts
of MT procedures. In order, these are the time to the first angiography series (T1A),
which is typically associated with the catheterization of the ipsilateral ICA, the time to
first thrombectomy pass (TFP) and the time to recanalization or PT as defined. T1A has
been independently associated to worse clinical outcome '?!>°. Long T1A is roughly
observed in 10-40% of cases depending on its definition, usually set between 15-30
min 11128129

However, both T1A and TFP can still be biased by factors such as neurointerven-
tionalist experience or time of day. Impossible catheterization of the ICA might hold
a clearer causal relationship arterial extracranial tortuosity. A systematic review found
that in MTs attempted via transfemoral access (TFA), the widespread default access

120 " Tn most of

route for MT, failure to access the clot occurs in up to 4.4% of cases
the cases (roughly 92%), this was associated to AA or supra-aortic vascular tortuos-
ity of either the CCA or the ICA. Slightly higher rates are reported by multiple stud-

jeg 121,125,128,130

Arterial access

General practice suggests to use TFA as first-line approach for EVT and switch to an
alternative access only as a bailout strategy'!!, although an alternative access is some-
times preferred by the neurointerventionalist after CTA visualization and before arterial
puncture. Transradial access (TRA) is the most frequent alternative access to TFA. TRA
as first-line approach is less common in stroke EVT, but it is widely used in interven-
tional cardiology and diagnostic angiography. TRA has been compared to TFA in sys-
tematic reviews '*'*? and in the SFERA randomized trial (n=120)"*". In both reviews
and RCT, TFA was deemed non-inferior to TFA, with similar rates of recanalization

success, intra-procedural complications and safety. In SFERA, TFP was significantly
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lower for TFA (median TFP for TFA: 20 min, IQR 17-26; TRA: 24 min, IQR 19-38,
p=0.007), and similar rates of access conversion due to impossibility to catheterize the
CCA were observed (% impossible access for TFA: 8.6%; TRA: 12,1%, p=0.751)"%".

Figure 1.8 shows a schematic comparison of TFA and TRA for EVT.

Femoral access : Radial access

Figure 1.8: Schematic representation of cervical catheter access in stroke EVT via TFA and
TRA on a 3D reconstruction of the arteries in CTA. The patient imaged was impossible to
catheterize from TFA, so access via TRA was used as a bailout strategy. EVT: endovascular
treatment. TFA: transfemoral access. TRA: transradial access.

Other access alternatives include the transbrachial approach'** and the direct carotid
puncture (DCP) '**. DCP is typically reserved as last bailout strategy (<2 % of MTs) and
has proven to be relatively safe and effective, but is generally not recommended due to

safety hazards and increased related costs compared to more peripheral accesses '*>!%.
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1.5.3 Markers of extracranial arterial tortuosity

Despite the relatively low rates of impossible TFA, the prevalence of aortic and cervical
tortuosity is high. Significant tortuosity is observed in 40-50% of cases '2%-137-140,

Some attempts have been made to define scores based on subjective evaluation of
aortic and carotid tortuosity '>>'#!. The BAD and ASMETS scores were based on the
presence of a bovine AA, AA elongation, and dolichoarteriopathy* of the ICA and/or
the CCA. High scores were associated to higher procedural times, but discrimination
accuracy was not reported.

Bovine AA configuration and AA elongation have been widely explored in the liter-
ature as a potential predictors of long PT 22123137141 ' To assess AA elongation, the AA
type is typically employed. The AA type is defined by the vertical distance between
the BT origin and the apex of the AA, divided by the proximal diameter of the L-CCA.
This ratio defines AA type I when it is below 1, type II when it is between 1 and 2, and
type III above 2. The prevalence of types Il and III has been reported as high as 35%
and 20% of patients receiving MT, respectively '“°.

AA elongation can originate pronounced take-off angles of the supra-aortic trunks,
which have also been assessed as tortuosity markers for cervical tortuosity on their

125,127,138 and successive

own '?>!?% Severe angulation along the CCA and ICA segments
MCA segments ' has also been measured as a surrogate of dolichoarteriopathy.
The most widely adopted quantitative measurement found in the literature is the tor-

tuosity index (TI)'. TI is defined in a vascular segment between two endpoints A and B

over a parameterized curve f{¢) as:

_,_A-B|
INIGE:

*Dolichoarteriopathy is a general term that describes the presence of coiling, kinking or tortuosity in
a vascular segment following the Weibel-Fields criteria'*?.

TThe relative length or RL, also commonly found in the literature, is a transformation of the TI:
TI=1—-RL

(1.1)
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In eq. 1.1, f{¢) corresponds to the geodesic distance of the vasular segment’s center-
line. The TI then describes the radio between the Euclidean distance between the two
endpoints of a segment and the actual length along its trajectory. TI has been widely
adopted as the main indicator of vascular tortuosity, due to its simplicity and ease of
understanding. TI of the CCA and/or ICA has been associated with long PT'**, T1A
and TFP 3%, and has even been associated with the occurrence of stroke itself'*.

Other less frequently used quantitative metrics include the bending length, defined as

the maximum perpendicular deviation of a centerline trajectory with respect to the axis

144 45

formed by its endpoints '** or the sum of angle metrics'

1.5.4 Methods for vascular anatomy characterization in the literature

To date, few studies have developed automatic or semi-automatic methods for quan-
titative analysis that tackle vascular tortuosity and detection of anatomical landmarks

in vascular structures. Deshpande et al. !4

introduced a fully automatic approach for
segmenting and extracting features from cerebral arteries using MRA imaging. This
method, however, does not include labelling for individual arteries, which restricts the
ability to interpret the extracted features. Additionally, the validation of these features
is not directly documented, but rather implied through the performance validation of
the segmentation algorithm.

Several semi-automatic techniques have been documented for characterizing arter-
ies relevant to stroke. Chen et al.'*’ developed a method that involves artery trac-
ing, labelling, and automated feature extraction from cerebral arteries on MRA, vali-
dated against human observers’ bifurcation placements. Nevertheless, this process re-
quires manual adjustments to ensure high-quality artery tracing, classifying it as semi-
automatic and thereby limiting its utility in practical applications. Similarly, Tahoces et
al.'*® described an automatic labelling method for the main supra-aortic branches and

landmark detection in the AA using CTA, which nonetheless relies on manually seg-

mented arteries, falling short of full automation. Sun et al.'** introduced a technique for
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segmentation, centerline tracking, and quantitative measurement of tortuosity in the ex-
tracranial ICA and VA arteries, based on Otsu thresholding. This method also requires
manual tuning of parameters for each case, affecting its automation.

Despite these advances, a significant gap remains in the development of a fully auto-
matic algorithm capable of performing vessel segmentation, labelling, and feature ex-
traction to measure specific anatomical features of vessels. Such a development could

have multiple applications and benefits, such as:

 Enable large-scale studies on vascular tortuosity, assessing its associations to pro-
cedural variables such as T1A, PT, impossible arterial access, safety hazards or
treatment outcomes.

» Computed features may be leveraged for interpretable predictive models for such
procedural variables.

» Automation could add objectivity and repeatability to the feature extraction pro-
cess.

* Open up possibilities for practical implementation of advanced tortuosity analysis
in the acute phase, possibly leading to improved treatment planning in a patient-

specific manner.

1.6 Medical image and deep learning in AIS

Imaging plays an instrumental role in AIS diagnosis. Assessment of early ischemic
infarct on cranial NCCT or DWI-MRI, LVO/MeVO detection on CTA or parameter
maps on CTP are some examples of the diagnostic tasks that imaging enables in daily
practice that condition AIS treatment. Advanced medical image analysis can have broad
applicability in this context.

Deep learning (DL) has revolutionized all sorts of industries and domains, and health-
care is a great example for that. In AIS, there are many research and industry examples

of DL applications based on pre- or intra-procedural imaging, whose output may impact
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decision making towards treatment. Most of the image-based models and solutions are
targeted to CT and MRI imaging, and some applications are based on DSA.

DL models for diagnostic tasks in AIS can generally become useful by either improv-
ing human performance on image-based disease marker detection, or enabling quantita-
tive assessment in a practical and objective way, which in its turn can impact decision-
making in a number of ways. Automatic LVO detection on CTA/MRA is one of the most
commonly approached problems in AIS imaging, both in research and industry '#-15!,
Published validation studies suggest that these models perform extremely well in ICA
and proximal MCA occlusions, and achieve high specificity but moderate to low sensi-
tivity for MeVOs'*%!33 Automatic LVO detection has been tested in a RCT for intra-
hospital time optimization'**. LVO detection in NCCT alone has also been explored %,
which holds the potential to minimize radiation and acquisition times, improve diagnos-
tic accuracy of LVO in low-resource environments and accelerate inter-hospital transfer
workflows.

Thrombus segmentation by DL has also been explored in several research studies '8,
Texture analysis by radiomics has been studied as a potential source of predictors for

159?

treatment effectiveness '°%% 10| decision support for MT first-line approach '°:192, treat-

163,164 or histological composition '

ment outcomes

Early ischemic lesion segmentation on NCCT '%¢"1® and DWI'®” has been another
task where DL has offered super-human performance. Infarct growth prediction from
raw CTP conditioned to revascularization success and image-to-reperfusion time has
also been proposed as a method for prediction of treatment effectiveness beyond re-
canalization success, with potential to be used as a decision support tool in the acute

170-172

phase . White matter lesion volume automatically segmented from NCCT with

DL models was associated to functional outcomes and risk of sSICH transformation'”3,
and could be used as a potential criterion for safe alteplase administration, although fur-

ther validation is needed. Other applications on CT that could impact the AIS patient
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management found in the literature are automatic collateral scoring'*’, stroke etiology
prediction'”* and automatic ASPECTS scoring on baseline NCCT 7176,

Advanced analysis of DSA series could help improve MT procedures. One example
of how arobust analysis could confer objectivity and repeatability in an error-prone, sub-
jective visual assessment widespread methodology is automatic TICI scoring'”’. An-
other application where DL methods enabled intra-procedural clinician-augmentation
tools is vessel occlusion and landmark detection on DSA '7%!7_ This can be specially
interesting in small distal occlusions, as these can be easily missed by the neurointerven-
tionalists. However, extensive validation and targeted evaluation on distal evaluation is
still needed for these systems. A 3D reconstruction of the intracranial vessels based on
sparse DSA acquisitions was also achieved in a self-supervised DL framework, enabling

volumetric vessel reconstruction without CTA '8,

1.6.1 Difficult or impossible access prediction in stroke thrombectomy

The available literature on predicting difficult access for EVT in stroke is scarce. To
the best of our knowledge and as of June 2024, the model introduced by Holswilder
et al.'?! is the only published model found in the literature that explores image-based
prediction of impossible TFA. The model is a penalized logistic regression that uses
manually extracted geometrical and morphological features from the aortic and cervical
vessels as well as risk factors. Impossible TFA occurs in 7% of the cases. The model is
validated using a temporal validation set of 1,111 cases, achieving a C-statistic of 0.69
(95% CI: 0.62-0.75). The most relevant features based on the S-coefficients of the final
model, trained on all available data, were age ($=0.26), hypertension (f=-0.16) severe
aortic arch elongation as indicated by AA type III (f=1.45), a bovine AA ($=0.44),
pronounced angulation of the BT or CCA ($=0.72), cervical ICA elongation ($=0.44)
and a cervical ICA stenosis of >99% ($=0.78). Following these coefficients, the authors
proposed a nomogram to assess the likelihood of impossible TFA. However, even in the

most extreme case, the nomogram could only predict TFA with a probability of 60%.
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Rationale of the study
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According to the Global Burden Disease, about 12M people worldwide suffered from
stroke in 2021, and over 7M deaths were attributed to stroke, making it the second lead-
ing cause of death worldwide and the third cause of death and disability combined?’.

Global incidence of stroke has increased by 70% over the last 30 years®. An aging
global population and a higher exposure to stroke risk factors in modern lifestyle can
be held accountable for this trend '*!. However, the consequences of stroke greatly dif-
fer between high and lower-middle income countries. While the absolute incidence of
stroke in Europe increased by 2% between 2010 and 2019 '#2, with similar trends in the
United States '®3, stroke-related disability decreased by 20% in higher income countries
between 1990 and 2019. In contrast, lower-middle income countries, which account for
almost 90% of stroke-related death and disability prevalence, have experienced a 48%
increase in the same period?. This discrepancy can be attributed to the major advances
in stroke treatment and streamlining of patient management over the last decades; these
have become widespread in higher income countries, but its adoption still presents huge
challenges in developing regions '**. Of course, humanity should strive for bringing new
and life-saving treatments to all regions in the world, but as the transition happens, this
contrast comes to show how effective treatment innovations in stroke have been.

Optimization of stroke treatment strategies frequently focuses on reducing the dura-
tion of each stage within the patient management process'®. Time is critical in stroke;
the phrase Time is brain®® is often coined to describe how the loss of nervous tissue in is-
chemic stroke rapidly progresses with time, emphasizing the urgency of immediate care
in stroke. As a consequence, all parts of the stroke diagnosis and treatment protocols are
under constant scrutiny for further optimization. Among these protocols, we can dis-
tinguish between a pre-hospital phase and an in-hospital phase. The pre-hospital phase
is usually coordinated by the emergency services in collaboration with medical centers,
and it is designed to bring suspected stroke patients to diagnosis- and treatment-capable

186

centers as fast as possible °°. The in-hospital phase encompasses both diagnosis and
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treatment, intertwined for maximal efficiency.

Advanced imaging is central to acute stroke diagnosis, allowing for stroke type iden-
tification and lesion characterization®*?®. Treatment can differ depending on a number
of factors including the underlying vascular injury, time from symptoms onset to treat-
ment access, degree of autonomy of the patient before the accident and more?!>'¥7,

As stroke management is fine-tuned further, artificial intelligence (Al) is revolution-
izing many industries, and the medical field is no stranger to this movement. According
to the Al Index Report 2024, the number of Al medical devices approved by the FDA
increased at an approximate annual growth rate of 22% between 2018 to 2022, with the
vast majority of devices (87.1% in 2022) being related to radiology '*. Deep learning
has been the workhorse for research and innovation in medical computer vision since the
irruption of deep convolutional neural networks'%%!%° Stroke imaging sustains a vivid
ecosystem of research and development of medical devices with many innovative ap-
plications 1'%, Technological advances can help improve the diagnosis of stroke care
to superhuman capabilities and provide decision support tools that augment the medical
professionals involved in stroke care, paving the way towards personalized treatment
approaches to ensure that every patient gets the right treatment.

This thesis aims to contribute to the betterment of stroke care by introducing innova-
tive Al-based imaging solutions to address a practical challenge found in EVT for AIS.
Vascular tortuosity can have a critical effect on the ability of neurointerventionalists to
navigate through the arterial pathways in EVT procedures. In a significant number of
cases, this can result in long procedural delays or treatment failure, diminishing the ef-
fectiveness of EVT and resulting in worse clinical outcomes in patients suffering from
AIS'120 - An effective, timely analysis could help practitioners make informed de-
cisions in the acute window of stroke, potentially reducing stroke burden to selected

patients.
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Hypotheses



The hypotheses of the doctoral thesis are the following:

1. Geometrical and morphological features from the vascular anatomy relevant in
stroke may be predictive of difficult or impossible arterial access during endovas-
cular treatment in patients suffering from acute ischemic stroke due to a large
vessel occlusion.

2. Fast and automatic analysis of the aortic and cervical arterial tortuosity and per-
formant prediction of difficult or impossible transfemoral access before arterial
puncture might offer valuable decision support for neurointerventionalists, po-
tentially leading to informed treatment decisions, reduced procedural times and
better functional outcomes in selected patients receiving endovascular treatment.

3. Deep learning solutions may enable effective vascular characterization based on

routinely acquired pre-procedural angiographic imaging.
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Objectives



The main objective of the doctoral thesis is the following:

* Develop and validate a vascular characterization method, able to automatically
extract vascular tortuosity markers in the form of interpretable geometrical and

morphological properties from pre-procedural CTA.

The secondary objectives are the following:

* Develop and validate a robust, fully automatic method for difficult or impossi-
ble arterial access to the occlusion site in patients suffering from acute ischemic
stroke based on pre-procedural CTA.

» Understand what are the most important characteristics of the aortic and cervical
vascular anatomy that preclude a difficult or impossible access in stroke endovas-

cular treatment.
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Compendium of articles
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5.1 A fully automatic method for vascular tortuosity feature ex-
traction in the supra-aortic region: unraveling possibilities in

stroke treatment planning

The first publication of the compendium is an introduction to the first version of the
Automatic chaRacTERIzAtion of vascuLar tortuosity (ARTERIAL) framework. The
ARTERIAL framework presents a fully automatic pipeline composed of four modules
that is built on top of a vascular segmentation convolutional neural network (CNN) and
a graph neural network (GNN) for vessel anatomical labelling. A dataset composed of
566 pre-procedural CTAs retrieved from our CSC database, Hospital Universitari Vall
d’Hebron, was used to derive and validate the model.

A fraction of the dataset, 165 cases, were manually segmented to generate ground
truths of the arteries visible in CTA, from the AA to the cerebral vasculature. These
ground truth segmentations were used to train, validate and test a segmentation 3D U-
Net. The nnU-Net!** framework was implemented for this task. Successive modules
were a centerline extraction module, a vessel labelling module, and finally a feature
extraction module. The centerline extraction module acted upon the binary vascular
segmentation generated by the CNN, and was designed around the vascular modelling
toolkit (VMTK) open-source library '** and 3D Slicer ! for accurate centerline extrac-
tion. For the vessel labelling module, aortic and cervical centerline segments were
manually labelled for the entire dataset, and a graph U-Net'*® was trained for vessel
labelling. Vessel labelling was treated as a node classification task. Finally, the feature
extraction module used all the generated outputs from all previous modules to derive
specific pre-established measurements of the vascular anatomy.

The main objective of the paper was to validate the method’s accuracy in reproduc-
ing manually extracted measurements, thus validating the ARTERIAL framework as a

fully automatic method for robust vascular characterization from CTA. Measurements
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ultimately included lengths, positioning of vascular landmarks, take-off angles of the
supra-aortic trunks and morphological configurations of the AA. A test set of 30 cases
was manually processed by two independent raters to set a baseline for the model. Data
splitting for both the segmentation and vessel labelling modules was carefully curated to

ensure that these test cases remained held out from training, so as to prevent overfitting.
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ARTICLE INFO ABSTRACT

Keywords: Vascular tortuosity of supra-aortic vessels is widely considered one of the main reasons for failure and delays in
Stroke endovascular treatment of large vessel occlusion in patients with acute ischemic stroke. Characterization of
Thrombectomy

tortuosity is a challenging task due to the lack of objective, robust and effective analysis tools. We present a fully
automatic method for arterial segmentation, vessel labelling and tortuosity feature extraction applied to the
supra-aortic region. A sample of 566 computed tomography angiography scans from acute ischemic stroke pa-
tients (aged 74.8 + 12.9, 51.0% females) were used for training, validation and testing of a segmentation module
based on a U-Net architecture (162 cases) and a vessel labelling module powered by a graph U-Net (566 cases).
Successively, 30 cases were processed for testing of a tortuosity feature extraction module. Measurements ob-
tained through automatic processing were compared to manual annotations from two observers for a thorough
validation of the method. The proposed feature extraction method presented similar performance to the inter-
rater variability observed in the measurement of 33 geometrical and morphological features of the arterial
anatomy in the supra-aortic region. This system will contribute to the development of more complex models to
advance the treatment of stroke by adding immediate automation, objectivity, repeatability and robustness to the
vascular tortuosity characterization of patients.

Vascular tortuosity
Vascular feature extraction
Deep learning

Artificial intelligence

1. Introduction the AIS treatment protocols, including not only pre- and in-hospital
phases but also intraprocedural steps.

In the last years, mechanical thrombectomy (MT) has become the Vascular tortuosity and difficult catheter access (DCA) are two main

standard treatment for patients suffering from an acute ischemic stroke drivers of intra-procedural time delays (Yoo and Andersson, 2017;

(AIS) caused by a large vessel occlusion (LVO) (Campbell et al., 2015; Mont Alverne et al., 2020; Yeo et al., 2019; Kaesmacher et al., 2018).
Turk et al., 2019). MT achieves rates of significant recanalization The presence of pronounced vascular tortuosity in the aortic arch (AA)

(mTICI' > 2B: reperfusion in greater than 50% of the target cerebral and cervical arteries can lead to failure in reaching the LVO causing the
ischemic territory) in 70-80% of treated patients (Flottmann et al., stroke with endovascular MT devices. Impossibility to reach the LVO
2018; Yoo and Andersson, 2017). However, there is still a significant gap may account for up to one third of reperfusion failures (Kaesmacher
between angiographic results and the observed clinical outcome, where et al., 2018). Nonetheless, the overall rate of failed MTs due to
more than 50% of treated patients will not regain functional indepen- unreachability of the LVO remains low, at around 4.4% (Penide et al.,
dence at 3 months (Goyal et al., 2016; Albers et al., 2018; Berkhemer 2021). Time delays related to DCA during MT procedures to reach the
et al., 2015; Jovin et al., 2015; Nogueira et al., 2018). In order to target LVO are far more prevalent. A carotid catheterization time > 30

improve outcomes, it is essential to reduce interval times in all steps of min or a procedural time > 60 min are often considered as DCA in MT
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1 mTICL: modified treatment in cerebral infarction.
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procedures (Mokin et al., 2020; Alawieh et al., 2019; Ribo et al., 2013;
Holswilder et al., 2022), although this threshold can be even lower as
suggested in (Mont" Alverne et al., 2020). About 25-30% of MTs present
a difficult femoral access (Mokin et al., 2020; Ribo et al., 2013;
Gomez-Paz et al., 2021), which is associated with a lower rate of
recanalization and a lower rate of functional independence at 90 days
(Albers et al., 2018; Ribo et al., 2013; Alawieh et al., 2019). As a result,
in daily practice, the absence of solid models able to predict DCA, can
lead to sequential attempts and delays through alternate access sites (i.
e., femoral, radial, carotid) until the LVO is finally reached.

1.1. Recent works

The growing number of publications aiming to unravel correlation
between DCA indicators and tortuosity features indicates that identi-
fying patients with challenging anatomies pre-operatively represents an
unmet need. For example, Mokin et al. (Mokin et al., 2020) (n = 100)
found that angulation of the CCA and the extracranial ICA, as well as the
tortuosity index of the CCA-brachiocephalic segment were significant
indicators for difficult thrombectomy cases. Kaymaz et al. (Kaymaz
et al., 2017) analyzed geometrical features of the supra-aortic vessels
(take-off angles and tortuosity) and sought correlations with ICA access
time. They found that ICA access time was significantly influenced by
the left CCA (LCCA) take-off angle, brachiocephalic trunk (BT) take-off
angle, and tortuosity of the CCA (n = 76). Other studies found significant
correlation between MT difficulties and presence of kinks (Benson et al.,
2020) or vessel curvature in 2D projections of fluoroscopic images
(Schwaiger et al., 2015). An extensive comparison between tortuosity
features and difficult MT indicators among these studies can be found in
the supplementary material (Table S1).

Other papers focus on developing classification criteria for difficult
patients with risk scores. Snelling et al. (Snelling et al., 2018) presented
the B.A.D. score, an index based on the presence of a series of
tortuosity-related features (AA type, presence of bovine AA, kinks, tor-
tuosity or coiling) to determine, pre-operatively and based on visual
inspection, whether a patient’s vasculature is difficult or not. Ribo et al.
(Ribo et al., 2013) proposed another risk score of difficult supra-aortic
access based on patient’s clinical data.

These studies have in common that the measurement of tortuosity-
related features is at best semi-automatic (Mokin et al., 2020), while
some rely on completely manual processes (Kaymaz et al., 2017; Benson
et al., 2020; Schwaiger et al., 2015; Snelling et al., 2018; Rosa et al.,
2021). This makes them unsuitable as acute decision-making tools in the
selection of the ideal access site.

Few studies have presented automatic or semi-automatic quantita-
tive analysis methods to address vascular segmentation and tortuosity.
This is the case for Deshpande et al. (Deshpande et al., 2021), who
recently presented an automated method for segmentation and feature
extraction to find relevant differences regarding cerebral vasculature
between stroke and healthy subjects. However, no method for vessel
labeling is included, heavily limiting the characterization power of the
method over individual vessels or determined vascular pathways.
Moreover, the validation of the extracted feature measurements is only
inferred from a thorough validation of the segmentation algorithm.
Chen et al. (Chen et al., 2018) present a semi-automatic method for
artery tracing, labelling and feature extraction for the cerebral arteries,
validated through comparing the bifurcation placement by the algo-
rithm against a human observer, lacking full automation of the artery
tracing and labelling processes. An automatic method for labelling of the
main aortic branches and landmark detection is described in (Tahoces
et al., 2020), missing automatic segmentation.

Despite the remarkable achievements of these studies, there is still a
lack of an automatic algorithm that includes vessel segmentation, vessel
labelling and feature extraction capable of measuring vessel-specific
anatomical features. All these characteristics may be necessary for
effective use in clinical setting, with an emphasis on full automation of
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the process. This research presents a comprehensive solution to the
described drawbacks while delivering comparable or better perfor-
mance to the existing methods.

1.2. Contributions

This paper presents a robust, fully automated system capable of
characterizing and measuring anatomical supra-aortic vascular tortu-
osity features using baseline computed tomography angiography (CTA).
The methodologies used in each stage of the analysis pipeline are not
novel individually, but the combination of such blocks in an efficient
way and its clinical validation is completely innovative, and that pro-
vides a novel tool not available yet in the literature. The main contri-
butions of this research are:

e A fully automated pipeline for the analysis of vascular tortuosity in
the supra-aortic region from CTA imaging, making it possible to
perform a comprehensive analysis of the vascular tortuosity within
the stroke context.

Inclusion of an integrated automatic vessel labelling method,
allowing for an analysis based around the extraction of vessel-
specific tortuosity features.

Extensive validation of 33 measured features against two human
observers.

The current study is part of Arterial©,” a vascular analysis frame-
work created with the goal of delivering an immediate, fully automated
analysis of the vascular anatomy for each stroke patient, in order to offer
pre-procedural decision support for the clinician ahead of MT.

2. Methods

The proposed framework includes four modules designed to perform
different tasks, implemented to analyze 3D CTA images and return a
series of geometrical and morphological features automatically. These
modules are, in order of sequence: vessel segmentation, vascular
centerline extraction, vessel labeling and tortuosity feature extraction. A
flowchart of the present study, including a simplified layout of the
implemented method, is depicted in Fig. 1.

3. Dataset

We performed a retrospective analysis of a prospectively maintained
database that includes all patients who underwent MT and whose basal
pre-operatory imaging was acquired at Hospital Vall d'Hebron (Barce-
lona, Spain) between 2018 and 2021 (n = 715). Anonymized pre-
procedural CTA scans from 566 patients were collected (aged 74.8
+12.9,° 51.0% females). Ethics approval was obtained from the local
institutional review board [project reference: PR(AG)484/2021].

All subjects were imaged with a standard CTA image acquisition
protocol using a CT system (SOMATOM Definition AS+ 128-slice,
Siemens, Erlangen, Germany). Radiation dose was set to 200 mAs with
a tube potential of 100 kV. Collimation was configured at 128 slices of
0.625 mm of thickness, with an increment of 0.4 mm, a rotation time of
0.5 s and a pitch of 1. A median H20s kernel from Siemens was used for
the image reconstruction. Each frame was recorded in a 512 x 512
matrix with a FOV of 350 mm. Iodinated IV contrast was given in a
single bolus to the patient at a rate between 4 and 5 ml/s with an overall
volume of 40-80 ml of contrast solution depending on the patient. Full
resolution images presented a median voxel size of
0.430 x 0.430 x 0.400 mm® and a median shape of 512 x 512 x 816.

2 ©2021, copyright by VHIR and UB. All rights reserved.
3 Standard deviation. Same convention used throughout the article unless
specified otherwise.
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Fig. 1. Flowchart of the validation of the automatic tortuosity feature extraction method. The presented method is displayed enclosed in the grey box, with each of
the four upper blocks representing the different modules of the image processing pipeline. The main output of reach of these modules is shown in the lower blocks.
Results from the automatic analysis are assessed by comparing them to the ground truth obtained from averaging manual measurements from two observers.

DICOM images were converted to NIfTI and a preprocessing in the form
of intensity and spatial normalization of the volumes of interest was
applied prior to segmentation (Isensee et al., 2021).

From each CTA scan, a series of annotated data was generated to
train, validate and test the models involved in the proposed framework.
Among all available patients, 165 cases with an acute ischemic stroke
secondary to a LVO, were randomly selected to form a labelled dataset
for segmentation. Three cases were finally discarded due to the presence
of significant imaging artifacts, leaving the final sample at 162 patients.
This set was segmented once by either two engineers with + 2 years of
experience (40 by engineer I and 50 cases by engineer II out of 162) or a
neurologist with + 5 year of experience (72 cases out of 162) using 3D
Slicer software (version 4.11) (Fedorov et al., 2012). Centerline models
for the whole database (n = 569) were automatically extracted and put
into graph form. Graph nodes, representing the different centerline
segments, were manually annotated with the corresponding artery
names by one observer (engineer I).

Table 1 displays the dataset organization for each of the modules that
require testing. For segmentation, 132 cases were used for training and
validation, while the remaining 30 cases (18.5% of the available images)
were reserved for testing. In the 30 cases from the segmentation testing
set, manual measurements were also performed by two expert observers
(engineer I and the neurologist) for geometrical and morphological
feature extraction assessment of the automatic and semi-automatic
methods analyzed in this study, resulting in two annotation sets of 45
measurements per case. For vessel labelling, 132 manual segmentations
from the segmentation training set and 377 inferred segmentations
resulting from the segmentation module were used to generate center-
line graphs, which following manual annotation were used for training
and validation (n = 509), while 57 cases (including the 30 cases from
the segmentation and feature extraction testing set) were used for
testing, resulting in 10% of the overall dataset.

An analysis of the Bayes Error Rate (BER) was made for both the
segmentation and the labelling modules to approximate the asymptot-
ical performance of the model with a growing dataset. This can be used
to estimate the dataset size needed to reach very close (>99%) to the
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asymptotical performance of the model without having to generate an
infinite amount of data — a very costly process. Results for the BER that
suggest the adequacy of the dataset sizes used for both modules can be
found in the supplementary material (Figs. S1 and S3).

3.1. Segmentation

The first step towards automated tortuosity feature extraction for the
vasculature relevant to stroke is the automatic segmentation of the ar-
teries in the supra-aortic region from CTA volumes. nnU-Net (Isensee
et al.,, 2021) was used as the base framework for the automatic seg-
mentation of the volumes of interest. nnU-Net performs a thorough
preprocessing of the training dataset, including spatial and intensity
normalization, to automatically infer several relevant hyperparameters
of the resulting 3D U-Net (Cicek et al., 2016; Ronneberger et al., 2015).
Semi-random image patching was used for data augmentation during
training. The patch size as well as the batch size were automatically
determined by nnU-Net, depending on the median image shape in the
dataset and graphics processing unit (GPU) memory limitations. Sto-
chastic gradient descent (SGD) with Nesterov momentum (p = 0.99)
was used as the optimizer for the network, and the loss function was
computed as the sum of binary cross entropy and Dice loss. Differently to
the default configuration of the nnU-Net, the learning rate schedule was
modified to PyTorch’s ReduceLROnPlateau,” with an initial learning
rate of 0.01, following an optimization study performed with a reduced
dataset. nnU-Net applies a series of randomized operations over the
selected patches for each training step for data augmentation (Isensee
et al., 2021).

A five-fold cross-validation strategy was employed to assess the
performance of the trained nnU-Net model, with the dataset distribution
described in Table 1. The Dice coefficient (Dice, 1945), recall and the
volume correlation coefficient were used as quantitative segmentation

4 ReduceLROnPlateau I parameters: factor = 0.2, patience = 10, threshold
= 0.01, mode = “min”, threshold_mode = “rel”.
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Organization of the data for vessel segmentation, vessel labelling and tortuosity feature extraction modules. Same 30 cases from the testing set of the segmentation
module are kept for within the vessel labelling testing set and used for the feature extraction module to avoid overfitting.

Number of annotations Annotation type Training Validation Testing
Segmentation 162 Binary map 110 22 30
Vessel labelling 566 Labeled graph 433 76 57
Feature extraction 30 (x2) Manual measurements - - 30 (x2)

quality indicators. These evaluation metrics were found to be the
strongest indicators for segmentation quality following an internal study
involving 11 different metrics that were compared to Likert scale qual-
itative scores attributed to a sample of 20 cases by four different inde-
pendent experts. UNETR (Hatamizadeh et al., 2022) and SwinUNETR
(Tang et al., 2021) models were also implemented for our task. The most
recent benchmarks show an incremental improvement of transformer
models over fully convolutional networks for medical segmentation
tasks (Tang et al., 2021). However, for 3D vascular segmentation tasks
like hepatic vessel segmentation, nnU-Net has delivered the best results
in benchmarks (Tang et al., 2021), and our experiments have also
showed the superior performance of nnU-Net for our targets.

Robustness to noise was also tested by adding artificial random
Gaussian noise to images increasingly to see how performance is
maintained compared to baseline images. A detailed analysis can be
found in the supplementary material (Fig. S2).

3.2. Centerline extraction

Fig. 2 displays the different steps of the analysis process from the
input CTA up the graph generation. From the binary map obtained by
segmentation (Fig. 2A-B), automatic surface model extraction is trivially
performed by thresholding (Fig. 2 C), followed by smoothing and
removal of small islands. Intracranial arteries are ignored for the rest of
the analysis.

Centerline models are then extracted via shortest path tracing be-
tween automatically detected extremal points (startpoint and end-
points), placed at the end of vascular structures. Paths are defined over
the Voronoi diagram corresponding to the closed surfaces resulting from
the binary map segmentation. Shortest paths between the startpoint and
the endpoints are determined by minimization of a wave propagation
integral described by the Eikonal equation (Antiga et al., 2003)
(Fig. 2D). For centerline and surface model branching, tubes are con-
formed for each centerline segment by joining the maximal inscribed
spheres associated to each centerline point. Tube containment re-
lationships between centerlines and tubes are defined following refer-
ence point placement (intersections between centerlines and tubes),
which enable branch splitting for both the centerline and surface models
(Antiga and David, 2004) (Fig. 2E). The described methods for center-
line extraction and branch splitting are implemented in the Vascular
Modelling Toolkit (VMTK, version 1.4) (Antiga et al., 2008), used here
for these computations. Custom modules were designed and added to
the VMTK methods for a robust endpoint auto-detection and for circular
centerline tracing.

The resulting branched centerline model is used to generate a graph,
where nodes correspond to centerlines of individual vascular segments,
which are connected by edges to the immediately proximal and distal
segments in contact (Fig. 2 F).

3.3. Vessel labeling

A graph U-Net (gU-Net) (Gao and Ji, 2019) model was used for vessel
labelling of the centerline models. Graph nodes were characterized with
node attributes obtained from the centerline models. A total of 24 node
attributes were computed, including the mean, proximal, distal,
maximum and minimum radius, proximal/distal radius ratio, Euclidean
distance between proximal and distal bifurcation points, relative length
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(RL) of the segment, overall direction, departure direction (given by the
vector joining the first two points of the segment), number of points of
the centerline segment, proximal and distal bifurcation positions and
center of mass. Data augmentation is applied in the form of increased
connectivity of the nodes by edge linking to all those nodes within
10 mm (found empirically) of the node’s center of mass, and normali-
zation of all attribute to their mean value averaged across the training
set. Proximal/distal radius ratio and RL are not normalized since these
are already relative measurements, and direction 3D vectors are
normalized to unitary vectors.

An optimization study, including 288 different variations for the gU-
Net architecture and training configuration, was performed to identify
the best combination of hyperparameters for the model. The model with
the best testing accuracy was selected. The network’s architecture is
characterized by four pooling steps (depth = 3), with pooling ratios of
0.5 each, and with graph convolution network (GCN) layers at each
level. Skip connections connect the equivalent levels from the encoder
and decoder blocks. The number of hidden channels for the node em-
beddings was set to 64, while the batch size was set to 20.

SGD with high momentum (i = 0.99) and a weight decay of 102 for
regularization was used as optimizer, with an initial learning rate of
1072, scheduled with ReduceLROnPlateau.’ The cross entropy was used
as the loss criterion for node classification. Early stopping was employed
to prevent overfitting, with validation loss serving as the early stopping
criteria. The data organization for training, validation and testing is
described in Table 1. Five-fold cross-validation was used to ensure the
validity of results. Edge accuracy per case, computed as the percentage
of correct predictions over the total sample, overall accuracy (pooling all
predictions), overall Dice coefficient, recall, precision, class-wise Dice
coefficient and error occurrences per case were used to assess the gU-
Net’s performance.

3.4. Tortuosity feature extraction

3.4.1. Manual feature extraction

To validate the automatically extracted tortuosity features, the
feature extraction testing set (n = 30) was manually processed by two
different expert observers where a total of 45 different geometric and
morphological features were extracted directly from raw CTAs.
Morphological features include presence of a bovine AA (Layton et al.,
2006), presence of aberrant right subclavian artery (ARSA) (Chaoui,
Rake, and Heling, 2008) and AA type (Bajzer, 2004). Geometrical fea-
tures include proximal diameter, RL (Klis et al., 2019), and absolute and
relative polar and azimuth departure angles. Geometrical features are
extracted for the brachiocephalic trunk (BT), right common carotid ar-
tery (RCCA), right subclavian artery (RSA), right vertebral artery (RVA),
left common carotid artery (LCCA), left subclavian artery (LSA) and left
vertebral artery (LVA). In addition, the diameter at the apex was also
measured for the AA. The presence of ARSA was finally excluded as none
of the patients from the testing set presented it.

3.4.2. Automatic feature extraction

The same fundamental criteria (landmark localization) were adopted

5 ReduceLROnPlateau II parameters: factor = 0.5, patience = 20, threshold
= 0.01, mode = “min”, threshold\_mode = “rel”.
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Fig. 2. Data processing from the CTA images, through centerline extraction and branching, up to graph generation. (A) Original CTA volume. (B) Binary map output
by the segmentation module. (C) Volume model from binary map. (D) Volume model with extracted centerline model. (E) Branched centerline model over clipped
surface model output by the centerline extraction module. (F) Graph corresponding to the centerline mesh.

for the automatic feature extraction method. All centerline branches
with the same predicted type (i.e., vessel name) following automatic
labelling were joint as a single vascular segment. VMTK variables from
the branched centerline model and the clipped surface model were used
to locate relevant landmarks (e.g., vessel origin, proximal and distal
ends, absolute angle point, AA type landmarks). The centerline model
was used to compute the diameter at any point, using the maximal
inscribed sphere radius. A priori knowledge (mainly, known connection
relationships between arteries) was used to locate the relative angle
point and recognize bovine AA and ARSA presence. Fig. 3 shows a series
of example sketches for most of the measurements performed for the
automatic feature extraction process.

Vertebral artery (VA) tortuosity features were discarded from the
analysis due to a high number of cases with missed automatic segmen-
tations at the base of the VAs from the corresponding subclavian artery
(SA) bifurcation, which resulted in a high percentage of missed mea-
surements. Imaging artifacts were often found to be responsible for a
sub-optimal imaging at the VA origin in a large fraction of cases,
resulting in underperforming segmentation at these locations. This left a
final group of 33 tortuosity features left for analysis.

3.5. Statistical analysis

Inter-observer variability was assessed and used as a reference
measure. Averaged measurements between observers were used as
ground truth values. The performance of the automatic method was
assessed differently for morphological and geometrical tortuosity fea-
tures. As categorical variables, morphological features were evaluated
using the Cohen’s kappa (k) (Cohen, 1960) in the case of the bovine AA
presence, and the linearly weighted Cohen’s kappa (ki) for the AA type.
For geometrical tortuosity features, the two-way mixed effects, single
rater intra-class correlation coefficient (ICC) for absolute agreement
(Koo and Mae, 2016) was used to assess the reliability across human
observers and the automatic method. ICC thresholds of 0.5, 0.75 and 0.9
were used to assess the agreement across methods as poor (ICC < 0.5),
moderate (0.5 < ICC < 0.75), good (0.75 < ICC < 0.9) or excellent (ICC
> 0.9).

Bland-Altman plots (Martin Bland and Altman, 1986) were also
drawn for all features and are available in the supplementary material
(Figs. S5-510). Bias and 95% CI values of the error distribution were
computed for both methods as a complementary performance measure,
and box plots for the absolute error (and relative error in the case of
diameter measurements) were drawn for error distribution
visualization.

For inter-observer reliability assessment, values from both observers
were compared to each other to avoid influence of co-dependency with
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ground truth values. For the automatic method, values were compared
to the ground truth.

Landmark placement was also quantitatively evaluated. Precision,
recall and mean distance error were used to compare the presented
method for landmark localization to other state-of-the-art algorithms
proposed in the literature. For precision and recall computation, true
positives (TPs) were recorded as landmarks placed at a distance error
smaller than a given threshold, while false positives (FPs) were land-
marks placed outside of the local region defined by this cut-off. This
threshold was taken as the proximal diameter of the vessel associated to
each tortuosity feature, averaged across all cases (e.g., for the BT origin,
the average BT proximal diameter was used as threshold). False nega-
tives (FNs) are defined as measurements that were manually recorded,
but were missed by the algorithms.

4. Results
4.1. Segmentation

The nnU-Net was the best performing model out of those tested. A
mean Dice coefficient of 0.93 £ 0.02 and a recall of 0.93 + 0.03 were
obtained in testing over the five folds. The mean volume correlation
coefficient was 0.998 + 0.003. Table 2 shows a comparison between the
present and other state-of-the-art 3D vessel segmentation algorithms
applied on similar segmentation targets.

Qualitatively, satisfactory performance of the segmentation process
for the AA region, common carotid arteries (CCAs) and subclavian ar-
teries (SAs) (Fig. 4 A) was observed. However, VAs tended to present
segmentation errors at the origin, as well as discontinuities along the
vessel (Fig. 4B). Cerebral arteries were accurately segmented up to the
circle of Willis (Fig. 4 C). Distal SAs and external carotid arteries (ECAs)
were generally not entirely segmented, as training data did not include
these in most manual annotations.

Regarding architectural details of the model, the number of down-
sampling operations was determined upon choice of the patch size for
forward processing. For the used dataset, a patch size of
112 x 112 x 192 was selected after dataset preprocessing following
limitations of both GPU memory and mathematical restrictions due to
needed downsampling operations, as per nnU-Net design rules (Isensee
et al., 2021). Thus, the network had 6 spatial resolution levels derived
from 4 downsampling steps for the coronal and sagittal directions and an
additional one for the axial direction. Encoder steps were constructed
with a 3D convolutional kernel of size 3 x 3 x 3, followed by instance
normalization (IN) and a leaky ReLU activation function. Downsampling
was applied by strided 3D convolution (stride = 2), with kernel size of
2 x 2 x 2, doubling the number of channels at each step. In the decoder
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Fig. 3. Sample of automatically extracted features. (A) Oriented vascular segment for the LCCA. (B) Bifurcation between the LCCA and BT in a bovine AA. (C) Points
A and B, and LCCA diameter D used for the AA type computation. (D) Proximal diameter measured at the LSA origin. The white circle represents the maximal
inscribed sphere radius, projected in 2D. (E) Scheme of the RL computation for a LCCA. (F) Scheme of the absolute angle point placement for a RSA. (G) Scheme of the
relative angle point placement for an LSA, with the preceding vessel being the AA.

block, 3D transpose convolution kernels of shape 2 x 2 x 2 were
employed for upsampling, and two convolutional kernels of 3 x 3 x 3
(with IN and leaky ReLU) are applied, halving the number of channels at
each level. Skip connections were used to concatenate feature maps from
encoder and decoder blocks. Convolutions of 1 x 1 x 1 followed by
softmax layers were used to determine final activation of the decoder
block at each of the resolution levels (except the two lowest resolutions),
and deep supervision was used for loss computation during training. For
inference, segmentation prediction was derived from the softmax acti-
vation of the final decoder step.

An experiment to test robustness to noise was also performed. Results
shows how the implemented segmentation model is able to maintain
performance with noise levels up to 5 times higher than the typical noise
levels on CT (Fig. S2).

4.2. Vessel labeling

Table 3 compares the performance of the presented method to other

Table 2

state-of-the-art studies with similar labelling objectives. An edge pre-
diction accuracy per case of 0.95 + 0.06 resulted from the gU-Net
trainings across folds. Table 4 shows the class-wise Dice coefficient for
each of the edge classes available for vessel labelling by the gU-Net.
Frequent errors (mistakes repeated four or more times within the
testing set, n = 57 cases) include wrong prediction of right external
carotid artery (RECA) for right internal carotid artery (RICA) (5 times)
and AA for BT segments (4). Regarding error occurrences, 1.1 labelling
errors per graph were made on average over the testing set, with 16.8
nodes per case, 42.1% of cases presented perfect labelling (70.2% pre-
sented one error or less).

4.3. Tortuosity feature extraction

Table 5 shows a comprehensive evaluation of the acquisition
methods performance for each tortuosity feature.

Comparison between the segmentation performance (Dice coefficient) of the used method (nnU-Net) and other state-of-the-art methods with similar segmentation
targets. Black font highlights best metric (same convention used in other tables within the present study).

Model Image modality Imaged anatomy N Dice
Ours (2022) nnU-Net CTA Head + neck + AA 162 0.93 £ 0.02
Ours (2022) SwinUNETR CTA Head + neck + AA 162 0.88 + 0.05
Ours (2022) UNETR CTA Head + neck + AA 162 0.74 £ 0.10
Fu et al. (2020)(Fu et al., 2020) ResU-Net CTA Head + neck + AA 18,259 0.95
Fantazzini et al. (2020)(Fantazzini et al., 2020) 2D U-Nets CTA Aorta 80 0.92 + 0.01
Fan et al. (2020)(Fan et al., 2020) HMRF + U-Net TOF MRA Cerebral arteries 100 0.79 + 0.05
ElHadji et al. (2019)(Hadji et al., 2019) ResU-Net CE-CBCT Cerebral arteries 25 0.79 +£0.13
Livne et al. (2019)(Livne et al., 2019) Half U-Net TOF MRA Cerebral arteries 66 0.92
Phellan et al. (2017)(Phellan et al., 2017) Deep CNN TOF MRA Cerebral arteries 4 0.77 +£0.01
Isensee et al. (2021)(Isensee et al., 2021) nnU-Net CTA Hepatic vessels 443 0.69

6
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Fig. 4. error distance maps between the predicted segmentations obtained from the automatic segmentation through the nnU-Net, and the manual segmentations.
(A) Distance maps for the whole segmentation target, showing good behavior in the supra-aortic region. (B) Missed segmentations at the base of the VAs. (C) Distal
cerebral arteries are not accurately segmented in a significant number of cases. Positive distances represent over-segmented regions, while negative distances

highlight under-segmentations.

4.3.1. Manual feature extraction

Inter-observer variability is assessed in this section as a reference
measure. Only three geometrical features presented poor reliability
across both human observers. Fourteen features presented excellent
agreement while 12 presented good agreement, leaving 2 with moderate
reliability. Regarding morphological features, there was perfect agree-
ment on bovine AA presence, and moderate agreement was found for the
AA type measurement across observers.

Reliability across observers was weaker for diameter measurements
(4 out of 6 features presented weak to moderate agreement), good to
excellent for angle measurements and excellent for all RL measurements.

4.3.2. Automatic feature extraction

The automatic method presented comparable performance to the
manual feature acquisition. Only three features presented poor reli-
ability compared to the ground truth values. Ten features presented
excellent agreement, while 9 showed good reliability. The remaining 9
features had moderate agreement with reference values. For morpho-
logical features, performance of the automatic method was equivalent to
human performance.

Missed segmentations and inaccurate vessel labelling can make some
measurements impossible to perform in automatic feature extraction, as
some landmarks are not located. However, the number of missed land-
marks was low, only a 2.6% of the total number of landmarks across all
cases, yielding a total of 3.3% missed measurements across the complete
sample. These values were omitted for the computation of the ICC and
error distributions.

Fig. 5 shows a visual representation of the error distribution for each
geometrical feature and method. The proposed method presented very
similar error distributions compared to the inter-observer variability
found for most features, with a slightly higher median value and broader
interquartile ranges across the feature set.

Table 3

Table 6 shows precision, recall and mean error for the landmark
placement, comparing the manual and proposed methods against other
state-of-the-art algorithms with similar landmark localization targets in
vascular anatomies. The error distribution across methods for the
landmark placement can be found in the supplementary material
(Fig. S4).

5. Discussion

To our knowledge, this is the first research introducing a fully
automatic pipeline for the characterization of vascular tortuosity in the
supra-aortic region. We implemented, adapted and combined several

Table 4

Number of vessels (N), TPs, FPs, FNs and Dice coefficient for each of the possible
vessel types present in the node classification by the gU-Net, over predictions
with the testing set. BA: basilar artery.

Vessel type N TP FP FN Dice
Other 30 23 5 7 0.79
AA 226 225 9 1 0.98
BT 57 52 1 5 0.95
RCCA 56 54 0 2 0.98
LCCA 60 56 1 4 0.96
RSA 95 91 4 4 0.96
LSA 100 94 6 6 0.94
RVA 50 44 8 6 0.86
LVA 57 51 9 6 0.87
RICA 51 44 3 6 0.91
LICA 50 44 3 6 0.91
RECA 53 51 8 2 0.91
LECA 56 52 4 4 0.93
BA 15 13 2 2 0.87
Total 956 894 62 62 0.94

Overall vessel prediction accuracy, precision, recall and Dice coefficient for the presented gU-Net and other state-of-the-art methodologies proposed for similar
labelling tasks. *Method from (Chen et al., 2020) was implemented and tested with our data.

Method Target Accuracy Precision Recall Dice
Ours (2022) Graph U-Net Head + neck + AA 0.94 0.94 0.94 0.94
Yao et al. (2020) (Yao et al., 2020) GCN-point cloud Head + neck + AA 0.93 - - 0.92
Chen et al. (2020)(Chen et al., 2020) GNN Cerebral arteries 0.92 - - -
Chen et al. (2020) * GNN Head + neck + AA 0.82 0.84 0.83 0.83
Dunas et al. (2016)(Dunés et al., 2016) ATLAS Cerebral arteries 0.93 - - -
Tahoces et al. (2020)(Tahoces et al., 2020) A priori knowledge Aorta branches - 0.99 0.92 -
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Performance of the acquisition methods for all analyzed features. ICC, bias and 95\% CI of the error distribution for the inter-observer variability (manual) and the
automatic method are displayed for geometrical features. Those features with poor agreement are highlighted in red. Below, k and kL values for the bovine AA presence

and the AA type are exhibited, respectively.

Geometrical feature ICC Bias (error 95% CI)

Manual Automatic Manual Automatic Units
AA diameter 0.89 0.78 -1.04 (2.57) 1.00 (3.41) mm
BT proximal diameter 0.70 0.67 -0.73 (3.57) -0.44 (5.31) mm
RCCA proximal diameter 0.37 0.59 -0.21 (3.13) -0.32 (2.03) mm
RSA proximal diameter 0.40 0.62 -0.28 (3.67) 1.00 (2.47) mm
LCCA proximal diameter 0.53 0.27 -1.31 (3.11) -0.25 (5.60) mm
LSA proximal diameter 0.48 0.76 -1.85(3.38) -0.03 (1.96) mm
BT relative length 0.99 0.89 < 0.01 (0.03) 0.01 (0.07) -
RCCA relative length > 0.99 0.58 < 0.01 (0.01) 0.08 (0.32) -
RSA relative length >0.99 0.51 < 0.01 (0.02) 0.02 (0.23) -
LCCA relative length > 0.99 0.98 < 0.01 (0.01) < 0.01 (0.04) -
LSA relative length > 0.99 0.54 0.01 (0.02) 0.02 (0.28) -
BT abs polar angle 0.81 0.87 -0.07 (0.31) -0.06 (0.42) rad
BT abs azimuth angle 0.91 0.83 0.05 (0.58) -0.35 (1.61) rad
BT rel polar angle 0.86 0.87 0.16 (0.24) 0.15 (0.37) rad
BT rel azimuth angle 0.85 0.83 -0.04 (0.15) -0.06 (0.28) rad
RCCA abs polar angle 0.83 0.53 -0.02 (0.39) -0.03 (0.61) rad
RCCA abs azimuth angle 0.85 0.71 -0.04 (0.32) -0.01 (1.00) rad
RCCA rel polar angle 0.96 0.92 0.05 (0.22) 0.01 (0.33) rad
RCCA rel azimuth angle 0.88 0.94 0.05 (0.34) 0.04 (0.61) rad
RSA abs polar angle 0.79 0.82 0.07 (0.58) 0.02 (0.51) rad
RSA abs azimuth angle 0.98 0.43 -0.04 (0.31) -0.14 (1.12) rad
RSA rel polar angle 0.93 0.96 -0.04 (0.32) -0.10 (0.21) rad
RSA rel azimuth angle 0.87 0.84 -0.09 (0.30) -0.10 (0.96) rad
LCCA abs polar angle 0.91 0.76 < 0.01 (0.19) -0.08 (0.31) rad
LCCA abs azimuth angle 0.99 0.94 0.03 (0.23) 0.10 (1.40) rad
LCCA rel polar angle 0.84 0.15 0.11 (0.26) 0.09 (0.66) rad
LCCA rel azimuth angle 0.97 0.94 0.01 (0.10) -0.08 (0.32) rad
LSA abs polar angle 0.94 0.93 < 0.01 (0.15) -0.08 (0.15) rad
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LSA abs azimuth angle 0.98 0.98 -0.01 (0.35) 0.07 (0.69) rad
LSA rel polar angle 0.87 0.94 0.14 (0.20) 0.03 (0.13) rad
LSA rel azimuth angle 0.83 0.90 < 0.01 (0.12) -0.03 (0.18) rad
Morphological feature Automatic
Bovine AA presence (k) 1.00
AA type (k) 0.52

state-of-the-art solutions to develop a robust method for the character-
ization of vascular tortuosity. Compared to similar previously published
studies, this research includes several key aspects such as full automa-
tion of the entire analysis pipeline, inclusion of multiple human ob-
servers for the manual acquisition of feature measurements or the
inclusion of vessel-specific features.

As an objective and fast feature extraction method, automatic tor-
tuosity characterization of patients can provide a basis for the devel-
opment of predictive Al models that could confer valuable information
to the clinician pre-operatively about the difficulties they might expe-
rience when navigating through the AA and the supra-aortic region. This
immediate characterization system is the necessary first step in the
development of a decision support tool able to guide neuro-
interventionalists in their procedural planning. As a result, the initial
approaches in MT procedures could be efficiently programmed,
reducing access failures and workflow times, and ultimately improving
clinical outcomes.

Full automation has several key advantages over semi-automatic and
manual methods. Firstly, it allows the measurements process to be
rapidly performed in a small amount of time. We performed the full
analysis with the automatic method with all cases from the feature
extraction testing set (n = 30), and measured an average computation
time of 4 min 49 s + 0 min 53 s° across cases. Several factors may in-
fluence the computation time such as the input image size, the number

® Time measurements for image processing with the automatic method were
performed in a Linux server with an Intel® Xeon™ W-2275 CPU, 128 GB of
RAM, and Nvidia RTX A5000 GPU (24 GB).
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of separate segments after segmentation or the thermal throttling of the
hardware components. Manual segmentation in CTA volumes of the
arteries relevant for MT can typically take between 20 and 60 min per
case depending on the patient, the observer’s experience and the
required segmentation quality. Manual vessel labelling, in comparison,
is a relatively quick process, taking approximately 1-5 min per case if
made by an experienced user. The manual feature extraction process is
also quite intricate, taking between 45 and 60 min per case. A com-
parison between the time needed for each step of the process across
methods is found in Table 7. The advantage of the automatic method in
this regard is clear and represents the main argument for the use of the
presented method, as the manual alternative is simply not feasible in the
stroke treatment context due to the time needed to perform the analysis.

Secondly, bypassing any human interaction provides objectivity,
repeatability and robustness to the measurement acquisition, all of
which are considered key aspects for ensuring a valid characterization
for each patient, independently of the rater. The third main advantage is
that no specialized or trained personnel is needed to perform the anal-
ysis, which is a crucial factor for its applicability in clinical practice over
any semi-automatic method.

The error distribution for most features is very similar between the
manual and the automatic methods, with the addition of a few occa-
sional outliers in the automatic case (Fig. 5, Figs. S5-S10). Generally, the
automatic analysis yields accurate results for most cases in the testing set
but, on occasion, some landmarks are placed far from the ground truth
values causing the presence of outliers. These outliers are non-existent in
manual acquisition across different observers, as virtually all landmarks
were located by both observers within a reasonable distance. This makes
the analysis very demanding for the automatic methodology, as the
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Fig. 5. Box plots of the relative error for diameter measurements and absolute error for RLs, absolute angles and relative angles, for error comparison for

both methods.

Table 6

Precision, recall and mean error for the landmark placement of the analyzed methods compared to other state-of-the-art methodologies. Italic font indicates non-

algorithmic acquisition methods.

Target Precision Recall Mean error (mm)
Manual Head + neck + AA landmarks 0.98 1.00 29+21
Ours (2022) Head + neck + AA landmarks 0.81 0.97 2.7 +£22
Chen et al. (2018) (Chen et al., 2018) Intra-cranial arteries bifurcations 0.94 0.85 0.3+ 0.4
Tahoces et al. (2020) (Tahoces et al., 2020) Aorta landmarks - - 57+73

presence of only a small number of outliers heavily influences ICC
measurement and the error distribution values.

Table 2, Table 3 and Table 6 compare the obtained results for each of
the presented modules with other published methods applied on similar
tasks. In all three cases, state-of-the-art results are achieved with our
methods, demonstrating the performance of each of the modules
individually.

The error sources in the measurement of tortuosity features are
diverse, due to the high number of automated operations present in the
pipeline. These were identified and classified into the following cate-
gories (ordered by decreasing relevance): incorrect vessel labelling, sub-
optimal segmentation, incorrect centerline extraction, incorrect data
processing, unreliable azimuth angle due to steep polar component,

Table 7

time comparison between manual and automatic acquisition for the time needed
to perform each stage of the image processing. *Sensitive to the chosen
resolution.

Process Manual (approximation) Automatic
Segmentation (nnU-Net inference) 40 min 2min 3s
Centerline extraction 5 min 1min17s
Branch and clipped model computation - 1 min 18 s*
Graph generation - <1ls
Vessel labelling (gU-Net inference) 1 min <1s
Feature extraction 45 min 9s

Total 91 min 4min 49 s
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imaging artifacts and reasonable landmark displacements.

Future work within the Arterial© framework will explore predictive
tasks relative to stroke patients and MT procedures, that will rely on the
measurements obtained with the presented tortuosity feature extraction
method. The accuracy delivered by these predictive models will ulti-
mately determine if the performance of the tool in vessel anatomy
characterization is sufficient to design efficient predictive algorithms.

One important limitation of this study is the inclusion of features that
could be validated against human measurements. That significantly
limits the number and the type of features that could be included in this
validation assessment compared to the true potential of the presented
method. Features such as mean diameter, waviness of the vessel
(Hathout and Huy, 2012) or vessel volume are some examples of fea-
tures that could be easily extracted by the algorithm in its current
version but could not be directly validated against human measure-
ments. In addition, tortuosity descriptors can be gathered in different
scales. In this research, we have mainly looked at segment-scale features
(e.g., RL, departure angles, or proximal diameters) and global features
(e.g., presence of bovine AA, AA type). Features at a more local scale (e.
g., curvature at any point of the centerline, diameter at any point) may
also be relevant and contain valuable information to describe vascular
tortuosity. Our framework offers the flexibility needed to encode all this
information.

Another limitation for the current methodology is that it is limited to
CTA imaging. However, since the only point of contact of the analysis
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process with the input imaging is the segmentation model, this limita-
tion could be resolved by adapting the segmentation module to other
imaging sources. Such segmentation model could be trained using other
kinds of imaging modalities (e.g., MRA, 3DRA, etc.) so that the analysis
could be performed regardless of the input data form. The use of data
originated from a single medical center and CT manufacturer are other
limitations of this study.

6. Conclusion

We present a thorough validation study of a fully automatic method
for segmentation, vessel labelling and feature extraction for vascular
tortuosity analysis. Thirty-three geometric and morphological charac-
teristics of the arteries in the supra-aortic region that are relevant to MT
procedures were extracted by an automatic model, and results were
compared to manual measurements acquired by two independent expert
observers. Performance of the proposed methodology was comparable
to human performance, with the advantage of a significant time
reduction needed for the analysis, making it compatible with the stroke
setting for pre-operatory patient assessment.
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5.2 Deep learning-based model for difficult transfemoral access
prediction compared with human assessment in stroke thrombec-

tomy

The second publication of the compendium explores the value of vascular tortuosity fea-
tures automatically obtained with ARTERIAL for difficult or impossible TFA (DTFA)
prediction. From the publication of the first article of the compendium, the feature ex-
traction module was redesigned to deliver a richer and more robust set of features. Main

modifications included:

» Redefinition of how segments were treated for feature extraction: in the previous
version of ARTERIAL, feature extraction functions were tailored for each vas-
cular segment depending on the assigned vessel label. The implemented method-
ology was too dependent on assumptions based on normal configurations of the
vascular centerline tree. This could be detrimental to measurement accuracy and
cause a high percentage of missing measurements in cases where these assump-
tions were not fulfilled. On occasion, these assumptions could be broken either by
the actual configuration of the vascular tree of the patient, or as a result of center-
line extraction irregularities that were not errors necessarily. This was identified
and the definition of a vascular segment was unified across different vascular
segment types for more robust feature extraction.

* Integration of new features: there were 33 features evaluated in the first paper
for anterior circulation arteries. This number was increased to 49 in the second
publication, with the inclusion of segment features such as extreme angular mea-
surements and better-defined metrics involving consecutive segments.

« Arterial mapping of the centerline model from TFA to the occlusion site: cen-
terline maps and arterial labels were used to automatically determine the actual

centerline pathway relevant to the EVT procedure for each patient. Path trac-
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ing was done by minimizing a weighted cosine similarity between pre-specified
vessel type sequences to the vessel type sequences along each possible centerline
path from the descending aorta (the startpoint) to all other endpoints of the arterial
tree. This ensured that only relevant features were included for the prediction, in-
creasing the reliability of the anatomical characterization towards the predictive

model for DTFA.

A dataset of consecutive patients between February 2017 to December 2022, with a
LVO in the anterior circulation, that received EVT from TFA and with available pre-
procedural CTA was retrieved from the database of Hospital Universitari Vall d’Hebron.
The final used sample encompassed 513 patients, for whom either T1A or reported im-
possible TFA was known. For the purpose of the paper, the definition of DTFA included
patients with T1A>30 min (upper 10-percentile of patients with registered T1A) as well
as reported impossible access. The problem was treated as a regression task, using T1A
as a surrogate of access difficulty*. The predicted T1A was then treated as a probability
distribution to separate DTFA positive and negative predictions for a binary output.

A random forest model with extreme gradient boosting (XGBRF) was used for this
task 7. A recursive feature elimination (RFE) algorithm, that used feature importance
as the feature gain in the XGBRF model and validation performance was used to select
the most relevant features for DTFA prediction within our sample. Monte Carlo cross-
validation (MCCV) was employed with a training/validation split of 80/20 and 100 folds
for the final results.

In order to set a baseline for the model, a set of 116 cases was sampled from the
database. This validation set included all cases with impossible DTFA, as well as ran-
domly sampled cases from the rest of the dataset. The selected cases were indepen-
dently assessed by three raters (two seasoned and one fellow neurointerventionalists)

for DTFA, as well as radial access preference over femoral using a custom-made web

*In cases with impossible access, T1A was imputed using a uniform random variable defined within
the upper 1% of cases with longer T1A in the observed distribution (i.e., between 78 min and 143 min).
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application. The raters’ assessment was done using CTA and the 3D vascular automatic
reconstruction of the arterial tree, obtained using ARTERIAL’s segmentation module.
The sample was purposely biased to make the manual assessment task manageable for
the raters, while including a decent number of positive cases in the sample, not to make
the final classification results overly sensitive to single assessment errors. We argue
that, within the biased set, the comparison between raters and the model was fair.

The main objectives of the paper were to assess the predictive performance of the
model in the DTFA distribution in the complete sample, and against a human baseline
with the reduced sample. Secondary objectives included identifying the most relevant
features participating in DTFA prediction after RFE, and evaluating the use of 3D vas-
cular segmentation as compared to CTA for DTFA human prediction for the expert

assessment experiment.
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6.1 Segmentation and vessel labelling in ARTERIAL

Vascular segmentation is the basis of the proposed characterization pipeline. Pretrained
ViT-based models UNETR '”® and SwinUNETR '’ fine-tuned on the manually seg-
mented dataset delivered worse performance (Dice coefficient mean + std UNETR:
0.88 £ 0.05; SwinUNETR: 0.74 4+ 0.10) than nnU-Net trained from scratch (0.93
+ 0.02). Distance error 3D maps for some predicted segmentations compared to the
ground truths are displayed in figure 6.1, showcasing generally accurate segmentation

of large arteries up to the cerebral branches. A tendency for under-segmenting distal

cerebral arteries as well as the VAs was observed.

Distance (mm)

Figure 6.1: Error distance maps between the predicted segmentations from the nnU-Net and
the manual segmentations. (A) Good performance in the aortic and supra-aortic regions. (B)
Missed segmentations at the base of the vertebral arteries. (C) Inaccuracies in segmenting dis-
tal cerebral arteries. Positive distances represent over-segmentations, while negative distances
indicate under-segmentations. VAs: vertebral arteries.

For the vessel labelling task, the 57 test cases presented a mean number of segments of
16.8. Testing of the vessel labelling graph U-Net showed a per-case prediction accuracy
of 0.95 £+ 0.06 (mean =+ std). In 70.2% of cases only one error or less were made,
achieving perfect labelling in 42.1% of cases. Table 6.1 shows the class-wise Dice

coefficient for each of the anatomical labels in the testing set.
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Table 6.1: Classification metrics for each vessel type for all segments in the testing set. TP: true
positive. FP: false positive. FN: false negative. AA: aortic arch. BT: brachiocephalic trunk.
R/L: right/left. CCA: common carotid artery. SA: subclavian artery. VA: vertebral artery. ICA:
internal carotid artery. ECA: external carotid artery. BA: basilar artery.

Vesseltype N TP FP FN Dice Vesseltype N TP FP FN Dice
AA 226 225 9 1 0.98 L-VA 57 51 9 6 0.87
BT 57 52 1 5 0.95 R-ICA 51 44 3 6 0.91
R-CCA 56 54 0 2 0.98 L-ICA 50 44 3 6 0.91
L-CCA 60 56 1 4 0.96 R-ECA 53 51 8 2 0.91
R-SA 95 91 4 4 0.96 L-ECA 56 52 4 4 0.93
L-SA 100 94 6 6 0.94 BA 15 13 2 2 0.87
R-VA 50 44 8 6 0.86 Other 30 23 5 7 0.79

6.2 Geometrical and morphological feature extraction

Feature extraction agreement was assessed by the comparing the intra-class correlation

coefficient (ICC) or Cohen’s kappa (x) and the error distributions between manual mea-

surements made by human observers and the automatic presented method. Figure 6.2

shows the error distribution for all geometrical features with both manual and automatic

methods.
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Figure 6.2: Box plots for the error distribution for the manual (blue) and automatic (green)
methods. Absolute errors are shown for all features except for diameter, where relative error is

displayed.

88



The error distribution was comparable across methods for most of the features, with
larger bias for the automatic method and a higher fraction of outliers. Bland-Altman
plots can be found in the supplementary material (figures S5-S10, appendix ??). Table
6.2 shows the ICC and x values for manual measurements by both human raters and for
the automatic method. With the proposed method, the majority of the 31 geometrical
features showed excellent (10) or good (9) agreement with ground truth values. Nine
of the remaining features presented moderate agreement with reference values, with
only 3 achieving poor reliability. The two morphological features presented identical

agreement between the model and ground truth to the inter-rater variability.

Table 6.2: Agreement between manual measurements by human raters and the automatic
method. For manual assessment, measurements between both human raters are compared with
each other. For the automatic method, measurements extracted by the algorithm are compared
with the ground truth values, i.e., the mean across observers. ICC: intra-class correlation coef-
ficient. x;: linearly-weighted «.

ICC ICC
Manual  Automatic Manual  Automatic
Geometrical features
AA diameter 0.89 0.78 R-CCA abs azimuth angle 0.85 0.71
BT prox. diameter 0.70 0.67 R-CCA rel polar angle 0.96 0.92
R-CCA prox. diameter 0.37 0.59 R-CCA rel azimuth angle 0.88 0.94
R-SA prox. diameter 0.40 0.62 R-SA abs polar angle 0.79 0.82
L-CCA prox. diameter 0.53 0.27 R-SA abs azimuth angle 0.98 0.43
L-SA prox. diameter 0.48 0.76 R-SA rel polar angle 0.93 0.96
BT relative length 0.99 0.89 R-SA rel azimuth angle 0.87 0.84
R-CCA relative length >0.99 0.58 L-CCA abs polar angle 0.91 0.76
R-SA relative length >0.99 0.51 L-CCA abs azimuth angle 0.99 0.94
L-CCA relative length >0.99 0.98 L-CCA rel polar angle 0.84 0.15
L-SA relative length >0.99 0.54 L-CCA rel azimuth angle 0.97 0.94
BT abs polar angle 0.81 0.87 L-SA abs polar angle 0.94 0.93
BT abs azimuth angle 0.91 0.83 L-SA abs azimuth angle 0.98 0.98
BT rel polar angle 0.86 0.87 L-SA rel polar angle 0.87 0.94
BT rel azimuth angle 0.85 0.83 L-SA rel azimuth angle 0.83 0.90
R-CCA abs polar angle 0.83 0.53
K KL
Manual Automatic Manual Automatic
Morphological features
Bovine AA presence 1.00 1.00 AA type 0.52 0.52
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With the first version of ARTERIAL as presented in the original article, time needed
for full feature extraction pipeline was measured at 4 min 49 s + 0 min 53 s*, with most
of the time being allocated to segmentation (43% of the time) and centerline extraction

and branching (54%).

6.3 Predictive model for DTFA

For the development of the DTFA predictive model, a total of 513 patients were included
in the final sample (81 years, IQR 71-88, 57.5% women). The inclusion chart for the
study can be found in appendix ?? (figure Al). DTFA was experienced in 59 cases
(11.5%). Within the DTFA group, impossible DTFA was found in 16 cases (3.1%), and
43 cases experienced a T1A>30 min (8.4%). Baseline characteristics for the complete
sample and both target groups are collected in table 6.3.

On visual assessment of the centerline pathways extracted using ARTERIAL, 474
(92.4%) were found to be completely correct of lacking major errors impeding the cor-
rect computation of features. The remaining 39 cases (7.6%) presented errors signifi-
cantly affecting the computation of included features. These were not removed for the
rest of the study.

From the initial 49 computed features, 20 were removed due to being quasi-constant
or missing in over 10% of cases. RFE reduced the number of features from the included
29 to the final 6 features in 16 iterations. A diagram of the RFE algorithm can be found
in figure A3 (appendix ??). Selected features were, in order of importance (see figure
A4 in appendix ??): TI of the complete segment, maximum azimuth angle difference
between the AA and the ipsilateral CCA, TI of the ipsilateral CCA, AA length, stan-
dard deviation (SD) of the complete segment and minimum polar angle of the complete
segment. Figure 6.3 shows the evolution of the training and validation performance in

terms of the area under the receiver operating characteristic curve (AUROC) along RFE

*Time measurements made on Intel® Xeon™ W-2275 CPU w/ 128 GB RAM, and Nvidia RTX A5000
GPU (24 GB).
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Table 6.3: Baseline characteristics compared across relevant groups. For p value computation,
the Mann-Whitney U-test was employed for numerical variables and the y? test was used for
categorical variables. TImpossible access group excluded. DTFA: difficult transfemoral access;
IQR: inter-quartile range. mRS: modified Rankin Scale; ASPECTS: Alberta Stroke Program
Early CT Score; IV: intra-venous; TICA: ICA terminus; mTICI: expanded treatment in cerebral
ischemia; TFP: time to first pass; PT: procedural time.

All Normal access DFTA p value
N 513 454 59
Age, years [median (IQR)] 81 (71-88) 81 (70-87) 86 (77-90) 0.003
Female (%) 57.6 56.6 64.4 0.325
Left hemispheric stroke (%) 49.8 49.6 51.7 0.876
NIHSS at presentation [median (IQR)] 16 (10-20) 16 (10-20) 17 (11-20.5) 0.370
Baseline mRS [median (IQR)] 1(0-2) 1(0-2) 1(1-2) 0.251
ASPECTS at presentation [median (IQR)] 9 (8-10) 9 (8-10) 9 (7-10) 0.479
IV thrombolysis (%) 31.6 36.0 37.9 0.889
TICA occlusion (%) 18.3 18.5 16.4 0.834
M1 occlusion (%) 48.6 48.3 50.9 0.823
M2 occlusion (%) 33.1 33.2 33.7 1.000
mTICI > 2B (%) 88.4 89.4 80.0 0.100
mTICI > 2C (%) 62.9 65.2 44.0 0.004
N° passes [median (IQR)] 1(1-3) 1(1-3) 2 (1-3) 0.891
T1AT, min [median (IQR)] 11 (8-16) 11 (8-15) 42 (34-67.5) <0.001
TFPT, min [median (IQR)] 23 (18-34) 22 (17-30) 53 (42.5-78.5)  <0.001
PT?, min [median (IQR)] 35 (24-58) 32 (23-49) 72 (54-103.5)  <0.001
NIHSS at discharge [median (IQR)] 4(1-12) 4(1-11) 8 (3-16) 0.009
mRS at 90d [median [IQR]) 3(1-3) 2 (1-3) 3(2-4) 0.099

iterations, as well as an illustration for each of the selected features.

The final model was fine-tuned and validated including the selected 6 features using
the 100-fold MCCYV validation scheme. Upon fine-tuning, the XGBRF depth and num-
ber of estimators were chosen at 3 and 1,000, respectively. For training, an aggressive
subsampling rate of 0.07 applied across trees was necessary to prevent overfitting. Op-
timal feature sampling rate was 0.8. A regression plot can be found in figure 6.4 along
the receiver operating characteristic (ROC) curve for DTFA binary prediction.

The model achieved an AUROC of 0.76 (95% CI 0.75-0.77) in validation. The opti-
mal threshold (22.0 min, 95% CI 21.4-22.7) was computed by averaging the predicted
T1A threshold maximizing the Youden’s index for each fold. Under this criterion, the

model displayed a sensitivity of 0.65 (95% CI 0.62-0.68), a specificity of 0.80 (95% CI
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Figure 6.3: (A) Results of the RFE experiment. Training and validation AUROC (95% CI)
are plotted at each iteration. (B) Illustration of all included features in the final model. [B1]
Total TI: red solid line represents centerline of total segment and blue dashed line represents
Euclidean distance between both ends of the segment. [B2] AA-CCA maximum azimuth angle
difference: the maximum azimuth angle formed by any two points of the AA (red) and the CCA
(green), only considering points where tangent presents a polar angle below 50°. [B3] CCA TI:
same as B1, reduced to the CCA segment. [B4] AA length: only the part of the AA segment
proximal (from femoral access) to the left CCA bifurcation is only considered (red). [B5] Total
diameter SD: radius profile of the total segment. [B6] Total minimum polar angle: point with the
lowest polar angle (orange), in this case in the BT. AUROC: area under the receiver operating
characteristic curve. CI: confidence interval. max az dif: maximum azimuth angle difference.
SD: standard deviation. TI: tortuosity index. Train: training. Val: validation.

0.78-0.82) and an F1-score of 0.42 (95% CI 0.41-0.43) for DTFA classification. When
averaging validation predictions across folds, the model was found to be more sensitive

to impossible cases than for cases with T1A>30 min (sensitivity impossible cases: 0.90,

92



@ MNosmal (T1A<30 min) 10
Difficutt {T1A>30 min) :

4 @ Impossible
—— Optimal threshald (95% Ci)
0.8
40
=
] @
E @
= " &
2 " g 06
g =
@
_B * 4 E
5] M
5 3 04
ol =
o
0.2
—— Train ROC (AUC = 0,83 [95%CI 0.83-0.83])
— Val ROC (AUC = 0.78 [95%CI 0.75-0.77])
0 0.0
0 20 40 60 80 100 120 140 0.0 0.2 04 0.6 08 1.0
True T1A (min) False Positive Rate

Figure 6.4: (Left) Regression plot for the validation predictions. Individual regression pre-
dictions were estimated by averaging validation values across cross-validation folds. Normal
access (no DTFA), difficult (DTFA, T1A>30 min) and impossible (DTFA, impossible) cases
are colored green, yellow, and red, respectively, with error bars showing 95% CI. Average op-
timal threshold for DTFA classification (with 95% CI bands) is shown in blue. (Right) ROC
curve for training (blue) and validation (red) results of DTFA classification. Bands represent
the standard deviation of true positive rate. AUC: area under the curve. CI: confidence interval.
DTFA: difficult transfemoral access. ROC: receiver operating characteristic. T1A: time to first
angiography series. Train: training. Val: validation.

95% C10.81-0.94; TIA>30 min: 0.54, 95%CI 0.47-0.63). An asymmetry was observed
with stroke side, with left-sided arterial pathways achieving more sensitivity than right-
sided pathways (left: 0.70, 95% CI 0.65-0.77; right: 0.56, 95% CI 0.50-0.64), with both
groups presenting similar specificity (left: 0.82, 95%CI 0.77-0.86; right: 0.81, 95% CI

0.76-0.84). Inference was 10% faster than reported in the previous publication (4 min

195, IQR 3 min 56 s, 4 min 47 s).

6.4 Human benchmark for DTFA prediction

Evaluation of DTFA by three human experts was qualitatively assessed on a subsam-
ple of 116 cases. In this cohort, 26 cases presented DTFA (22.4%), including the 16
cases with impossible TFA (13.8%). The remaining 100 cases were randomly sampled

from the complete dataset, with 10 having T1A>30 min (8.6%) and the remaining 90
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achieving T1A <30 min (77.6%).

Regarding human ability for DTFA discrimination, average AUROC was worse when
assessed on CTA (0.67, 95%CI 0.60-0.73) as compared to automatic 3D vascular seg-
mentation (0.74, 95% CI 0.69-0.78). Inter-observer agreement was comparable on both
modalities (x CTA: 0.56, 95% CI 0.49-0.63; 3D seg: 0.50, 95% CI 0.46-0.55). The
model’s performance on the subsample was estimated by bootstrapping validation pre-
dictions across MCCYV folds. Table 6.4 shows a comparison of DTFA classification
metrics across raters with CTA, raters with automatic 3D segmentation and the model.
The model was more sensitive than human raters in detecting cases with T1A>30 min
(humans w/ CTA: 0.60, 95% CI 0.44-0.76; 3D Seg 0.53, 95% CI 0.43-0.64; model:
0.71, 95% CI 0.60-0.90), as well as impossible cases (humans w/ CTA: 0.67, 95% CI
0.58-0.75; 3D Seg 0.81, 95% CI 0.75-0.87; model: 0.90, 95% CI 0.81-0.94). Figure
6.5 shows the regression plot and the ROC curve comparison for the human baseline

experiment.

Table 6.4: Comparison of classification metrics on the reduced sample across expert raters
using CTA, automatically-generated 3D reconstruction of vessels and the proposed method. The
95% CI are reported in brackets for all metrics. MCC: Matthew’s correlation coefficient. CI:
confidence interval.

Method Sensitivity Specificity F1 MCC

Experts (CTA) 0.64 (0.53-0.76)  0.62 (0.51-0.73)  0.43 (0.37-0.50)  0.22 (0.12-0.32)
Experts (3D Seg) 0.71 (0.68-0.73)  0.67 (0.58-0.76)  0.50 (0.46-0.54)  0.32 (0.26-0.38)
Proposed method (2024) 0.83 (0.77-0.92)  0.84 (0.79-0.89)  0.70 (0.65-0.75)  0.61 (0.53-0.68)

6.5 Tortuosity feature interpretation

Figure 6.6 shows the feature distribution across DTFA groups. Statistical differences
across distributions were analyzed using the Mann-Whitney U-test (see table A3 in the
appendix ??).

Total TI and CCA TI are global markers for presence of tortuosity along the global
pathway and the CCA segment in particular, respectively. These were significantly

larger in the DTFA group (p total T1: <0.001; CCA TI: 0.039). A gradual increase was
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Figure 6.5: (Left) Regression plot for the validation predictions in the subsample evaluated
by human raters. Same conventions as in figure 6.4 apply. (Right) ROC curve for examples
within the subsample for model validation (red), humans with CTA (green) and humans with 3D
segmentation (yellow). Bands represent the standard deviation of true positive rate. AUC: area
under the curve. CI: confidence interval. DTFA: difficult transfemoral access. ROC: receiver
operating characteristic. T1A: time to first angiography series.
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Figure 6.6: Kernel density estimation plots for the final group of included features. Distribu-
tions for the groups with no DTFA (green), T1A>30 min (yellow) and impossible TFA (red) are
displayed. TI: tortuosity index. SD: standard deviation.

observed in the distribution for both features, with larger mean values for cases with

T1A>30 min compared to cases with TIA<30 min, although not statistically signifi-
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cant (p total TI: 0.110; CCA TI: 0.313), and significantly larger values for cases with
impossible TFA compared to TIA>30 min (p total TI: 0.006; CCA TI: 0.048). For
AA-CCA maximum azimuth angle, almost all cases with impossible TFA displayed a
difference of 7 rad (maximum possible value for the feature), while the distribution was
broader for both normal cases and cases with T1A>30 min (p Normal vs. TIA>30 min:
0.168; TIA>30 min vs impossible: <0.001). This suggests that, practically in all cases
with impossible access, an extreme change of transversal direction is present between
the AA and the ipsilateral CCA. However, it does not seem to be specific for impossible
TFA.

AA length was larger in cases with DTFA compared to non-DTFA (p 0.001), and
was not statistically different between impossible cases and cases with TIA>30 min (p
0.165). It is worth noting that this feature encompasses the length captured in the CTA
between the endpoint placed at the descending aorta and the bifurcation to the corre-
sponding supra-aortic branch. The fraction of the AA visible in CTA can vary across
acquisitions, which could raise some concerns regarding the robustness this feature.
However, this effect should be independent of the access difficulty, therefore the sta-
tistically significant difference of the feature’s distributions across groups remains an
interesting finding. AA length may be a strong marker for AA elongation.

Total minimum polar angle, which refers to the most downward-facing polar compo-
nent of the centerline tangential vector profile, does not present significant differences
across any of the groups. Finally, there is a gradual trend towards higher distribution
values for total diameter SD in cases TIA>30 min and impossible cases with respect
to cases with T1A <30 min, although these differences do not reach statistical signifi-
cance (p Normal vs. TIA>30 min: 0.076; Normal vs. impossible: 0.052). This feature
may be related to the increased presence of atheromatosis in the vessel walls, although

further testing is needed for confirmation.
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7

Global summary of discussions
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Our research introduces the most complete automatic vascular characterization frame-
work tailored to EVT for stroke to date among the available literature. In addition, we
demonstrate state-of-the-art performance and potential applicability of a DTFA predic-

tive model using ARTERIAL as a fully automatic feature extraction tool.

7.1 Novelty of ARTERIAL over previous methods

The initial goal when designing ARTERIAL was to have a characterization system to
replicate anatomical measurements found in previously available research attempting
to understand the impact of tortuosity on EVT 22129138139 in 3 fylly automatic fash-
ion. Such system may allow investigation on large cohorts of the relationship between
tortuosity-related features on procedural variables such as PT or DTFA, which has been
constrained by the need for manual measurements up until this point.

Compared to previously published research #1148 " our framework introduces a
combination of segmentation and vessel labelling on vascular centerline models that
allows for interpretable feature extraction with a level of automation that was not avail-
able in prior public research. Automation is not only crucial for feasibility of large-scale
feature extraction, but also for objectivity and repeatability of measurements. More im-
portantly, full automation and the reasonably short inference time opens the possibility
of practical implementation of advanced anatomical analysis in the AIS scenario, po-

tentially impacting treatment decisions.

7.2 Automatic feature extraction accuracy

The reliability of ARTERIAL as a feature extraction method was assessed by comparing
direct measurements of two human raters. This was a strict validation methodology
compared to previous research, where feature extraction reliability was only inferred
by landmark positioning or segmentation accuracy.

Good to excellent agreement with human experts was observed for most features
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based on the interpretation of ICC and x values. However, it is important to analyze
Bland-Altman plots to understand how the model behaves for each individual feature.
These were not included in the main document for conciseness, are displayed in ap-
pendix ?? (figures S5-S10). For example, focusing on the features with poor reliability
(ICC <0.5), i.e., L-CCA proximal diameter, R-SA absolute azimuth angle or L-CCA
relative polar angle, the presence of few outliers (7-10% of the total sample) with large
errors greatly penalizes the error distribution parameters and agreement coefficients,
even if the rest of the error distribution is similar to that of the human raters.

A deep inspection of outliers revealed the primary mechanisms leading to large er-
rors. Main sources were, ordered by decreasing influence on final measurement error
distribution: incorrect vessel labelling, sub-optimal segmentation, error in centerline
extraction or unreliability of the azimuth angle due to a steep polar component. For
example, an incorrect labelling of a vessel may lead to physically nonsensical mea-
surements (e.g., an L-CCA diameter of 20 mm) that could result in outliers originating
large disagreements between distributions, even if these only affect a small fraction of
cases. Of course, this effect is generally not observed in human assessment. The lack
of awareness as to what are reasonable measurements is a limitation of the feature ex-

traction method.

7.3 Predictive model for DTFA

The proposed model achieved superior discrimination ability in predicting DTFA com-
pared to previous research while adding automation to the characterization method at
the same time '“!>. This supposes an important leap for the field.

Out of the 29 features considered, only 6 were used in the final model following
RFE. The combination of the 6 selected features captures anatomical characteristics
from all parts of the analyzed vasculature (aortic, supra-aortic and cervical regions).

This results supports the idea that DTFA could be caused by a combination of several
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influential factors in different anatomic regions, as opposite to being caused to one spe-
cific morphology or configuration. Feature distribution analysis after feature selection
revealed that patients with DTFA presented higher TI for the CCA and for the complete
arterial pathway from the descending aorta to the occlusion site. We also found that
practically all patients with impossible access describe a 180° angle on the transversal
plane at some point of the ipsilateral CCA compared to the AA, and that greater aortic
elongation was also predictive of DTFA.

The model achieved high accuracy in identifying cases with impossible access (90%,
95% CI 81-94%). Conversely, the model exhibited a significantly lower performance
in classifying cases where T1A exceeded 30 minutes (only 54%, 95% CI 47-63%). An
interpretation of this result may be that impossible TFA is a much purer consequence of
difficult vascular anatomy, while procedural delays could be caused by many different
reasons such as the neurointerventionalist ability, device choice, time of day for EVT
(day/night) or preparedness of EVT material upon groin puncture.

Our analysis revealed that the model outperformed human observers in a subset of
patients enriched with cases exhibiting impossible TFA. Our results support the hypoth-
esis that human discriminatory ability in identifying DTFA is moderate to poor, partic-
ularly when relying on CTA imaging. Results improved when assessing DTFA on a 3D
model of the reconstructed arteries on CTA. Following these results, visualization of
reconstructed 3D vascular models before puncture is recommended for enhanced iden-
tification of DTFA. Vascular segmentation on CTA is fast (on average, segmentation

took 2 min 28 s, IQR 2 min 13 s to 2 min 45 s) and very robust.

7.4 Implications of DTFA prediction

A confident DTFA prediction before arterial puncture could serve as decision support
for the neurointerventionalist to selectively prioritize an alternative access to TFA as

first-line. As seenin SFERA '*° and large meta-analyses '*!"'*>, TRA seems to be equiva-
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lent to TFA in terms of complications, recanalization success rates and procedural times.

However, the rate of impossible access does not seem to be inferior for TRA as com-
pared to TFA, and in many of the cases when an alternative access is attempted (all
cases in SFERA '*°, TFA to TRA: 8.6%; TRA to TFA: 12.1%; in the meta-analysis by
Penide at el. '2°, from 4.4% of patients experiencing impossible TFA a reduction to 3.6%
was observed after an alternative access was attempted), the occlusion site is reached.
This supports the thesis that, with current devices, an advanced assessment on a patient-
specific basis may be needed to reduce the rate of difficult or impossible access in EVT.
A direct comparative prediction between TFA and TRA could be more informative than
DTFA prediction towards decision support in the acute phase. A system as such may
not only lead to reduced rates of impossible access, but also to reduce intervention times

overall systematically choosing the most adequate access for each patient.

7.5 Limitations

The presented research has several limitations. Although validation against human mea-
surements is strict standard for measurements such as those presented in the first article
of the compendium, this restricts the amount of features and examples and type of fea-
tures that could be measured and validated in the study.

The use of interpretable features for DTFA prediction is an important limitation of
the model. Although this is done to preserve interpretability and understand the asso-
ciation of tortuosity markers to DTFA, robust computation of these features presents a
huge challenge. Additionally, asymmetries or relevant assumptions may limit the flexi-
bility of the model, resulting in worse performance in specific subgroups or making the
predictive model unsuited for similar tasks. One example of this effect is the observed
asymmetry in right- and left-sided pathways, whose difference in performance may be
explained by the lack of consideration of BT-related features, resulting in worse perfor-

mance in right-sided cases (these may not be as well-characterized as left-sided ones).
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Another example is the unsuitability of proposed characterization for TRA assessment.

Moreover, this featurization strategy can limit the characterization power of ARTE-
RIAL for predictive tasks such as DTFA prediction. In contrast, the use of low-level
features (e.g., curvature, torsion, tangential components along centerline points) may
be a more robust and expressive characterization strategy. Future predictive models
may be designed to incorporate mechanisms to process and leverage this information,
as well as strategies for model explainability. With increasing opacity of deep learn-
ing models, the implementation of explainability methods becomes paramount for their
real-world clinical application. Explainability fosters trust in the model’s predictions
among healthcare professionals, thereby facilitating its integration into clinical work-
flows.

Other limitations are the lack of assessment of arterial pathways from radial access
or in posterior circulation. Correctly identifying DTFA and selecting TRA as first-line
approach may not be enough to avoid impossible access. Future models may need to
perform a comparative assessment as discussed above to avoid difficult access. Pos-
terior circulation LVO accounts for approximately 20% of all AIS treated with MT.
Analysis of posterior circulation arterial pathways may be addressed similarly to those
in anterior circulation. However, vascular segmentation is not as reliable for proximal
VA segmentation on CTA, mainly due to frequent minor imaging artifacts caused by
venous contrast flow, which could significantly reduce the robustness of the feature
extraction method for posterior circulation arterial pathways.

The arteries in the abdomen or legs cannot be assessed with this methodology as
these are typically not imaged in CTA protocols for stroke. Even though the preva-
lence of impossible access due to complications in the aorto-iliac and femoral vascular
segments is low (0.2% of all reasons for reperfusion failure) compared with the aortic

)120

arch and supra-aortic vessels (4.0%) ", the inability to properly address these cases is

a limitation of the DTFA model.
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Finally, a significant limitation of the research included in this thesis is the use of
retrospective data from a prospectively maintained database and from a single medical
center. The use of retrospective data may introduce selection bias, which may be impor-
tant for the DTFA prediction task due to the scarcity of positive cases. The use of data
from a single center could also add bias in the observed distribution of DTFA (e.g., fac-
tors such as neurointerventionalist ability or resources can vary from center to center),
and could cause Al methods such as the segmentation model or the DTFA prediction
model to overfit to data from our center. An advantage of our methodology is that the
segmentation module is the only contact point between ARTERIAL and the original
imaging, which means that if the segmentation model generalizes well, feature extrac-
tion is likely to perform satisfactorily. This applies to data from other centers as well
as other imaging modalities such as MRA. However, empirical validation is needed to
confirm this hypothesis. The absence of a hold-out dataset for internal testing, as well
as the usage of validation metrics for decisions concerning model design (i.e., RFE al-
gorithm used in the development of the DTFA predictive model is based on validation
AUROC of randomly sampled train/validation splittings) could also be other sources
of overfitting. Generalizability of the presented results should be further evaluated in

future research.
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Conclusions
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The conclusions of the doctoral thesis are:

1. Deep learning for vascular segmentation and vessel labelling enabled automatic
and reliable characterization of vascular features from pre-procedural angiographic
stroke imaging.

2. Within a single-center retrospective dataset, extracranial vascular tortuosity was
associated to DTFA. A set of six anatomical characteristics from the aortic, supra-
aortic and cervical regions was identified as predictive of DTFA.

3. State-of-the-art performance for DTFA prediction in MT was achieved using
automatically-extracted vascular anatomical markers. The model was particu-
larly effective at correctly classifying impossible TFA.

4. The DTFA prediction model based on automatic vascular characterization was
better than human experts at identifying DTFA in the same cohort. Experts’
DTFA discrimination ability improved using an automatically-reconstructed 3D
model of the arterial system as compared to using CTA, which is the standard in

current practice.
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Future research
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9.1 Developing more advanced models for DTFA prediction

Our primary motivations for tackling the DTFA prediction task as presented, i.e., relying

on handcrafted interpretable features, were the following:

* Numerous studies, as well as expert intuition, had identified potential anatomical
markers associated to DTFA and longer PT prior to our research. Developing an
effective prediction model can serve as a method to identify features playing an
important role in causing DTFA. This was one of the main goals of this research.

* Grounding the prediction of DTFA on interpretable features can foster trust to-
wards the model predictions.

 Pre-selecting potentially relevant features based on domain knowledge (i.e., in-
tuition and experience by seasoned interventionalists) can be an effective method
to reduce dimensionality for the characterization of training examples towards
learning tasks, alleviating the need for very large datasets to achieve effective

learning.

As explained in the limitations of the discussion summary (see section 7.5), the use
of interpretable features for DTFA prediction supposes important constraints. On the
one hand, automatic, robust and reliable feature engineering presents a huge challenge.
On the other hand, we may be omitting relevant information derived from arterial trees
and CTA images that is not captured by engineered features. This information could
potentially be leveraged by more advanced predictive models.

End-to-end deep learning models excel at leveraging low-level descriptors and rela-
tionships within the data without the need of feature engineering. Image-based models,

such as CNNs?*2%? or visual transformers (ViT)!'9%-203:204

may be a suitable option for
DTFA prediction. However, training an image-based model on CTA for DTFA predic-
tion with our current dataset poses several significant challenges. First, the size of our

dataset, ranging from 500 to 1000 images, is relatively modest. This is less problematic
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in segmentation tasks as effective data augmentation techniques like pseudo-random
patching (as employed by nnU-Net '**) and the intrinsic nature of segmentation as voxel-
wise classification (i.e., the number of individual examples is much larger) enable more
efficient learning. These advantages may not translate well to learning of classifica-
tion tasks. Moreover, our dataset is heavily imbalanced, particularly when impossible
TFA is used as the classification target (only 3-4% of cases), which complicates the
classification problem even further.

In addition, CTA are high-dimensional objects*. Learning tasks based on high-dimensional
data present additional constraints due to the large computational load needed to pro-
cess the data, and complicate the optimization task by making the search space for the
optimal solution too large. There are data preprocessing strategies that can reduce di-
mensionality at the cost of losing detail, such as resampling to lower (but acceptable)
resolutions, limiting the volume of interest to the anatomy that is presumed to be most
relevant or applying transforms during training for data augmentation. However, it may
still not be enough to achieve satisfactory performance in our task, although empirical
testing may be needed to confirm these hypothesis.

At the time of submitting this dissertation for evaluation, we have begun explor-
ing the use GNNs as potential models for tasks such as predicting impossible TFA.
GNNs?% are geometric deep learning models that can leverage connectivity relation-
ships and low-level features between unstructured data presented as graphs. GNNs have
achieved state-of-the-art performance in all kinds of graph-related tasks such as node
classification, edge prediction, graph regression and graph classification>".

Centerline maps can be trivially represented as graphs, with nodes encoding center-
line positions and geometrical descriptors of centerline trajectories, and edges repre-
senting the connectivity between centerline points. GNNs have unique capabilities that

make them well-suited for processing graphs derived from vascular centerline maps.

* At a resolution of 0.43 x0.43 x 0.4 mm?®, which is the native resolution of CTA in our medical center,
median image shape is 512x512x861 within our dataset.

110



These include the ability to manage inputs of varying sizes and to encode attributes in
both nodes and edges efficiently, all while maintaining low computational cost. Overall,
the use of GNNs operating on centerline graphs can be seen as a method for dimension-
ality reduction, which may make our classification task tractable with our dataset.

A model based on graph attention’’’, enabling feature encoding at various scales
from centerline graphs generated automatically using ARTERIAL, has already been
tested for impossible TFA prediction within our cohort. Figure 9.1 shows a conceptual
overview this model. This approach was inspired by the use of GNNs for time of ar-
rival estimation in real traffic scenarios?’®. Preliminary results are promising, although

further validation is needed.
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Figure 9.1: Graphical overview of the ArterialGNet implementation for impossible TFA pre-
diction using arterial centerline pathways extracted from CTA by ARTERIAL.

An important aspect that we want to investigate is the implementation of explain-
ability methods over newer more opaque models to understand the mechanisms and
rationale of the model. However, this has not been explored in our task so far.

Beside GNNs, another option that could be less affected by our limitations regard-
ing data availability is the use of pretrained models. Pretrained ViT models leverag-
ing self-supervised learning have been explored in the last few years, although in the
199,203

3D medical image domain, these are typically designed for segmentation tasks

Large foundational vision-language models are typically trained on large amounts of
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cross-domain data tend to generalize well in zero-shot or few-shots classification sce-
narios. Itis becoming increasingly common for institutions or companies with extensive
resources to open-source large model weights. These models incorporate powerful vi-
sion encoders that can be fine-tuned for unseen tasks. However, general-purpose large
foundation models that are pretrained effectively for 3D medical images are still scarce
(as of June 2024), although there are recent examples of powerful models that have
been released’”. This could be another option for alleviating the lack of large datasets
for difficult classification tasks such as DTFA prediction. These models possess other
interesting capabilities such as semantic vision, which could be used as a method for

explainability.

9.2 Validating automatic characterization and DTFA prediction

model on external data

One of the main limitations of this research is the lack of external data for validation. We
are actively working in recruiting potential collaborators from Europe and the United
States to share data for this purpose. The main research focus in the short term will
be to extensively validate published research and new predictive models with a larger

multi-centric dataset.

9.3 Implementing ARTERIAL for prospective use

Implementation for prospective use within our medical center can enable exploration of
real-time use of ARTERIAL. As demonstrated by our results, the addition of automatic
3D vascular segmentation from CTA to the acute workflow can augment the practi-
tioner’s capacity to detect DTFA prior to arterial puncture. This could already have a
meaningful impact in treatment effect, potentially reducing the number of patients with
impossible access. Novel predictive methods could be successively added on top of

vascular segmentation visualization.
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Upon proper validation of the predictive models, the possibility to carry out a prospec-
tive trial is contemplated to test the effectiveness of adding advanced image analysis
tools like ARTERIAL in the acute workflow of patients. A web application was de-
signed for 3D visualization of vascular segmentations, as well as for CTA. As of June
2024, talks have been held with the informatics department of our CSC for the prospec-
tive implementation of ARTERIAL, although the implementation process has not be-

gun.

9.4 Expanding analysis to intracranial arteries

The main focus throughout the thesis has been set on extracranial vascular tortuosity.
However, intracranial artery tortuosity may play a significant role in the likelihood of
success for MT or the risk of complications. The anatomy of intracranial arteries might

111

influence force transmission between device, clot and vessel walls''*, possibly affecting

the success of MT 2. There may be differences on recanalization success likelihood
across different retrieval techniques depending on vessel tortuosity '°.

The presence of acute intracranial vascular tortuosity may also be associated to in-
creased risk of complications''*. This may be specially relevant for distal occlusions,
where vessels are smaller and vessels are generally more tortuous. Within our sample,
distal MCA occlusions account for approximately 15% of all treated anterior circulation
occlusions. Results from large RCTs”"-*! assessing the efficacy of MT on distal MeVOs
are yet to be released, but preliminary data suggests that the risk of complications may
be higher than proximal LVOs %,

A similar approach to Arterial GNet could potentially be developed for FPE likeli-
hood or risk of safety complications prediction with CTA or DSA imaging data, prior to
performing a first thrombectomy pass. Early investigations are already active within our

group, and include exploring associations between anatomical markers of intracranial

vessels extracted with ARTERIAL to recanalization success and rate of complications.
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Appendix A - Supplementary material

A fully automatic method for vascular tortuosity feature extraction in the
supra-aortic region: unraveling possibilities in stroke treatment planning

A.1 Vascular tortuosity and difficult catheter access for
stroke endovascular treatment

Several studies have explored the correlations between several tortuosity features and
difficult mechanical thrombectomy (MT) indicators. A summary of tortuosity features and their
correlations to difficult MT indicators is some of the most relevant studies in the field (Mokin et al.
2020; Kaymaz et al. 2017; Benson et al. 2020; Schwaiger et al. 2015; Snelling et al. 2018) can
be seen in Table S1.

Mokin et al. (2020) Kaymaz et al. (2017) Benson etal. (2019) Schwaiger et al. (2015) Snelling et al. (2018)

Number of patients 100 (156) 76 (105) 120 159 61
TI (L-CCA) Age, TTO, FT - - - -
TI (R-CCA) Age, TTO, FT - - - -
TI (L-ecICA) Age, TTO, FT - - - -
TI (R-ecICA) Age, TTO, FT - - - -
TI (L-icICA) No correlation - - - -
TI (R-icICA) No correlation - - - -
TI (overall) No correlation - - - -
Angulation (L-CCA) No correlation ICA-AT - - -
Angulation (R-CCA) No correlation ICA-AT - - -
Angulation (L-ecICA) No correlation ICA-AT - - -
Angulation (R-ecICA) No correlation ICA-AT - - -
Angulation (L-iclCA) No correlation ICA-AT - - -
Angulation (R-icICA) No correlation ICA-AT - - -
Aortic arch type 2 presence No correlation - - - TTO, TICI, ICH, mRS
Aortic arch type 3 presence No correlation - - - TTO, TICI, ICH, mRS
Bovine aortic arch presence No correlation ICA-AT - - TTO, TICI, ICH, mRS
Take-off angle (BT) - ICA-AT - - -
Most relevant angle (BT-CCA) No correlation ICA-AT - - -
Take-off angle (L-CCA) - ICA-AT, RT - - -
Most relevant angle (L-CCA) No correlation ICA-AT - - -
Most relevant angle (ICA) - ICA-AT - - -
ICA-CCA angulation No correlation ICA-AT - - -
Take-off angle (BT-CCA) - ICA-AT - - -
Presence of kink(s) (ICA) - - Recanalization rate - TTO, TICI, ICH, mRS
Presence of loop(s) (ICA) - - No correlation - TTO, TICI, ICH, mRS
Presence of coil(s) (ICA) - - No correlation - TTO, TICI, ICH, mRS
Presence of tortuosity (ICA) - - No correlation - -
ICA-M1 angle - - - Recanalization rate -
M1-M1 angle - - - Recanalization rate -
M1-M2 angle - - - Recanalization rate -
. e o 3 -
e OrGMOIMT  Age TIO FT. 1o [CAAT SO PRISIMEO  fucaiatone TT0,TIC!, 0K, S

136



Canals et al. 2022

Table S1: correlation findings between tortuosity indicators and difficult catheter access in
relevant literature. RL: relative length; TI: tortuosity index (1 - RL); L: left; R: right; CCA: common
carotid artery; ICA: internal carotid artery; eclCA: extracraneal ICA; icICA: intracranial ICA; TTO:
time from groin to occlusion; FT: fluoroscopy time; BT: brachiocephalic trunk; ICA-AT: ICA access
time; RT: recanalization time; mTICI: modified thrombosis in cerebral ischemia; PT: procedure
time; mRS: modified Rankin Scale. ICH: intracranial hemorrhage.

A.2 Segmentation

A.2.1 Bayes error rate for segmentation dataset size estimation
The Bayes error rate (BER) can help estimate the dataset size needed to reach close to the
asymptotic maximum performance of a supervised learning model. We performed several training
sessions with an increasing number of images for training, validation and testing, and results from
the testing and training sets were compared for each dataset size to observe the asymptotic
behavior of the performance curves with the dataset size. Figure S1 shows the results from these
experiments.
1.00
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20 40 60 8‘0 100 120 140
Dataset size

Figure S1: estimation of asymptotic accuracy for the segmentation model. Training accuracy is
plotted in red while testing accuracy is plotted in blue. Dataset sizes used are 10, 30, 50, 75, 100
and 125.

In order to estimate the asymptotic values for the training and testing accuracy, we
approximated exponential curves with the least squares method. A curve of the form

yt)= A +(C — A)xexp(—Bx1t),

was used to approximate the behavior of the training and testing accuracy, where A, B and C are
the parameters to be estimated, y is the value of the accuracy and t is the dataset size. For the
training accuracy, we used Ciain = 1. For the testing accuracy, we set the Aw.in parameter from the
training accuracy estimation as an upper bound for Acs.. From the curve drawn by the results, we
could infer an asymptotic maximum testing Dice of 0.931 and a nhumber of images needed to get
to 99% of that performance of 64 images.
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A.2.2 Testing segmentation robustness to noise

We performed an experiment to demonstrate robustness of the segmentation nnU-Net to
noise. We added artificial noise with a random Gaussian noise filter to the original testing CTA
volumes, increasing the standard deviation of the filter logarithmically (from 10 Hounsfield units
[HU] to 2000 HU), keeping the mean to zero. Figure S2 shows the evolution of the segmentation
performance with increasing levels of noise.

Noise effect over segmentation performance
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Dice

0.6 1

0.5

0.4

10° 10! 10? 10°
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Figure S2: mean Dice coefficient of the predicted segmentations on the test set for the nnU-Net
model with increasing noise levels. The blue band represents the standard deviation of the Dice
coefficient.

Noise is usually defined as the standard deviation of the intensity values in homogeneous
tissue. From the literature, we can see that standard noise levels in CTA usually have values of
5-20 HU (Wisselink et al. 2021; Anam et al. 2020). From Figure S2, we can see how segmentation
performance is maintained for noise levels below 100 HU, proving the robustness of the model
used for normal noise levels.

A.3 Vessel labelling

A.3.1 Bayes error rate for vessel labelling dataset size estimation
Again, we have performed a BER study for the dataset size estimation of the labelling module. In
the same way as for the segmentation module, we have performed several training sessions with
an increasing number of graphs for training, validation and testing, and results from the testing
and training sets have been compared for each dataset size to observe the asymptotic behavior
of the performance curves with the dataset size. Figure S3 shows the results from these
experiments.

The same analysis as described in section A.2.1 was employed here. From the curve drawn
by the results, we could infer an asymptotic maximum testing accuracy of 0.939 and a number of
training (training and validation) graphs needed to get to 99% of that value (0.929) of
approximately 394 labelled graphs. Our sample, made of 509 graphs for training and validation is
well above that value.

A.4 Feature extraction
A.4.1 Landmark detection

Landmark detection is at the core of the measurement methods employed by the presented
automatic method. To assess the performance of landmark placement, we draw the box plots of
the error distribution for both manual and automatic displacements for the landmark localization

3
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in figure S4.
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Figure S3: estimation of asymptotic accuracy for the labelling model. Training accuracy is plotted
in red while testing accuracy is plotted in blue. Dataset sizes used are 100, 200, 300, 400 anc

5009.

W Automatic
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Figure S4: box plots for the distance error in the landmark placement from the manual and
automatic acquisition methods.

A.4.2 Bland-Altman plots for feature extraction

Bland-Altman plots help to quickly visualize the error distribution of a measurement method
versus a reference method, and the bias and 95% confidence intervals are used to validate
models, if these are within reasonable values that are clinically acceptable for medical purposes.
Figures S5-S10 display the Bland-Altman plots of all tortuosity features to compare the error
distribution between human raters and between manual acquisition and the automatic method.
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Figure S5: Bland-Altman plots of the error distribution for diameter measurements, comparing the
manual method (left) to the automatic method (right). Values for the bias and 95% CI of the errol

distribution can be found in table 5.
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Figure S6: Bland-Altman plots of the error distribution for relative length, comparing the manual
method (left) to the automatic method (right). Values for the bias and 95% CI of the errol

distribution can be found in table 5.
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Figure S7: Bland-Altman plots of the error distribution for absolute polar angles, comparing the
manual method (left) to the automatic method (right). Values for the bias and 95% CI of the errol
distribution can be found in table 5.
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Figure S8: Bland-Altman plots of the error distribution for absolute azimuth angles, comparing the
manual method (left) to the automatic method (right). Values for the bias and 95% CI of the errol
distribution can be found in table 5.
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Figure S9: Bland-Altman plots of the error distribution for relative polar angles, comparing the
manual method (left) to the automatic method (right). Values for the bias and 95% CI of the error
distribution can be found in table 5.
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Figure S10: Bland-Altman plots of the error distribution for relative azimuth angles, comparing the
manual method (left) to the automatic method (right). Values for the bias and 95% CI of the errol

distribution can be found in table 5.
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Supplementary material

Deep Learning-based Model for Difficult Femoral Access Prediction Compared to Human

Assessment in Stroke Thrombectomy

Appendix A - Additional analysis

A.1 Previous vascular tortuosity characterization methods and predictive scores

There have been a few attempts to develop an anatomy-based score or a classification methodology to
identify patients most susceptible of presenting difficult transfemoral access (DTFA) mainly based on
imaging [1]-[6]. However, important limitations shared across existing studies may be considered: 1)
due to data incompleteness, almost no attention is placed on patients that were impossible to catheterize,
which may be the most relevant, 2) most of the scores or classification methods are based on retrospective
manual imaging assessment, 3) none combine advanced analysis of the aortic and supra-aortic region

with cervical vessels and 4) lack of consensus for a shared definition of DTFA. Table Al shows a

comparison across relevant previous studies.

Study N Method description Classification goal Performance Limitations
) Patients in Q4 of time
Vascular risk factor score > 2 for DTFA: add 1 . o .
L . . . from groin puncture to Sensitivity = 84% Very old cohort, may not be representative
Ribo et al. (2013) 130  point if patient has 1) Hypertension, 2) >75y, 3) i . i ) i
. . X target carotid Specificity = 74% No information on anatomy considered
Dyslipidemia, 4) Left side stroke. . .
catheterization (> 30 min)
. Small cohort
BAD score > 2 High BAD score
. X i . OR =2.84 (95% ClI, Based on manual assessment
Snelling et al. (2018) 61 B: bovine arch, A: AA type, D: ICA predicted groin to first- o L
X . X . 1.18-6.85, p = 0.02) Not a difficult access classification score
dolichoarteriopathy pass time > 20 min X k .
No impossible accesses mentioned
X . Statistically significant
ASMET score >3 High ASMETS predicted diff ) Based on manual assessment
ifferent time
Alves Rosa et al. (2021) 92 BAD w/ additional assessment of supra-aortic high groin to first-pass distribution ( Not a difficult access classification score
Istribution =
vessel dolichoarteriopathy time 0002) P No impossible accesses mentioned
ICA TI < 10 predicted Ignores AA and supra-aortic vessels
. OR = 2.3 (95% Cl, O i
Gomez-Paz et al. (2021) 212 ICA TI = (actual/straight length - 1) x 100 early reperfusion (TRev < 111478 0025) Not a difficult access classification score
60 min) ' M PED No impossible accesses mentioned
- - . . Impossible access excluded
) Logistic prediction model w/ tortuosity of Procedural duration>60  AUROC = 0.66, 95%
Holswilder et al. (2022) 828 i Based on manual assessment
cervical ICA and cervical ICA stenosis > 99% min C10.62-0.70 .
Ignores AA and supra-aortic vessels
Semi-automatic segmentation for automatic ICA angle > 90° ) Ignores AA and supra-aortic vessels
o . . . . ) Wilcoxon-MW p = - L
Nageler et al. (2023) 316 classification of ICA angle (dichotomized with associated with long 0,001 Not a difficult access classification score
90° as threshold) procedural times ' Potential for full automation
Ridge regression model with manual/observed )
Failure of transfemoral AUROC = 0.69,

Holswilder et al. (2023) 1998

evaluation of tortuosity markers from AA, ICA
and CCA

access 95%Cl 0.62, 0.75
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Table Al. Comparison of preceeding research exploring strategied for identification of difficult femoral
catheter access prior to MT. DTFA: difficult transfemoral access. AA: aortic arch. ICA: internal carotid
artery. CCA: common carotid artery. OR: odds ratio. TI: tortuosity index. AUROC: area under receiver

operating characteristic. Cl: confidence intervals. MW: Mann-Whitney.

A.2 Study population: patient inclusion chart and baseline characteristics

A description of the inclusion criteria can be found in the main article. Figure Al shows the study

inclusion chart. Table A2 shows the baseline characteristics of the included population.

MT + LVO @ TICA, M1, M2 (February 2017-December 2022)

l

‘ Included population (N = 846) J

Data extraction Imaging not available (n = 61, 7.2%)

[ Population | data extraction (N = 785) J Imaging artifacts (n = 27, 3.4%)

Occlusions at excluded location (n = 26, 3.3%)

Stenosis (n = 16, 2.0%)

Population | image revision (N = 686) Bilateral, dissections (n = 5, 0.6%)

Radial access as firstline (n = 36, 5.2%)

Image revision E No occlusion (n = 25, 3.2%)
=

T1A & access revision
L- T1A/impossible access not reported (n = 114, 16.6%)

Population | full revision (N = 536)

Image processing Image processing pipeline errors (n = 23, 4.3%)

Study population (N = 513)

I
l l

[ T1A<30 min (N = 454, 88.7%) ’ ( T1A>30 min (N = 43, 8.4%) [ Impossible access (N = 16, 3.1%)

[ |
7

[ No DTFA (N = 454, 88.7%) J [ DTFA (N = 59, 11.3%) J

Figure Al. Flowchart of the study population. MT: mechanical thrombectomy; LVO: large vessel

occlusion; T1A: time to first angiography series; DTFA: difficult transfemoral access.
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All Normal access DFTA p value
N 513 454 59 -
Age, years [median (IQR)] 81 (71-88) 81 (70-87) 86 (77-90) 0.003
Female (%) 57.6 56.6 64.4 0.325
Left hemispheric stroke (%) 49.8 49.6 51.7 0.876
NIHSS at presentation [median (IQR)] 16 (10-20) 16 (10-20) 17 (11-20.5) 0.370
Baseline mRS [median (IQR)] 1(0-2) 1(0-2) 1(1-2) 0.251
ASPECTS at presentation [median (IQR)] 9 (8-10) 9 (8-10) 9 (7-10) 0.479
1V thrombolysis (%) 31.6 36.0 37.9 0.889
TICA occlusion (%) 18.3 18.5 16.4 0.834
M1 occlusion (%) 48.6 48.3 50.9 0.823
M2 occlusion (%) 33.1 33.2 33.7 1.000
eTICI > 2B (%) 88.4 89.4 80.0 0.100
eTICI > 2C (%) 62.9 65.2 44.0 0.004
N° passes [median (IQR)] 1(1-3) 1(1-3) 2 (1-3) 0.891
T1A? min [median (IQR)] 11 (8-16) 11 (8-15) 42 (34-675)  <0.001
TFP2, min [median (IQR)] 23 (18-34) 22 (17-30) 53 (42.5-78.5)  <0.001
TRec?, min [median (IQR)] 35 (24-58) 32 (23-49) 72 (54-1035)  <0.001
NIHSS at discharge [median (IQR)] 4(1-12) 4(1-11) 8 (3-16) 0.009
mRS at 90d [median [IQR]) 3(1-3) 2 (1-3) 3(2-4) 0.099

Table A2. Baseline characteristics compared across relevant groups. @lmpossible access group excluded.

DTFA: difficult transfemoral access; SD: standard deviation; IQR: inter-quartile range. mRS: modified

Rankin Scale; ASPECTS: Alberta Stroke Program Early CT Score; IV: intra-venous; TICA: ICA

bifurcation; M1/2: middle cerebral artery first/second ramifications; eTICI: expanded treatment in

cerebral ischemia; TFP: time to first pass; TRec: time from puncture to recanalization.
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A.3 Time to first angiography series (T1A) distribution and imputation in impossible cases

The T1A was unavailable for cases with impossible femoral access (3.1%, 16/513 cases). Imputation of
T1A in these cases was performed by means of a random variable following uniform probability between
the 99-percentile (78 min) and the maximum (143 min) of the observed distribution. Figure A2 shows

the time distribution with the imputed values.

100
B Original data
, 80 Imputed data
I
2
& 60
S
8 40
E
=
z
20 "
0 ul‘ illl”ul,l” aas :
0 20 40 60 80 100 120 140

T1A (min)

Figure A2. Distribution of T1A for the observed values (blue) and imputed values (red) corresponding

to cases that presented impossible transfemoral catheterization. T1A: time to first angiography series.

A.4 Recursive feature elimination algorithm
A recursive feature elimination (RFE) protocol based on feature importance and validation performance
was applied to reduce the number of features and understand their impact on classification performance.

Figure A3 shows a diagram of the RFE protocol.

Gain was used as feature importance parameter. Two arms of twenty training runs (using random
train/validation splits) were performed at each iteration. Gain of the resulting fitted model for each fold
was recorded for each feature. At the end of each iteration gain was averaged across folds and the feature
importance profile was compared across the two arms. Features that were among the five least relevant

features in both arms were discarded towards the next iteration. When there were only 10 features left,
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the number of reviewed features was reduced to 1. If no feature was repeated in both groups, the feature

with the overall lowest importance was removed.

Initial feature sot

Selacted features

Select next least
important feature overal

Select least importan
faature overall

AEY Chack conadences in 5
Selected features > 107 least important features i,
both arms
No

Arm Am 2
e eapan Solect Ioaat rmportant
e aaem feature ovorall
[ Fouturos 10 siminate
1
e —a—1 Fernove cardidete
—— oae ) fosturos foc teat )
S aomas (= ke
D e e amm i
P=—r—r— ! gain) | ) (" Tostmodet win
-|- =] selacted features )

[ Feature

(average gain) || ) [ Mocei trained with random MGGV spiit

Figure A3. Recursive feature elimination (RFE) algorithm used for feature selection. MCCV: Monte

Carlo cross-validation.

At every iteration, validation performance on 50 Monte Carlo cross-validation folds was reviewed. If
the removal of the selected features in a given iteration resulted in worse performance, features with the
overall least importance across both arms were iteratively selected for elimination in ascending
importance order. This process was interrupted when the eliminated feature caused performance to

improve, moving on to the next iteration of the RFE protocol.

When removing any of the features would decrease performance, remaining features were eliminated

one by one in ascending importance order until there was only one feature left.

A.5 Feature importance of the final model

Feature importance was assessed by feature gain of the final model, averaged across all Monte Carlo
cross-validation (MCCV) folds. Gain represents the percentage of times a feature appears in the
decision nodes of a tree-based model. Figure A4 shows the feature importance profile of the included

features.
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Feature importance analysis (XGBoost RF Regressor)
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Figure A4. Feature importance (gain) for features included in the final model. Feature importance
profiles were averaged across all models from the 100 MCCV folds. MCCV: Monte Carlo cross-
validation; AA: aortic arch; CCA: common carotid artery; XGBoost: extreme gradient boosting; RF:

random forest.

A.6 Distributions of important features

Kernel density estimation (KDE) plots were drawn to observe the distribution of the included features in
the final model across the different groups of interest (figure A5). The statistical difference between
distributions of the no DTFA or normal group (T1A<30min), the cases with delayed access (T1A>30min)
and the group where transfemoral access was impossible. Table A3 shows the resulting p-value for the

Mann-Whitney U-test across all comparisons between groups of interest.
These results highlight the distribution differences between the normal group and the impossible group

across most of the features of interest. This effect is less accentuated between the normal and TLA>30min
groups, or the TLA>30min and the impossible groups.
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Figure A5. KDE plots of the feature distribution for all features included in the final model, drawn for
the normal (TLA<30min, green), difficult (TLA>30min, orange) and impossible (red) subgroups. KDE:
kernel density estimation; T1A: time to first angiography series.

p-value (Mann-Whitney U-test)

Feature Normal vs DTFA  Normal vs TLA>30min  T1A>30min vs Impossible  Normal vs Impossible
Total Tl <0.001 0.110 0.006 <0.001
AA-CCA max azimuth dif. <0.001 0.168 <0.001 0.000
CCATI 0.039 0.313 0.048 0.008
Total diameter SD 0.076 0.338 0.229 0.052
AA length 0.001 0.035 0.165 0.003
Total min polar angle 0.497 0.173 0.192 0.352

Table A3. Resulting p-values for the Mann-Whitney U-tests between feature distributions across groups
of interest. DTFA: difficult transfemoral access; T1A: time to first angiography series; TI: tortuosity

index; AA: aortic arch; CCA: common carotid artery; SD: standard deviation.
A.7 Multi-rater evaluation of femoral access difficulty: protocol description

A subgroup of N=117 cases was selected for a blinded assessment by three raters for femoral access
difficulty. For each case, vascular 3D segmentations were automatically generated using the previously
described segmentation module of the Arterial framework [7], based on the nnU-Net semantic
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segmentation framework [8]. In the experiment, each case was evaluated following two approaches; the
classical one, currently used in standard clinical practice, which consists in scrolling through the CTA
bidimensional reconstruction in any of the three anatomical planes, and an alternative approach based on
3D vascular reconstruction visualization. Two equivalent web apps were designed for the study. For CTA
visualization, a custom viewer was implemented, similar to commonly used commercially available
viewers, allowing the user to scroll along any of the three anatomical axes. For 3D visualization, a

rendering scene was designed.

A blinded, retrospective evaluation of the selected subgroup was performed by a total of three human
raters: two senior and one fellow neurointerventionalist. Raters were asked to assess all cases with each
of the two methods. Cases were randomly sampled from the database, independently on both web apps.
Observers were first asked to locate the large vessel occlusion. Upon answering, the web app confirmed
the occlusion location and evaluators were then asked to assess the presumed transfemoral access
difficulty to the ipsilateral carotid artery, using a Likert-like scale [9]. Values ranged from 0 to 5, with 0
being attributed a patient with extremely easy catheterization, and 5 being considered an impossible
access. Raters were finally asked for each case if radial seemed a better firstline option than femoral

access. The total time needed for assessment was also recorded.

Upon dataset assessment completion, rater-wise Z-score normalization was applied on all Likert
evaluations and such normalized values were used as a moving threshold for DTFA classification. A
receiver operating characteristic (ROC) could be derived for each assessment method (CTA and 3D
segmentation) and rater. Resulting curves were interpolated over 100 points and averaged across raters
to obtain mean ROCs with 95% confidence intervals (CI). The mean and standard deviation (SD) of the
area under the curve (AUC) of the ROC was used as the main parameter defining classification
performance. Optimal sensitivity and specificity were computed by optimizing for maximum Youden's
index. Linear correlations between Likert values and T1A were computed by means of the Pearson
correlation coefficient (R). T1A from impossible cases was imputed as the maximum value of the

remaining sample.
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Inter-rater variability was assessed by means of the quadratic-weighted Cohen's Kappa (k) [10].
Normalized Likert values were aggregated across observer pairs and quantized into 6 different categories

(maintaining the number of classes in the Likert scale) using equispaced percentiles before computing «.

A.8 Rater's answers to evaluation formularies for CTA and 3D segmentation assessment
Table A4 shows a summary of the raters' answers to the questions from the evaluation formularies

included in the CTA and 3D vascular segmentation assessment.

CTA 3D Segmentation

Rater 1 Rater 2 Rater 3 Mean, 95% CI Rater 1 Rater 2 Rater 3 Mean, 95% CI
Likert eval. [mean + SD] 2012 2610 2016 2.2 (0.7-3.7) 2312 3.1+09 1917 2.4 (0.8-4.0)
Likerteval. (no DTFA) [mean+SD]  1.9+12 25409 1.7+15 2.1(0.6-3.5) 20+11 29409 1.6+16 2.2(0.7-3.7)
Likert eval. (DTFA) [mean + SD] 27413 32409 34+15 3.1 (1.7-4.5) 35+11 3.8+06 32+18 3.5 (2.1-4.9)
AUROC 0.63 0.62 0.75 0.67 (0.60-0.73) 0.79 0.73 0.69 0.74 (0.69-0.78)
R (correlation), p 0.23, 0.012 0.23,0.015  0.41, <0.001 0.29 (0.19-0.39) 0.47,<0.001 0.42,<0.001 0.37,<0.001 0.42 (0.38-0.46)
Radial better [%] 29.3 45.7 19.8 31.6 (19.2-43.7) 46.6 40.5 25.0 37.4 (27.1-47.6)
Radial better (no DTFA) [%] 233 41.1 14.4 26.3 (13.8-38.8) 34.4 311 21.1 28.9 (22.5-35.3)
Radial better (DTFA) [%)] 50.0 61.5 38.5 50.0 (39.3-60.7) 88.5 73.1 385 66.7 (43.0-90.3)
LVO location [acc.] 0.79 0.79 0.88 0.82 (0.77-0.87) 0.79 0.80 0.95 0.85 (0.75-0.95)
LVO loc. (M1&M2*) [acc.] 0.90 0.91 0.95 0.92 (0.91-0.93) 0.88 0.93 0.97 0.93 (0.88-0.98)
Assessment time [s, mean + SD] 1256 £456 67.0+335 70.3+62.6 87.5 (57.3-117.7) 51.9+21.3 454220 30.2+157 425 (32.2-52.8)

Table A4. Summary of the raters' responses to the case formularies for both modalities, as well as
averaged results across raters. *Ipsilateral M1 and M2 considered as correct localization. SD: standard

deviation; Cl: confidence intervals.

LVO location accuracy was low compared to reported values for the included type of occlusions [11].
We observed that a large fraction of the errors made by the expert raters in this regard were M2 occlusions
classified as M1 and vice versa. Raters used a custom viewer that did not have contrast tools for the raters
to modify. Moreover, most of the rater evaluation were done from a mobile device. We believe that these
factors may have had an impact in the rater’s ability to correctly classify the LVO location. Results of the

LVO detection without a distinction between M1 and M2 occlusions are also reported in table A4.

A.9 Human benchmark expanded results
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Individual Likert evaluations for each rater, as well as individual receiver operating characteristics
(ROCs) for each modality are displayed in figure A6.

Difficulty assessment CTA (Rater 0 Difficasty assessrment 30 (Rater 0) ROC (Rater 0)

Difficulty Femora! Likes

False Positve Ralo

ROC (Rater 2)

Figure A6. Difficulty assessment using CTA (left) and 3D segmentations (middle) for each rater.
Resulting ROCs (left) are also displayed for each rater individually.

Results from the model were estimated on the subgroup used for the human expert assessment by
averaging out-of-fold results, taking advantage of the MCCV design. All validation predictions across
the 100 random train/validation splits for a given sample, were averaged, yielding an average prediction
(hard class, 0 or 1) for each case. Cls were estimated by bootstrapping validation folds over 1000
iterations. A ROC curve for the model was estimated in the subgroup based on the raw T1A predictions

by the model. Figure A7 presents a regression plot of the averaged predictions in the evaluated subgroup,
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as well as a comparison between rater-averaged ROCs (CTA and 3D segmentation) and the model's ROC

over the human benchmark subgroup.
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Figure A7. (Left) Regression plot for the validation predictions of the human benchmark subgroup.
Individual regression predictions with CI were estimated by averaging validation samples across cross-
validation folds. Normal (no DTFA), difficult (DTFA | TLA>30 min) and impossible (DTFA |
impossible) cases are colored green, yellow and red, respectively, with error bars showing 95%CI.
Average optimal threshold for DTFA classification (with 95%CI bands) is shown in blue. (Right) ROCs
for DTFA classification by the experts with CTA (orange), experts with 3D segmentation (green) and
the model (red). Colored bands represent SD of true positive rate. DTFA: difficult transfemoral access;
T1A: time to first angiography series; Cl: confidence intervals; ROC: receiver operating characteristic;

AUC: area under the curve.

11

158



Appendix B - Example visualizations

Some examples from our dataset are included in this appendix for the reader to be able to visualize the
relevant vascular anatomy with some examples from the source imaging (CTA) and the 3D vascular

segmentations. Figure B1 shows correctly predicted cases. Figure B2 shows cases that were erroneously
predicted.

(A) True T1A: impossible. Predicted T1A: 41.0 min (95%CI 39.9-42.1) [TP]

&R N, o /

(C) True TIA: 38 min. Predicted T1A: 33.3 min (95%CI 32.4-34.3) [TP] (D) True T1A: 22 min. Predicted T1A: 17.0 min (95%CI 16.6-17.3) [TN]

Figure B1. CTA visualizations (coronal and sagittal planes) and 3D model of the vascular segmentation
for cases in the dataset. A and C are true positives (correctly predicted as DTFA), while B and D are true
negatives. Red line in 3D models represents the centerline pathway that was automatically derived and
used to make tortuosity measurements.
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(A) True T1A: 17 min. Predicted T1A: 50.2 min (95%CI 48.8-51.5) [FP] (B) True T1A: 143 min. Predicted T1A: 16.2 min (95%CI 16.0-16.5) [FN]

/

(C) True T1A: 78 min. Predicted T1A: 15.8 min (95%CI 15.4-16.2) [FN] (D) True T1A: 17 min. Predicted T1A: 41.9 min (95%CI 40.9-42.9) [FP]

Figure B2. Same as for Figure B1, but in this case only cases that were incorrectly predicted are included
in the figure. A and D represent false positives, i.e., cases that were incorrectly predicted as DTFA, while
B and C were incorrectly predicted as normal (TLA<30min). In C, the blue rectangle zooms in in a

segmentation error (marked by the black arrow) that caused a flawed centerline extraction.
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