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Abstract

Introduction

Mechanical thrombectomy is wellestablished as the gold standard treatment for acute

ischemic stroke secondary to a large vessel occlusions. With expanding inclusion cri

teria and treatment success seemingly reaching a ceiling effect, it becomes crucial to

explore innovative solutions for cases where standard treatment falls short. Vascular

tortuosity may preclude fast access to the occlusion site, causing procedural delays and

occasionally leading to treatment failure. A rapid and automated analysis of the vascu

lar anatomy prior to arterial puncture could inform potential risks of treatment delays

or failure, providing decision support for practitioners to modify treatment approach by

choosing an alternative access to the default femoral puncture. However, understanding

of which specific anatomical markers are strongly associated with treatment difficulties

remains unclear. Moreover, the absence of an automated vascular characterization anal

ysis toolkit hinders practical implementation and largescale studies.

Objectives

The primary goal of this thesis is to develop an automated tool for vascular tortuosity

analysis based on preintervention imaging in the context of acute ischemic stroke. Sec

ondary objectives are using this tool to explore the associations of anatomical markers

with procedural complications, and investigating predictive models for difficult access

to the occlusion site in mechanical thrombectomy.

Methods

The ARTERIAL framework was developed for automatic vascular tortuosity analysis

based on CT angiography. A segmentation 3D UNet and a node classification graph
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UNet were trained and validated for vascular segmentation and vessel labelling, respec

tively, serving as the primary engines of the framework. Ground truths for segmenta

tion and vessel labelling were manually generated by three experts. A feature extraction

module was designed on top of segmentation and vessel labelling to extract anatomi

cally meaningful features from CT angiography without human intervention. A total of

33 vascular features of the aortic, and supraaortic regions were automatically extracted

with ARTERIAL. Measurements were validated against two human observers. The

intraclass correlation coefficient, Cohen’s kappa and BlandAltman plots were used to

evaluate the agreement between ARTERIAL and human observers.

A random forest model with extreme gradient boosting based on vascular features

extracted using ARTERIAL was implemented for difficult transfemoral access (DTFA)

prediction in endovascular treatment. A dataset comprising patients who received en

dovascular treatment from transfemoral access in Hospital Vall d’Hebron between 2017

and 2022 due to a large vessel occlusion in anterior circulation was used. A recursive

feature elimination algorithm identified markers strongly associated with DTFA. The

model was validated using Monte Carlo crossvalidation with 100 folds, and the area

under the receiver operating characteristic curve (AUROC) was used to assess discrim

ination performance. The model was also directly compared to three expert raters on a

subset of cases, who independently evaluated DTFA using CT angiography and a 3D

vessel reconstruction automatically generated using ARTERIAL.

Results

A dataset of 566 CT angiographies was used to train and validate ARTERIAL. Within

the sample, 30 cases were held out for testing. Stateoftheart results were obtained

for segmentation (Dice [mean ± std]: 0.93 ± 0.02) and for vessel labelling (casewise

accuracy: 0.95± 0.06). Good or excellent agreement between ARTERIAL and experts

was observed for the majority of features (21/33, 63.6%), and only 3 showed poor re

liability (9.1%). BlandAltman plots showed comparable error distributions between
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humans and ARTERIAL, with a slight increase in the number of outliers for the latter.

Mean case processing time was below 5 min.

For DTFA prediction, 513 patients were included in the study. Patients with delayed

(43, 8.4%) or impossible (16, 3.1%) transfemoral access amounted up to 11.5% of the

dataset (59/513). A total of 6 features descriptive of aortic and cervical tortuosity were

included in the final model following feature selection. The predictive model for DTFA

achieved a validation AUROC of 0.76 (95% CI 0.750.76). In a subset of 116 cases,

superior performance compared to human raters was displayed by the model, using

either CT angiography or 3D vascular reconstruction [F1score (95% CI) CTA: 0.43

(0.37 to 0.50); 3D segmentation: 0.50 (0.46 to 0.54); andmodel: 0.70 (0.65 to 0.75)]. At

the operating point, particularly high sensitivity was achieved for detecting impossible

transfemoral access (0.90, 95% CI 0.810.94).

Conclusions

A robust and automatic feature extraction framework based on deep learning models for

vascular segmentation on CT angiography and vessel labelling was developed and vali

dated, showing high agreement with human observers on geometrical measurements in

aortic and supraaortic vessels. A modelbased analysis identified a set of 6 anatomical

descriptors associated with DTFA. Stateoftheart results for DTFA prediction were

achieved by a machine learning model, based on automatically computed vascular tor

tuosity markers. Compared to human experts, the model significantly improved pre

procedural prediction of DTFA in a retrospective setting.

These results could enhance imagebased stroke endovascular treatment planning by

providing practitioners with valuable preintervention decision support derived from

advanced anatomical analysis in the acute setting. Effective analysis could result in

reduced intervention times in selected patients, potentially leading to improved clinical

outcomes.
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Resum

Introducció

La trombectomia mecànica està establerta com el tractament gold standard per a l’ictus

isquèmic agut secundari a oclusions de grans vas. Amb l’expansió dels criteris d’inclusió

i un efecte sostre en la millora de l’èxit d’intervenció, explorar solucions innovadores

per a casos on el tractament estàndard falla es converteix en crucial. La tortuositat vas

cular pot impedir un accés ràpid al vas ocluït, causant retards en els procediments i

fins i tot fracàs del tractament de manera ocasional. Una anàlisi ràpida i automatitzada

de l’anatomia vascular abans de la punció arterial podria informar sobre els riscs po

tencials de retards o fracàs del tractament, proporcionant suport de decisió als profes

sionals mèdics, que podrien modificar el tractament escollint un accés alternatiu a la

punció femoral que s’usa per defecte. No obstant, no hi ha un conscens sobre quins

marcadors anatòmics específics estan associats amb dificultats en el tractament. A més,

l’absència d’eines d’anàlisi de caracterització vascular automatitzat dificulta la imple

mentació pràctica i els estudis a gran escala.

Objectius

El principal objectiu d’aquesta tesi és desenvolupar una eina automatitzada per a l’anàlisi

de la tortuositat vascular basada en imatges preintervenció en el context de l’ictus

isquèmic agut. Els objectius secundaris són utilitzar aquesta eina per explorar les asso

ciacions de marcadors anatòmics amb complicacions procedimentals i investigar mod

els predictius per a l’accés difícil al lloc d’oclusió en la trombectomia mecànica.
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Mètodes

Es va desenvolupar ARTERIAL, un marc per a l’anàlisi automàtica de la tortuositat vas

cular basada en angiografia per TC. Es van entrenar i validar models de segmentació

(3D UNet) i de classificació de nodes (graph UNet) per a la segmentació vascular i

l’etiquetatge de vasos, respectivament, actuant com a motors principals d’ARTERIAL.

Exemples per a la segmentació i l’etiquetatge de vasos van ser generats manualment

per tres experts. Es va dissenyar un mòdul d’extracció de característiques sobre la seg

mentació i l’etiquetatge de vasos per extreure atributs anatòmicament significatius de

l’angiografia per TC sense intervenció humana. Es van extreure automàticament un

total de 33 característiques vasculars de les regions aòrtica i supraaòrtica amb AR

TERIAL. Les mesures van ser validades comparantles amb les de dos observadors

humans. El coeficient de correlació intraclasse, la kappa de Cohen i els diagrames de

BlandAltman es van utilitzar per avaluar el grau d’acord entre ARTERIAL i els obser

vadors humans.

Es va implementar un model de random forest amb extreme gradient boosting basat

en característiques vasculars extretes utilitzant ARTERIAL per a la predicció d’accés

transfemoral difícil (DTFA) en tractament endovascular. Es va utilitzar un conjunt de

dades que comprèn pacients que van rebre tractament endovascular amb accés trans

femoral a l’Hospital Vall d’Hebron entre 2017 i 2022 a causa d’una oclusió de gran

vas en la circulació anterior. Marcadors associats amb DTFA vas ser identificats mit

jançant un algoritme d’eliminació recursiva. El model va ser validat utilitzant validació

creuada de Monte Carlo amb 100 repeticions, i l’àrea sota la corba ROC (AUROC) es

va utilitzar per avaluarne el rendiment. El model també va ser comparat amb tres aval

uadors experts en un subconjunt dels casos, qui van avaluar independentment el risc de

DTFA utilitzant angiografia per TC, a més d’una reconstrucció vascular 3D generada

automàticament utilitzant ARTERIAL de manera independent.
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Resultats

Es van utilitzar 566 angiografies per TC per entrenar i validar ARTERIAL. Dins de la

mostra, 30 casos van ser reservats per a proves. Es van obtenir resultats d’avantguarda

per a la segmentació (Dice [mitjana ± std]: 0.93 ± 0.02) i per a l’etiquetatge de vasos

(precisió [accuracy] per cas: 0.95 ± 0.06). Es va observar un bon o excel∙lent acord

entre ARTERIAL i els experts per a la majoria de les característiques (21/33, 63.6%), i

només 3 van mostrar una fiabilitat pobre (9.1%). Els diagrames de BlandAltman van

mostrar distribucions d’error comparables entre humans i ARTERIAL, amb un lleuger

increment en el nombre de valors fora de la distribució (outliers) per al darrer. El temps

mitjà de processament per cas va ser inferior a 5 minuts.

Per a l’estudi de predicció de DTFA, es van incloure un total de 513 pacients. Els

pacients amb accés transfemoral retardat (43, 8.4%) o impossible (16, 3.1%) suposaven

el 11.5% del conjunt de dades (59/513). Un total de 6 característiques descriptives de

la tortuositat aòrtica i cervical van ser incloses en el model final després del procés de

selecció de característiques. El model predictiu per DTFA va aconseguir una AUROC

de validació de 0.76 (CI del 95% 0.750.76). En un subconjunt de 116 casos, el model

va mostrar un rendiment superior comparat amb els avaluadors humans, utilitzant tant

l’angiografia per TC com la reconstrucció vascular 3D [F1score (CI del 95%) CTA:

0.43 (0.37 a 0.50); segmentació 3D: 0.50 (0.46 a 0.54); i model: 0.70 (0.65 a 0.75)].

En el punt d’operació, es va aconseguir una sensibilitat particularment alta per detectar

accés transfemoral impossible (0.90, CI del 95% 0.810.94).

Conclusions

Es va desenvolupar i validar un processat d’extracció de característiques robust i au

tomàtic basat en models de deep learning per a la segmentació vascular en angiografia

per TC i l’etiquetatge de vasos, mostrant un alt acord amb observadors humans en

mesures geomètriques en vasos aòrtics i supraaòrtics. Es van identificar un conjunt de

6 descriptors anatòmics associats ambDTFA. Es van aconseguir resultats d’avantguarda

22



per a la predicció de DTFA per un model de machine learning, basat en marcadors de

tortuositat vascular calculats automàticament. Comparat amb experts humans, el model

va millorar significativament la predicció preintervenció de DTFA en un entorn retro

spectiu.

Aquests resultats podrien millorar la planificació del tractament endovascular basat

en imatges per a l’ictus, proporcionant als professionals un suport de decisió preintervenció

valuós derivat de l’anàlisi anatòmica avançada en la fase aguda. Una anàlisi efectiva

podria resultar en temps d’intervenció reduïts en pacients seleccionats, potencialment

resultant en millor estat clínic dels afectats.
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Introduction
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1.1 Stroke: definition and subtypes

Stroke is a family of neurological diseases caused by a focal lesion in the brain derived

from a vascular disorder. Prolonged lesions can result in brain tissue necrosis caus

ing neurological symptoms, potentially leading to disability or death1. It is typically

characterized by a sudden onset of symptoms and a fast progression of the neurological

affectation. It is estimated that 1 in every 4 people will experience a stroke at some

point in their lives2.

Depending on the nature of the underlying vascular injury, stroke can be broadly

divided into twomain subtypes. The first subtype is ischemic stroke. In ischemic stroke,

the narrowing or occlusion of an artery interrupts normal blood irrigation to a region in

the brain, causing focal ischemia1. The deprivation of blood to the cerebral tissue causes

cell death within minutes, which prevents normal activity of the central nervous system

and originates neurological symptoms.

The second subtype is hemorrhagic stroke. A hemorrhagic stroke is caused by the

rupture of leakage of a blood vessel creating a hematoma in or around the brain. These

are typically presented as intracranial hemorrhages (ICHs), when the hematoma is formed

inside the brain, or subarachnoid hemorrhages (SAHs) when the bleeding occurs be

tween the brain and its surrounding membranes. ICHs account for 29% of all global

stroke cases in terms of incidence, while SAH is less frequent (6%). Hemorrhagic

strokes is less common in highincome countries, representing an 18% of the total stroke

incidence for ICH and 8% in the case of SAH2. Hemorrhagic strokes are associated to

higher morbidity and mortality than ischemic stroke.

1.2 Ischemic stroke

As defined above, ischemic stroke results from a focal ischemia in the brain originated

from an underlying vascular disorder, typically a large or medium vessel occlusion

(LVO/MeVO), small vessel occlusions, a stenosis3 or an artery dissection4. Cell necro
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sis progresses quickly in the region close to the vascular lesion, and progressively ex

pands to the surrounding brain tissue primarily irrigated by the affected vascular branch.

This creates two differentiated regions that are either irreversibly damaged by the is

chemia (the infarct core) or at risk of permanent damage (penumbra) if left untreated5.

The progression of penumbral tissue to core varies from patient to patient and is highly

dependent on the leptomeningeal collateral flow6.

Ischemic stroke is the most prevalent type of stroke. Globally, it accounts for ap

proximately 65% of all total registered strokes and 50% of all deaths7. The absolute

number of ischemic strokerelated deaths is projected to increase by 50% by 20308. In

the European Union and the United States, the incidence is higher at 78% and 87% of

all strokes, respectively7,9,10.

1.2.1 Etiologies

Ischemic stroke can be caused by several mechanisms depending on the underlying

vascular disorder. The Trial of Org 10172 in Acute Stroke Treatment (TOAST) crite

ria is widely used to categorize the stroke etiology in 5 different classes11: largeartery

atherosclerosis (LAA), cardioembolic (CE), small vessel disease (SVD), other deter

mined cause and undetermined or cryptogenic stroke.

LAA or macroangiopathy is defined as the presence of largeartery stenosis caus

ing a lumen reduction larger than 50% leading to significant hemodynamic changes12.

Atherosclerosis is a buildup of atheromatous plaques made up of fats, cholesterol, fibrin

and other substances in the arterial walls, and can be systemic or local. It is estimated as

the underlying cause in approximately 1525% of all acute ischemic strokes (AISs)12,13,

and its prevalence greatly varies depending on race and ethnicity, being less common in

Caucasians than in Asians, Blacks or Hispanics14. LAA causing AIS can be presented

in several mechanisms, including arteryartery embolism, hypoperfusion derived from

severe stenosis or branch atheromatous disease15.

Ischemic strokes from CE sources account for approximately 2030% of all AISs16,17
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and is increasingly more prevalent due to a global agerelated rise of atrial fibrillation

(AF)18. In CE ischemic stroke, a blood clot or debris originated due to a cardiac disor

der is released into brain circulation eventually occluding an arterial branch. There are

numerous highrisk CE causes, including AF (most common), systolic heart failure, re

cent myocardial infarction, patent foramen ovale, aortic arch (AA) atheroma, prosthetic

heart valve or endocarditis19. The diagnostic workup consists on studying the pres

ence of any of the potential underlying pathologies, mainly through ultrasound cardiac

imaging and ECG monitoring17.

SVD or microangiopathy is the underlying cause of about 20% of all AIS16,20 and

manifests in the form of lacunar stroke. Most common causes for SVD are lipohyali

nosis and fibrohyalinosis of small perforating arteries20.

Ischemic strokes from other known, less frequent etiologies such as artery dissection,

vasculitis, genetic microangiopathies and other conditions account for approximately

5% of all AIS. The remaining group is formed by AIS caused by either unknown (cryp

togenic) or multiple plausible etiologies, and represents about 30% of all AIS16.

1.3 Acute ischemic stroke diagnosis

When a patient is suspected to be suffering from a stroke, hospitalization is carried out by

the emergency medical services (EMS) in coordination with the medical centers. Upon

admission, stroke diagnosis begins with a clinical evaluation by a neurologist, which

can be conducted via a telemedicine solution in absence of an inhouse specialist21. The

National Institutes of Health Stroke Scale (NIHSS) is recommended to rapidly evaluate

stroke severity22. Prehospitalary stroke severity scales have been proposed to evaluate

the likelihood of LVO as the underlying cause of the stroke23, but neuroimaging is

necessary to understand the stroke subtype with certainty and make accurate decisions

towards treatment.
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1.3.1 Imaging in acute ischemic stroke diagnosis

Although advanced imaging is needed, the exact neuroimaging protocol can vary from

center to center depending on availability of resources, time duration and preferences.

The recommended protocols are designed to answer two fundamental questions: 1) can

we rule out or confirm hemorrhagic stroke?, and 2) is an arterial occlusion responsi

ble for the ischemic attack?24. Additionally, advanced perfusion imaging can provide

further information on the degree of infarct progression in AIS.

Computed tomography (CT) or magnetic resonance imaging (MRI) are the two rec

ommended imaging technologies employed to noninvasively diagnose AIS. Despite

the radiation dose received by the patient, CT is the most widely used among the two

for a number of reasons. Most importantly, CT is time and costwise more efficient,

it is widely available even in developing regions and primary care hospitals, does not

have as many contraindications, is not as prone to motion artifacts as MRI and, although

MRI can be more sensitive for the detection of ischemic lesions25, the use of CT alone

is noninferior to MRI regarding patient prognosis26.

Neuroimaging pipelines typically include a noncontrast CT (NCCT) or MRI, a CT

or magnetic resonance angiography (CTA or MRA) and CT or magnetic resonance per

fusion (CTP or MRP). MRI sequences typically include diffusionweighted imaging

(DWI), which allows clear visualization of early ischemia27.

Non‐contrast CT (NCCT)

The primary use of NCCT in the early window is to discriminate between a hemor

rhagic and ischemic stroke28. ICHs and SAHs appear hyperintense in NCCT29, and are

typically distinguished effectively by medical professionals (see figure 1.1A). The use

of NCCT became recommended in the guidelines in 1996 after the publication of mul

tiple trials demonstrating a better longterm clinical outcome in patients treated with

intravenous thrombolysis (IVT) compared to medical management30. Thrombolytic

treatment was demonstrated effective for AIS secondary to a vessel occlusion, but is
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contraindicated for hemorrhagic stroke.

The brain parenchyma is also evaluated in NCCT to assess early ischemic changes

typically by means of the Alberta Stroke Program Early CT Score (ASPECTS)31 (figure

1.1B). Other findings inNCCT include the presence of a hyperdense sign in the proximal

middle cerebral artery (MCA)32, which is associated to an LVO of an embolic source33

(see figure 1.1C), or hypodense regions at followup, indicative of established infarct

(figure 1.1D).

A B C D

Figure 1.1: Strokerelated findings in NCCT. (A) ICH in NCCT appears as a hyperintense
region (red arrow). (B) Automated ASPECTS evaluation on NCCT. Area painted red represents
infarcted region. (C) Frontal view of NCCT with a hyperdense artery sign in the right proximal
MCA. (D) Followup NCCT at 24h with established infarct in the left MCA territory (hypodense
area, red arrow). NCCT: noncontrast computed tomography. ICH: intracranial hemorrhage.
MCA: middle cerebral artery.

CT angiography (CTA)

CTA is acquired by administering an intravenous bolus of a radioopaque contrast solu

tion to the patient upon CT scanning. The fundamental use of CTA is to identify a vessel

occlusion as the cause of the ischemic attack28. It is estimated that around 2030% of

all AIS are caused by a vessel occlusion visible in CTA, although there is variability in

the reports due to nonstandardized definition of AIS and LVO/MeVO34,35.

Another use of CTA is the evaluation of the vascular anatomy. In contrast to NCCT,

which is typically acquired only for the head, CTA acquisition typically encompasses

both head and neck down to the AA. This allows for an evaluation the AA shape, as well

as both extra and intracranial vascular anatomy. This will be further expanded during

the thesis, as it is the primary focus of this research. Assessment of stenosis, dissection
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and vascular pathologies as well as cerebral collateral flow can also be assessed by

CTA28. Figure 1.2 shows an overview of the uses of CTA in the acute phase of stroke.

A1

A2

B1 B2 B3

Figure 1.2: Examples of potential findings in CTA. (A1) Axial view of a CTA with a maxi
mum intensity projection thickslab reconstruction showing an MCA proximal occlusion. (A2)
Sagittal view of a CTA showing a distal MCA occlusion. (B1 & B2) Sagittal and frontal view of
the aortic and supraaortic regions on thickslab CTA. (B3) Threedimensional reconstruction of
the arteries imaged in CTA. CTA: computed tomography angiography. MCA: middle cerebral
artery.

CT perfusion (CTP)

CTP is advanced imaging technique that aims to quantify the blood perfusion in all re

gions of the brain, as a method to assess the severity of blood supply deprivation in

the regions suffering from ischemia. CTP is done by injecting intravenous contrast to

the patient and repeating a normal cranial CT during several seconds. From this 4

dimensional acquisition and through postprocessing algorithms, curves of several CTP

parameters can be drawn for all voxels in the brain. Typical CTP parameters include

cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT) or

time to maximum (TMax). The brain volume with CBF below 30% is typically con

sidered the core of the brain infarction. The term ischemic penumbra describes the

surrounding regions of the core that maintain normal levels of CBF and CBV, but have

delayed perfusion as measured by MTT or TMax
36. Patients with a large volume dif
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ferential between both present a mismatch, a concept associated with the presence of

salvageable tissue that may likely benefit from EVT27. Figure 1.3 shows examples of

potential findings in CTP.

Right MCA-M1 occlusion

Right TICA occlusion Left MCA-M2 occlusion

Left MCA-M1 occlusion (good collaterals)

Left MCA-M1 occlusion. Forecasted infarct core (pink) with large penumbra (green)

B

E

DC

A

Figure 1.3: Examples of parameter map patterns derived from CTP. (A) TMax map for a right
TICA occlusion. In TMax, red (>10 s), yellow (>8 s), green (>6 s) and yellow (>4 s) colors
show brain voxels affected by large peak perfusion delays. (B) TMax maps for a left MCAM2
occlusion, (C) a rightMCAM1 occlusion and (D) a leftMCAM1 occlusionwith good collateral
flow. (E) CBF map, on the left, showing settled infarct core (pink) and TMax map, on the right,
showing volume with delayed perfusion or penumbra. The difference between both volumes
defines the mismatch. CTP: computed tomography perfusion. TMax: time to maximum. TICA:
terminus internal carotid artery. MCA: middle cerebral artery. CBF: cerebral blood flow.

X‐ray fluoroscopy and digital subtraction angiography (DSA)

Patients with an arterial occlusion and/or other relevant findings (e.g., carotid stenosis,

aneurysm) detected on CTA may be transferred to the angiosuite to undergo diagnostic

angiography or EVT. Digital subtraction angiography (DSA) is an Xray fluoroscopy
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technique used in interventional radiology to examine blood vessels in high detail.

In stroke, cerebral DSA is the gold standard for stenosis and vessel occlusion di

agnosis. It is fundamentally used to assess a hypoperfusion baseline and evaluate re

canalization success following IVT or EVT successive passes. To this end, the modified

Thrombolysis In Cerebral Infarction (mTICI) score is typically employed37. ThemTICI

score evaluates the reperfusion degree using 6 different grades (0, 1, 2A, 2B, 2C and 3).

An score greater than 2B (reperfusion >50% of arterial territory without initial perfu

sion) is traditionally considered successful reperfusion, while grades 2C (9099%) and

3 (complete reperfusion) are considered excellent treatment outcomes. Modifications

of the mTICI scale have been proposed overtime to include finer reperfusion grades

that present better association to clinical outcomes37,38. High mTICI is an independent

predictor of good functional outcomes38,39.

1.4 Treatment in acute ischemic stroke

AIS treatment has significantly evolved in the last 30 years, experiencing a revolution

in the last decade. We can distinguish two treatment strategies that have proven to be

effective for AIS by multiple randomized controlled trials (RCTs): intravenous throm

bolysis (IVT) and endovascular treatment (EVT).

The clinical outcome of the patient is typically measured by the degree of disabil

ity of the patient after the stroke. To that end, the modified Rankin scale (mRS) has

been adopted as a universal method to test treatment effectiveness40. The mRS is an

ordinal scale with 7 different levels (06) that describe increasing degrees of disability

or dependence. A mRS of 0 indicates that the patient experiences no symptoms at all,

while an mRS of 5 is indicative of severe disability requiring permanent nursing, and 6

is reserved for death. A mRS of 02 is usually indicative of satisfactory outcomes, with

01 being excellent.
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Figure 1.4: Examples of successful reperfusion patterns assessed by the mTICI scale on DSA.
Red arrows point to occlusion sites or reperfused vessels. (A) Full reperfusion (mTICI 3)
achieved for a distal left MCAM1 occlusion. (B) Successful reperfusion (mTICI 2B) in a prox
imal left MCAM1 occlusion. (C) Excellent revascularization (mTICI 2C) for a proximal right
MCAM2 occlusion. mTICI: modified Thrombolysis In Cerebral Infarction. DSA: digital sub
traction angiography. MCA: middle cerebral artery.

1.4.1 Intravenous thrombolysis (IVT)

IVT consists on the systemic administration of a thrombolytic drug, typically alteplase,

in the hyperacute phase of AIS41. IVT is recommended to start in eligible patients

as soon as evidence of AIS (absense of ICH or SAH in NCCT) is available21,42. It

was first added to the guidelines for AIS treatment in 1996, when a series of RCTs
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demonstrated its efficacy in the first 3 hours from symptoms onset30. In 2008, the results

of the ECASS III trial demonstrated the efficacy of alteplase administered in the first

4.5 hours43, which is the recommended window in current guidelines21,42.

In recent years, several RCTs have tested the effectiveness of tenecteplase, a genet

ically engineered mutant of alteplase, as an alternative drug for IVT44. Trials testing

the effectiveness of tenecteplase compared to alteplase in the early window reached

mixed conclusions45–47. The TIMELESS trial found no difference in treatment effect

of tenecteplase administered within 4.5 to 24 hours using selection criteria based on per

fusion imaging compared to placebo, most of the times in combination with thrombec

tomy in both arms48, while TRACEIII found a benefit of tenecteplase compared to

placebo in the extended window (4.5 to 24h), in absence of additional treatment49.

1.4.2 Endovascular treatment (EVT)

EVT for stroke, in particular mechanical thrombectomy (MT), is an invasive therapeu

tic procedure for AIS secondary to an emergent vessel occlusion. It consists on the

mechanical retrieval of the thrombus as a mechanism to reverse ischemia. EVT is ap

plied by introducing a set of coaxial catheters in the arterial system of the patient via

a transarterial access, usually through the femoral artery. Catheters are navigated to

the occlusion site where one or multiple thrombectomy passes are performed. The pur

pose of EVT is to achieve complete recanalization of the occluded arterial branch as

typically assessed by the mTICI scale (see section 1.3.1). The term EVT also includes

intraarterial thrombolysis50, angioplasty and arterial stenting51.

Early days of EVT: first‐generation devices

The unveiling of theMERCIRetrieval System (ConcentricMedical, San Francisco, CA,

USA), a triaxial catheter system composed of a balloon guide catheter (BGC), a micro

catheter and the Merci retriever, marked the beginning of MT in 2001. The MERCI

retriever was a flexible nitinol coil with a spiral shape reminiscent of a corkscrew, de
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ployed through a microcatheter. MERCI received FDA approval for its firstgeneration

device in 2004, and was first used in the MERCI 1 trial52. This phase 1 study showed

that MT was relatively safe and that successful recanalization presented a benefit for

the patient. However, recanalization rates were modest (43%), although higher when

combined with intraarterial alteplase (64%). The benefit of revascularization in pa

tients treated with MT within 8 hours from symptoms onset was further evidenced in

Multi MERCI53 in terms of reduced mortality and better clinical outcomes. However,

overall mortality (34%) and rate of transformation to symptomatic ICH (sICH) (9.8%)

were high.

Another firstgeneration device was the Penumbra System (Penumbra Inc, Alameda,

CA, USA), the first aspiration device for MT. The Penumbra Pivotal Stroke Trial was

published in 200954 and demonstrated the safety and effectiveness of aspiration as an

alternative mechanism to the MERCI retriever, with higher recanalization rates (81.6%)

and comparable mortality (32.8%) and rate of sICH transformations (11.2%) compared

to Multi MERCI.

Published in 2013, IMSIII55, SYNTHESIS56 and MR RESCUE57 investigated the

superiority of EVT (alone or in combination with IVT) compared to IVT alone. These

RCTs were unable to show added benefit of EVT in terms of functional outcomes. De

vice choice was left at the interventionalist discretion. Inability to show superiority of

EVT was most likely influenced by immaturity of available devices for MT, combina

tion of intraarterial thrombolysis and MT in the EVT branch as opposite to MT alone,

and broad selection criteria* 58.

EVT as gold standard: second‐generation devices and HERMES trials

The inclusion period of IMSIII, SYNTHESIS and MR RESCUE was contemporary

with the appearance of secondgeneration MT devices. In 2012, the simultaneous pub

lication of the SWIFT59 and TREVO 260 randomized trials supposed a milestone in the

*For example, SYNTHESIS included patients with very low baseline NIHSS, likely to show good
functional outcome regardless of treatment.
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evolution of EVT for stroke. In these two trials, the Solitaire Flow Restoration device

(Covidien/ev3, Dublin, Ireland) and Trevo Retriever (Stryker neurovascular, Mountain

View, CA, USA), respectively, were introduced and compared to the firstgeneration

MERCI device. Both secondgeneration devices were stentretrievers, selfexpanding

stents meant to be deployed within the thrombus designed to entrap the clot. Successful

recanalization rates were dramatically better using the newergeneration devices com

pared to MERCI (SWIFT: 89% vs. 67%; TREVO 2: 92% vs. 77%) leading to a higher

rate of favorable outcomes (90day mRS 02 SWIFT: 37% vs. 29%; TREVO 2: 40%

vs. 22%). Complications and mortality were lower using newer MT devices as well.

Following these results, stentretrievers became standard for MT.

The year 2015 saw the publication of MR CLEAN61, EXTEND IA62, ESCAPE63,

SWIFT PRIME64 and REVASCAT65, five RCTs that assessed the efficacy of MT in

patients with LVO compared to medical therapy (IVT if eligible or medical manage

ment otherwise). The results from all trials were positive in favor of MT, as shown by

a significant ordinal shift in the distribution of mRS in favor of reduced disability in the

population treated with MT. Results from all RCTs were pooled in the HERMES col

laboration, including 1,287 patients, with 634 patients being treated withMT. Benefit of

MT was significant regardless of age, sex, baseline NIHSS, site of occlusion*, adminis

tration of IVT, baseline ASPECTS and time from symptoms onset to randomization66,

with patients treated up to 12 hours in the ESCAPE trial63.

HERMES trials generally demonstrated the efficacy of stentretriever MT in patients

with anterior circulation LVO, treated up to 812 hours from symptoms onset, in com

bination or absence of IVT, in patients with significant symptoms severity upon arrival

(low NIHSS were generally excluded) and ASPECTS larger than 6 (small to medium

infarct core). This established EVT as the gold standard treatment for AIS. Succes

sive large RCTs would focus on expanding this selection criteria to larger populations

groups.

*Only anterior circulation LVO locations were included.
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Current state of EVT and next frontiers

In the following years, aspiration catheters eventually caught up with stentretrievers in

terms of successful recanalization rates67,68. Nowadays, A Direct Aspiration First Pass

Technique (ADAPT), stentretriever alone or a combination of the two (stentretriever

assisted vacuumlocked extraction or SAVE technique) have become standard69, left to

preference of the interventionalist.

DAWN70 and DEFUSE371 investigated the use of perfusion imaging criteria to se

lect patients susceptible of benefiting from MT in the late window, with times from last

known well (LKW) to randomization from 6 up to 16 to 24 hours. Both trials were ter

minated early based on prespecified criteria in an interim analysis, and were published

in 2018 demonstrating the benefit of MT over medical therapy alone in the extended

window, subject to core size and the existence of ischemic penumbra. This benefit was

shown by reduced longterm disability, but also reduced mortality without a significant

increase in the rate of complications in the MT group. As of June 2024, results from

these trials led to the last comprehensive guideline update involving recommended MT

inclusion criteria21,72.

The latest breakthrough for MT arrived in 2023 with the publication of SELECT

273, ANGELASPECTS74 and RESCUEJapan LIMIT75, three RCTs that tested the

efficacy of MT in patients with large ischemic core within an extended window of 24h

from symptoms onset. These patients were selected by infarct core size based on CTP or

DWI or ASPECTS 35 on basal NCCT. Again, all three RCTs proved the benefit of MT

over medical management in terms of a higher percentage of patients with good clinical

outcomes, with a significant association to higher risk of complications and ICH. Similar

results were obtained in the LASTE76 trial, published in 2024, where MT was assessed

in patients with unrestricted core size (ASPECTS 05). These results support the thesis

that imaging criteria should not be used to strictly exclude patients from receiving MT,

even in the late window77.
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There are multiple questions that still need answering to fully understand the limi

tations and use cases of MT. Current frontiers with open RCTs include assessing the

effectiveness of MT in distal or medium vessel occlusions compared to best medical

treatment78–81, assessing whether EVT alone is noninferior to EVT+IVT in the early

window82,83 or testing the adequacy of practicing MT in patients with mild stroke, as

assessed by low baseline NIHSS84.

1.4.3 Optimizing AIS treatment circuits for time

Time is a key factor in AIS85. The rapid progression of brain tissue necrosis effectively

means that reversal of ischemia will lead to better clinical outcomes if achieved quickly

after onset. The appearance of effective treatments for AIS has stimulated patient man

agement protocols with the goal of optimizing AIS patient management for time, both

in pre and intrahospital patient management.

Intra‐hospital management

Upon admission, patients should generally undergo diagnostic imaging, receive IVT if

and when eligibility is confirmed by imaging, and then begin EVT (if eligible) soon

thereafter. The time intervals between admission and each of these steps are power

ful metrics that are collected by medical centers and monitored for further optimization

when comparing different circuits or paradigms. These typicaaly include the doorto

imaging time (DIT), for diagnostic imaging, the doortoneedle time (DNT), for the

start of IVT, and the doortopuncture time (DPT), comprising the time from admis

sion to transarterial puncture for EVT procedures. Shorter DPT and doortoreperfusion

(DRT) times have been associated with good treatment effect and improved clinical out

comes86,87.

With growing experience by medical teams and a constant streamlining of patient

management circuits, DPT has consistently improved during the last decade88. EMS

prenotification, singlecall activation systems or mixing alteplase ahead of patient ar
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rival are successful examples that have been widely implemented in stroke care systems

to reduce DNT and DPT89. The most impactful strategies have focused on optimizing

the imaging workflow90. Bypassing the emergency department and transferring the

patient directly to the CT room (CT Code) was a first measure that has been widely

adopted in stroke management protocols91. In CT code, IVT is typically administered

in the CT room right after ICH is ruled out in AIS patients with NCCT. CTA and CTP

are then acquired for further diagnosis and, if eligible, the patient is then transferred to

the angiosuite for EVT.

Direct transfer to angiosuite (DTAS) has been proposed as alternative imaging proto

col to optimize DPT92,93. In DTAS, the CT room is bypassed and the patient is directly

transferred to the angiosuite. There, a flatpanel CT is acquired confirm AIS diagnosis,

and arterial puncture is performed immediately after. LVO diagnostic is confirmed by

either a flatpanel CTA or an angiogram, after arterial puncture. In the RCT ANGIO

CAT, the implementation of DTAS as compared to the CT code paradigm resulted in

a median DPT reduction of 24 min, more than half the DPT in CT code (DTAS: 18

min interquartile range [IQR] 1524, CT 42 min IQR 3551)94. This time difference

held for DRT and was associated with a significant improvement the longterm mRS

distribution in patients treated with EVT in the early window (<6 hours).

In recent years, more advanced angiosuites are becoming available in stroke centers,

with the inclusion of CT machines in the room itself. This enables a new paradigm

where patients can be directly transferred to the angiosuite but still receive advanced

neuroimaging without a significant DPT reduction (Hybrid code). Figure 1.5 shows a

visual comparison of the different door to puncture workflows implemented in Hospital

Universitari Vall d’Hebron.
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Figure 1.5: Visual comparison between intrahospital imaging circuits (codes) ahead of EVT.
In the hybrid code, a CT scan is acquired upon arrival at the angiosuite. After CT acquisition,
the patient is rellocated to the angiosuite bed, where MT is practiced. DTAS: direct transfer to
angiosuite. ER: emergency room. AS: angiosuite.

1.5 Vascular anatomy and tortuosity in stroke

1.5.1 Vascular anatomy in stroke

MT relies on the endovascular catheterization of the arterial system and navigation from

the transarterial access to the occlusion site. The relevant vasculature in EVT for stroke

comprises the arterial system that irrigates the brain, from the aortic arch (AA) and the

supraaortic vessels to the intracranial arteries.

Extracranial vascular anatomy

Both anterior and posterior systems stem from the AA. The AA is placed immediately

above the heart, and receives the systemic circulation flow from the left ventricle. The
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supraaortic vessels or trunks branch from the AA. These typically include, from right

to left, the brachiocephalic trunk (BT), otherwise known as the innominate artery, the

left common carotid artery (LCCA) and the left subclavian artery (LSA). The BT then

quickly bifurcates into the right CCA (RCCA), and the right subclavian artery (RSA).

Each CCA bifurcates to form the external carotid artery (ECA) and internal carotid

artery (ICA). The ICAs provide the bulk of blood supply to the brain (about 72% of

the total CBF95), forming the foundations of the cerebral anterior circulatory system.

The right and left vertebral arteries (RVA and LVA) originate from the RSA and L

SA, respectively, feeding the posterior circulation of the brain (the remaining 28% of

the CBF95). Figure 1.6 shows a schematic overview of the extracranial arteries. It is

estimated that the adult brain typically receives a CBF of 750 ml/min or 1520% of the

cardiac output96.

It is not uncommon to find anatomical variants of the AA and supraaortic vessel

configurations. A systematic review of branching pattern variations of the AA found

that the normal pattern as described has an approximate prevalence of 80%97. The next

most common variant is the bovine arch, which refers to the LCCA originating from

the BT or both arteries having a common origin98. This anatomical variant is the most

prevalent at 14%, and can be more frequent in African populations, up to almost 30%97.

Intracranial vascular anatomy

The ICAs enter the skull through the carotid canal in the temporal bone. The first branch

of the ICA is the ophthalmic artery, which originates after exiting the carotid canal after

the cavernous sinus. At the ICA terminus (TICA), the ICA bifurcates into the middle

cerebral artery (MCA) and the anterior cerebral artery (ACA), the main providers of

blood supply to the anterior territories in the brain. The ACAs from either side are

connected through the anterior communicating artery (AComA).

In posterior circulation, the VAs converge to form the basilar artery (BA). The BA

distally bifurcates into the posterior cerebral arteries (PCA) that supply blood to the
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Figure 1.6: Extracranial vascular anatomy of the aortic and supraaortic region on a thickslab
maximum intensity projection of a CTA (left) and a 3D vascular segmentation on CTA (right).
The ICA, ECA, VA, CCA and SA arteries are present in both sides (right and left), despite only
one being highlighted in the figure. BA: basilar artery. ICA: interal carotid artery. ECA: external
carotid artery. VA: vertebral artery. CCA: common carotid artery. SA: subclavian artery. BT:
brachiocephalic trunk. AA: aortic arch.

posterior territory of the brain. The posterior communicating arteries (PComA) emerge

from the PCA and are joint at the distal ipsilateral ICA before the TICA to form the

circle of Willis (CoW), a circulatory anastomosis that ensures redundant blood supply

to the brain. A high number of anatomical variants of the CoW have been identified,

and only half of the population are estimated to present the CoW as described99.

The main arteries of the brain, i.e., MCA, ACA and PCA, successively bifurcate into

increasingly complex branching patterns. The most proximal branch of the MCA is

the M1 segment, stemming from the TICA and running horizontally along the frontal

anatomical axis. The M1 then reaches the insula and branches into the M2 or insular

segments. From the M1, the smaller lentriculostriate arteries perforate the brain and
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supply blood to the basal ganglia. Distal bifurcations of the M2 segments are the M3 or

opercular segments, that extend from the insula to the cortex. Finally, the M4 or cortical

segments branch from M3 to provide blood to the cortex.

The ACA and PCA follow a similar convention. The first segment of the ACA (A1)

originates from the TICA and runs up to the AComA, where is becomes the A2 or verti

cal segment. The A2 then further bifurcates into the A3 or pericallosal segment. Further

bifurcations are termed using growing natural numbers (A4, A5) after each successive

bifurcation. In turn, the P1 is the first segment of the PCA, extending from the BA bi

furcation to the PComA. Successive bifurcations define the P2 or postcommunicating

segment, the P3 or quadrigeminal segment and the P4 or cortical segment. Figure 1.7

shows the intracranial vascular anatomy on CTA and a 3D reconstruction of the CoW.

Epidemiology of vessel occlusion in AIS

It is estimated that 2040% of all AIS are caused by a vessel occlusion visible on an

giographic imaging35,100–102. Although there is a lack of a standard definition, and there

is significant patient variability in cerebral vascular anatomy, the term LVO typically

encompasses vascular occlusions in the ICA,M1, proximalM2, A1, VA, BA and P1 seg

ments. Under this or similar definitions, it is estimated that 5565% of vessel occlusions

are LVOs, with the rest being MeVOs, and that 7080% of all visible vessel occlusions

happen in anterior circulation35,100,101. It is also estimated that currently about 3040%

of LVO+MeVO undergo MT in the US, which represents about 5% of the total number

of AIS35. The majority of detected occlusions are located in the M1 (3040%) and M2

(1520%) segments. Due to differences in the definition of distal MCA in the literature,

it is difficult to estimate the prevalence of distal MCA occlusions with accuracy, but de

pending on different definitions estimates range from 115%. ACA occlusions are rare

(15%) and are most frequent in the A2 segment. In posterior circulation, occlusions

are split across the VA, BA and PCA (510% each), and distal PCA occlusions (>P1)

are rare (12%)35,100,101,103.
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Figure 1.7: Intracranial arteries on CTA, reconstructed using thickslab maximum intensity
projection (left) and a 3D segmentation of the intracranial arteries (right). ICA: internal carotid
artery. All arterial segments except for AComA and BA are presents for right and left side.
AComA: anterior communicating artery. BA: basilar artery. PComA: posterior communicating
artery. M1/2: M1/2 segment of the middle cerebral artery. A1/2: A1/2 segment of the anterior
cerebral artery. P1/2: P1/2 segment of the posterior cerebral artery.

Populationbased studies in Europe and the US reveal a low prevalence of TICA

occlusions (26%35,101,103). However, these account for approximately 1520% of all

LVOs treated with MT104. Extracranial and intracranial ICA occlusions are more com

mon at 1520%100,101 and account for an additional 5% of all MTs104. Extracranial ICA

occlusions are usually presented as tandem occlusions, meaning that the M1 segment is

also occluded, and occurs in less than 10% of all vessel occlusions102.

1.5.2 Effects of challenging vascular anatomies in thrombectomy

Expertise and devices have improved over that past few years as MT has become ubiq

uitous, with successful recanalization rates (mTICI≥2B) in anterior LVO being as high

as 90% as reported in some of the latest RCTs82. With successful recanalization reach
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ing a ceiling effect, the broad objectives of MT outcomes have shifted to achieving

recanalization in the first pass, what is known as first pass effect (FPE), or excellent re

canalization (mTICI 2C/3), both associated to better functional outcome than successful

reperfusion105,106.

However, there is still an important percentage of procedures where EVT fails to

achieve reperfusion. Failed recanalization rates (mTICI 0/1) have been reported at 10

11%, rising up to 17% when mTICI 2A is considered as failure. In 2030% of these

cases (25% of all anteriorcirculation MTs), the cause of unsuccessful reperfusion was

attributed to failure to reach the occlusion site107–110.

Reports suggest that, in an additional 15% of failed cases, the thrombus could be

reached but not passed109. This has been partly attributed to themechanics of the device

clot interaction, with intracranial vascular anatomy playing a crucial role in how forces

are transmitted for effective removal of the clot and safe devicevessel wall interac

tion111–113. A tendency towards treating more distal occlusions with MT could further

accentuate the role of arterial tortuosity as a determinant factor for treatment decisions,

as tortuosity seems to present higher correlation with safety complications in distal oc

clusions114.

Failed reperfusion is not the only area of improvement for MT. Long procedural

time (PT) in recanalized patients is an important predictor of unfavorable outcome in

MT115–117, regardless of number of attempts and intraprocedural complications118. A

large multicentric study (n=1,359) showed that likelihood of good functional outcomes

significantly decreases at PT>30 min and plateaus after 60 min. At the same time, rates

of sICH and complications grow exponentially with PT115. Time from imaging to re

canalization, which encompasses PT, has been more strongly associated to functional

outcomes than time from symptoms onset to imaging, at least in the early window119.

Extracranial vascular tortuosity has been repeatedly associated to the impossibility to

access the occlusion site107,108,111,120,121 and longer PT122–127. Studies show that the 60
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min mark is met for PT in approximately 2030% of cases, although high variability is

observed115,124–126.

PT can be further broken down into three time intervals that describe different parts

of MT procedures. In order, these are the time to the first angiography series (T1A),

which is typically associated with the catheterization of the ipsilateral ICA, the time to

first thrombectomy pass (TFP) and the time to recanalization or PT as defined. T1A has

been independently associated to worse clinical outcome128,129. Long T1A is roughly

observed in 1040% of cases depending on its definition, usually set between 1530

min111,128,129.

However, both T1A and TFP can still be biased by factors such as neurointerven

tionalist experience or time of day. Impossible catheterization of the ICA might hold

a clearer causal relationship arterial extracranial tortuosity. A systematic review found

that in MTs attempted via transfemoral access (TFA), the widespread default access

route for MT, failure to access the clot occurs in up to 4.4% of cases120. In most of

the cases (roughly 92%), this was associated to AA or supraaortic vascular tortuos

ity of either the CCA or the ICA. Slightly higher rates are reported by multiple stud

ies121,125,128,130.

Arterial access

General practice suggests to use TFA as firstline approach for EVT and switch to an

alternative access only as a bailout strategy111, although an alternative access is some

times preferred by the neurointerventionalist after CTA visualization and before arterial

puncture. Transradial access (TRA) is the most frequent alternative access to TFA. TRA

as firstline approach is less common in stroke EVT, but it is widely used in interven

tional cardiology and diagnostic angiography. TRA has been compared to TFA in sys

tematic reviews131,132 and in the SFERA randomized trial (n=120)130. In both reviews

and RCT, TFA was deemed noninferior to TFA, with similar rates of recanalization

success, intraprocedural complications and safety. In SFERA, TFP was significantly
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lower for TFA (median TFP for TFA: 20 min, IQR 1726; TRA: 24 min, IQR 1938,

p=0.007), and similar rates of access conversion due to impossibility to catheterize the

CCA were observed (% impossible access for TFA: 8.6%; TRA: 12,1%, p=0.751)130.

Figure 1.8 shows a schematic comparison of TFA and TRA for EVT.

Femoral access Radial access

Figure 1.8: Schematic representation of cervical catheter access in stroke EVT via TFA and
TRA on a 3D reconstruction of the arteries in CTA. The patient imaged was impossible to
catheterize from TFA, so access via TRA was used as a bailout strategy. EVT: endovascular
treatment. TFA: transfemoral access. TRA: transradial access.

Other access alternatives include the transbrachial approach133 and the direct carotid

puncture (DCP)134. DCP is typically reserved as last bailout strategy (<2% ofMTs) and

has proven to be relatively safe and effective, but is generally not recommended due to

safety hazards and increased related costs compared to more peripheral accesses135,136.
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1.5.3 Markers of extracranial arterial tortuosity

Despite the relatively low rates of impossible TFA, the prevalence of aortic and cervical

tortuosity is high. Significant tortuosity is observed in 4050% of cases120,137–140.

Some attempts have been made to define scores based on subjective evaluation of

aortic and carotid tortuosity122,141. The BAD and ASMETS scores were based on the

presence of a bovine AA, AA elongation, and dolichoarteriopathy* of the ICA and/or

the CCA. High scores were associated to higher procedural times, but discrimination

accuracy was not reported.

Bovine AA configuration and AA elongation have been widely explored in the liter

ature as a potential predictors of long PT122,123,137,141. To assess AA elongation, the AA

type is typically employed. The AA type is defined by the vertical distance between

the BT origin and the apex of the AA, divided by the proximal diameter of the LCCA.

This ratio defines AA type I when it is below 1, type II when it is between 1 and 2, and

type III above 2. The prevalence of types II and III has been reported as high as 35%

and 20% of patients receiving MT, respectively140.

AA elongation can originate pronounced takeoff angles of the supraaortic trunks,

which have also been assessed as tortuosity markers for cervical tortuosity on their

own123,129. Severe angulation along the CCA and ICA segments125,127,138 and successive

MCA segments112 has also been measured as a surrogate of dolichoarteriopathy.

The most widely adopted quantitative measurement found in the literature is the tor

tuosity index (TI)†. TI is defined in a vascular segment between two endpoints A and B

over a parameterized curve f(t) as:

TI = 1− ∥A− B∥∫ B
A f(t) dt

(1.1)

*Dolichoarteriopathy is a general term that describes the presence of coiling, kinking or tortuosity in
a vascular segment following the WeibelFields criteria142.

†The relative length or RL, also commonly found in the literature, is a transformation of the TI:
TI = 1− RL
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In eq. 1.1, f(t) corresponds to the geodesic distance of the vasular segment’s center

line. The TI then describes the radio between the Euclidean distance between the two

endpoints of a segment and the actual length along its trajectory. TI has been widely

adopted as the main indicator of vascular tortuosity, due to its simplicity and ease of

understanding. TI of the CCA and/or ICA has been associated with long PT124, T1A

and TFP138, and has even been associated with the occurrence of stroke itself143.

Other less frequently used quantitative metrics include the bending length, defined as

the maximum perpendicular deviation of a centerline trajectory with respect to the axis

formed by its endpoints144 or the sum of angle metrics145.

1.5.4 Methods for vascular anatomy characterization in the literature

To date, few studies have developed automatic or semiautomatic methods for quan

titative analysis that tackle vascular tortuosity and detection of anatomical landmarks

in vascular structures. Deshpande et al.146 introduced a fully automatic approach for

segmenting and extracting features from cerebral arteries using MRA imaging. This

method, however, does not include labelling for individual arteries, which restricts the

ability to interpret the extracted features. Additionally, the validation of these features

is not directly documented, but rather implied through the performance validation of

the segmentation algorithm.

Several semiautomatic techniques have been documented for characterizing arter

ies relevant to stroke. Chen et al.147 developed a method that involves artery trac

ing, labelling, and automated feature extraction from cerebral arteries on MRA, vali

dated against human observers’ bifurcation placements. Nevertheless, this process re

quires manual adjustments to ensure highquality artery tracing, classifying it as semi

automatic and thereby limiting its utility in practical applications. Similarly, Tahoces et

al.148 described an automatic labelling method for the main supraaortic branches and

landmark detection in the AA using CTA, which nonetheless relies on manually seg

mented arteries, falling short of full automation. Sun et al.144 introduced a technique for
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segmentation, centerline tracking, and quantitative measurement of tortuosity in the ex

tracranial ICA and VA arteries, based on Otsu thresholding. This method also requires

manual tuning of parameters for each case, affecting its automation.

Despite these advances, a significant gap remains in the development of a fully auto

matic algorithm capable of performing vessel segmentation, labelling, and feature ex

traction to measure specific anatomical features of vessels. Such a development could

have multiple applications and benefits, such as:

• Enable largescale studies on vascular tortuosity, assessing its associations to pro

cedural variables such as T1A, PT, impossible arterial access, safety hazards or

treatment outcomes.

• Computed features may be leveraged for interpretable predictive models for such

procedural variables.

• Automation could add objectivity and repeatability to the feature extraction pro

cess.

• Open up possibilities for practical implementation of advanced tortuosity analysis

in the acute phase, possibly leading to improved treatment planning in a patient

specific manner.

1.6 Medical image and deep learning in AIS

Imaging plays an instrumental role in AIS diagnosis. Assessment of early ischemic

infarct on cranial NCCT or DWIMRI, LVO/MeVO detection on CTA or parameter

maps on CTP are some examples of the diagnostic tasks that imaging enables in daily

practice that condition AIS treatment. Advancedmedical image analysis can have broad

applicability in this context.

Deep learning (DL) has revolutionized all sorts of industries and domains, and health

care is a great example for that. In AIS, there are many research and industry examples

of DL applications based on pre or intraprocedural imaging, whose output may impact
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decision making towards treatment. Most of the imagebased models and solutions are

targeted to CT and MRI imaging, and some applications are based on DSA.

DLmodels for diagnostic tasks in AIS can generally become useful by either improv

ing human performance on imagebased disease marker detection, or enabling quantita

tive assessment in a practical and objective way, which in its turn can impact decision

making in a number of ways. Automatic LVO detection on CTA/MRA is one of themost

commonly approached problems in AIS imaging, both in research and industry149–151.

Published validation studies suggest that these models perform extremely well in ICA

and proximal MCA occlusions, and achieve high specificity but moderate to low sensi

tivity for MeVOs152,153. Automatic LVO detection has been tested in a RCT for intra

hospital time optimization154. LVO detection in NCCT alone has also been explored155,

which holds the potential to minimize radiation and acquisition times, improve diagnos

tic accuracy of LVO in lowresource environments and accelerate interhospital transfer

workflows.

Thrombus segmentation byDLhas also been explored in several research studies156–158.

Texture analysis by radiomics has been studied as a potential source of predictors for

treatment effectiveness159? ,160, decision support for MT firstline approach161,162, treat

ment outcomes163,164 or histological composition165.

Early ischemic lesion segmentation on NCCT166–168 and DWI169 has been another

task where DL has offered superhuman performance. Infarct growth prediction from

raw CTP conditioned to revascularization success and imagetoreperfusion time has

also been proposed as a method for prediction of treatment effectiveness beyond re

canalization success, with potential to be used as a decision support tool in the acute

phase170–172. White matter lesion volume automatically segmented from NCCT with

DL models was associated to functional outcomes and risk of sICH transformation173,

and could be used as a potential criterion for safe alteplase administration, although fur

ther validation is needed. Other applications on CT that could impact the AIS patient
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management found in the literature are automatic collateral scoring149, stroke etiology

prediction174 and automatic ASPECTS scoring on baseline NCCT175,176.

Advanced analysis of DSA series could help improve MT procedures. One example

of how a robust analysis could confer objectivity and repeatability in an errorprone, sub

jective visual assessment widespread methodology is automatic TICI scoring177. An

other application where DL methods enabled intraprocedural clinicianaugmentation

tools is vessel occlusion and landmark detection on DSA178,179. This can be specially

interesting in small distal occlusions, as these can be easily missed by the neurointerven

tionalists. However, extensive validation and targeted evaluation on distal evaluation is

still needed for these systems. A 3D reconstruction of the intracranial vessels based on

sparse DSA acquisitions was also achieved in a selfsupervisedDL framework, enabling

volumetric vessel reconstruction without CTA180.

1.6.1 Difficult or impossible access prediction in stroke thrombectomy

The available literature on predicting difficult access for EVT in stroke is scarce. To

the best of our knowledge and as of June 2024, the model introduced by Holswilder

et al.121 is the only published model found in the literature that explores imagebased

prediction of impossible TFA. The model is a penalized logistic regression that uses

manually extracted geometrical and morphological features from the aortic and cervical

vessels as well as risk factors. Impossible TFA occurs in 7% of the cases. The model is

validated using a temporal validation set of 1,111 cases, achieving a Cstatistic of 0.69

(95% CI: 0.620.75). The most relevant features based on the βcoefficients of the final

model, trained on all available data, were age (β=0.26), hypertension (β=0.16) severe

aortic arch elongation as indicated by AA type III (β=1.45), a bovine AA (β=0.44),

pronounced angulation of the BT or CCA (β=0.72), cervical ICA elongation (β=0.44)

and a cervical ICA stenosis of≥99% (β=0.78). Following these coefficients, the authors

proposed a nomogram to assess the likelihood of impossible TFA. However, even in the

most extreme case, the nomogram could only predict TFA with a probability of 60%.
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2
Rationale of the study
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According to the Global Burden Disease, about 12M people worldwide suffered from

stroke in 2021, and over 7M deaths were attributed to stroke, making it the second lead

ing cause of death worldwide and the third cause of death and disability combined2,7.

Global incidence of stroke has increased by 70% over the last 30 years2. An aging

global population and a higher exposure to stroke risk factors in modern lifestyle can

be held accountable for this trend181. However, the consequences of stroke greatly dif

fer between high and lowermiddle income countries. While the absolute incidence of

stroke in Europe increased by 2% between 2010 and 2019182, with similar trends in the

United States183, strokerelated disability decreased by 20% in higher income countries

between 1990 and 2019. In contrast, lowermiddle income countries, which account for

almost 90% of strokerelated death and disability prevalence, have experienced a 48%

increase in the same period2. This discrepancy can be attributed to the major advances

in stroke treatment and streamlining of patient management over the last decades; these

have become widespread in higher income countries, but its adoption still presents huge

challenges in developing regions184. Of course, humanity should strive for bringing new

and lifesaving treatments to all regions in the world, but as the transition happens, this

contrast comes to show how effective treatment innovations in stroke have been.

Optimization of stroke treatment strategies frequently focuses on reducing the dura

tion of each stage within the patient management process185. Time is critical in stroke;

the phrase Time is brain85 is often coined to describe how the loss of nervous tissue in is

chemic stroke rapidly progresses with time, emphasizing the urgency of immediate care

in stroke. As a consequence, all parts of the stroke diagnosis and treatment protocols are

under constant scrutiny for further optimization. Among these protocols, we can dis

tinguish between a prehospital phase and an inhospital phase. The prehospital phase

is usually coordinated by the emergency services in collaboration with medical centers,

and it is designed to bring suspected stroke patients to diagnosis and treatmentcapable

centers as fast as possible186. The inhospital phase encompasses both diagnosis and
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treatment, intertwined for maximal efficiency.

Advanced imaging is central to acute stroke diagnosis, allowing for stroke type iden

tification and lesion characterization24,28. Treatment can differ depending on a number

of factors including the underlying vascular injury, time from symptoms onset to treat

ment access, degree of autonomy of the patient before the accident and more21,187.

As stroke management is finetuned further, artificial intelligence (AI) is revolution

izing many industries, and the medical field is no stranger to this movement. According

to the AI Index Report 2024, the number of AI medical devices approved by the FDA

increased at an approximate annual growth rate of 22% between 2018 to 2022, with the

vast majority of devices (87.1% in 2022) being related to radiology188. Deep learning

has been the workhorse for research and innovation inmedical computer vision since the

irruption of deep convolutional neural networks189,190. Stroke imaging sustains a vivid

ecosystem of research and development of medical devices with many innovative ap

plications191,192. Technological advances can help improve the diagnosis of stroke care

to superhuman capabilities and provide decision support tools that augment the medical

professionals involved in stroke care, paving the way towards personalized treatment

approaches to ensure that every patient gets the right treatment.

This thesis aims to contribute to the betterment of stroke care by introducing innova

tive AIbased imaging solutions to address a practical challenge found in EVT for AIS.

Vascular tortuosity can have a critical effect on the ability of neurointerventionalists to

navigate through the arterial pathways in EVT procedures. In a significant number of

cases, this can result in long procedural delays or treatment failure, diminishing the ef

fectiveness of EVT and resulting in worse clinical outcomes in patients suffering from

AIS115,120. An effective, timely analysis could help practitioners make informed de

cisions in the acute window of stroke, potentially reducing stroke burden to selected

patients.
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3
Hypotheses

58



The hypotheses of the doctoral thesis are the following:

1. Geometrical and morphological features from the vascular anatomy relevant in

stroke may be predictive of difficult or impossible arterial access during endovas

cular treatment in patients suffering from acute ischemic stroke due to a large

vessel occlusion.

2. Fast and automatic analysis of the aortic and cervical arterial tortuosity and per

formant prediction of difficult or impossible transfemoral access before arterial

puncture might offer valuable decision support for neurointerventionalists, po

tentially leading to informed treatment decisions, reduced procedural times and

better functional outcomes in selected patients receiving endovascular treatment.

3. Deep learning solutions may enable effective vascular characterization based on

routinely acquired preprocedural angiographic imaging.

59



4
Objectives
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The main objective of the doctoral thesis is the following:

• Develop and validate a vascular characterization method, able to automatically

extract vascular tortuosity markers in the form of interpretable geometrical and

morphological properties from preprocedural CTA.

The secondary objectives are the following:

• Develop and validate a robust, fully automatic method for difficult or impossi

ble arterial access to the occlusion site in patients suffering from acute ischemic

stroke based on preprocedural CTA.

• Understand what are the most important characteristics of the aortic and cervical

vascular anatomy that preclude a difficult or impossible access in stroke endovas

cular treatment.
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Compendium of articles
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5.1 A fully automatic method for vascular tortuosity feature ex‐

traction in the supra‐aortic region: unraveling possibilities in

stroke treatment planning

The first publication of the compendium is an introduction to the first version of the

Automatic chaRacTERIzAtion of vascuLar tortuosity (ARTERIAL) framework. The

ARTERIAL framework presents a fully automatic pipeline composed of four modules

that is built on top of a vascular segmentation convolutional neural network (CNN) and

a graph neural network (GNN) for vessel anatomical labelling. A dataset composed of

566 preprocedural CTAs retrieved from our CSC database, Hospital Universitari Vall

d’Hebron, was used to derive and validate the model.

A fraction of the dataset, 165 cases, were manually segmented to generate ground

truths of the arteries visible in CTA, from the AA to the cerebral vasculature. These

ground truth segmentations were used to train, validate and test a segmentation 3D U

Net. The nnUNet193 framework was implemented for this task. Successive modules

were a centerline extraction module, a vessel labelling module, and finally a feature

extraction module. The centerline extraction module acted upon the binary vascular

segmentation generated by the CNN, and was designed around the vascular modelling

toolkit (VMTK) opensource library194 and 3D Slicer195 for accurate centerline extrac

tion. For the vessel labelling module, aortic and cervical centerline segments were

manually labelled for the entire dataset, and a graph UNet196 was trained for vessel

labelling. Vessel labelling was treated as a node classification task. Finally, the feature

extraction module used all the generated outputs from all previous modules to derive

specific preestablished measurements of the vascular anatomy.

The main objective of the paper was to validate the method’s accuracy in reproduc

ing manually extracted measurements, thus validating the ARTERIAL framework as a

fully automatic method for robust vascular characterization from CTA. Measurements
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ultimately included lengths, positioning of vascular landmarks, takeoff angles of the

supraaortic trunks and morphological configurations of the AA. A test set of 30 cases

was manually processed by two independent raters to set a baseline for the model. Data

splitting for both the segmentation and vessel labelling modules was carefully curated to

ensure that these test cases remained held out from training, so as to prevent overfitting.
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A B S T R A C T   

Vascular tortuosity of supra-aortic vessels is widely considered one of the main reasons for failure and delays in 
endovascular treatment of large vessel occlusion in patients with acute ischemic stroke. Characterization of 
tortuosity is a challenging task due to the lack of objective, robust and effective analysis tools. We present a fully 
automatic method for arterial segmentation, vessel labelling and tortuosity feature extraction applied to the 
supra-aortic region. A sample of 566 computed tomography angiography scans from acute ischemic stroke pa-
tients (aged 74.8 ± 12.9, 51.0% females) were used for training, validation and testing of a segmentation module 
based on a U-Net architecture (162 cases) and a vessel labelling module powered by a graph U-Net (566 cases). 
Successively, 30 cases were processed for testing of a tortuosity feature extraction module. Measurements ob-
tained through automatic processing were compared to manual annotations from two observers for a thorough 
validation of the method. The proposed feature extraction method presented similar performance to the inter- 
rater variability observed in the measurement of 33 geometrical and morphological features of the arterial 
anatomy in the supra-aortic region. This system will contribute to the development of more complex models to 
advance the treatment of stroke by adding immediate automation, objectivity, repeatability and robustness to the 
vascular tortuosity characterization of patients.   

1. Introduction 

In the last years, mechanical thrombectomy (MT) has become the 
standard treatment for patients suffering from an acute ischemic stroke 
(AIS) caused by a large vessel occlusion (LVO) (Campbell et al., 2015; 
Turk et al., 2019). MT achieves rates of significant recanalization 
(mTICI1 ≥ 2B: reperfusion in greater than 50% of the target cerebral 
ischemic territory) in 70–80% of treated patients (Flottmann et al., 
2018; Yoo and Andersson, 2017). However, there is still a significant gap 
between angiographic results and the observed clinical outcome, where 
more than 50% of treated patients will not regain functional indepen-
dence at 3 months (Goyal et al., 2016; Albers et al., 2018; Berkhemer 
et al., 2015; Jovin et al., 2015; Nogueira et al., 2018). In order to 
improve outcomes, it is essential to reduce interval times in all steps of 

the AIS treatment protocols, including not only pre- and in-hospital 
phases but also intraprocedural steps. 

Vascular tortuosity and difficult catheter access (DCA) are two main 
drivers of intra-procedural time delays (Yoo and Andersson, 2017; 
Mont`Alverne et al., 2020; Yeo et al., 2019; Kaesmacher et al., 2018). 
The presence of pronounced vascular tortuosity in the aortic arch (AA) 
and cervical arteries can lead to failure in reaching the LVO causing the 
stroke with endovascular MT devices. Impossibility to reach the LVO 
may account for up to one third of reperfusion failures (Kaesmacher 
et al., 2018). Nonetheless, the overall rate of failed MTs due to 
unreachability of the LVO remains low, at around 4.4% (Penide et al., 
2021). Time delays related to DCA during MT procedures to reach the 
target LVO are far more prevalent. A carotid catheterization time ≥ 30 
min or a procedural time ≥ 60 min are often considered as DCA in MT 

* Corresponding author at: Stroke Unit, Neurology, Hospital Vall d′Hebron, Barcelona, Spain. 
E-mail address: perecanalscanals@gmail.com (P. Canals).   

1 mTICI: modified treatment in cerebral infarction. 

Contents lists available at ScienceDirect 

Computerized Medical Imaging and Graphics 

journal homepage: www.elsevier.com/locate/compmedimag 

https://doi.org/10.1016/j.compmedimag.2022.102170 
Received 23 March 2022; Received in revised form 14 November 2022; Accepted 24 December 2022   

65



Computerized Medical Imaging and Graphics 104 (2023) 102170

2

procedures (Mokin et al., 2020; Alawieh et al., 2019; Ribo et al., 2013; 
Holswilder et al., 2022), although this threshold can be even lower as 
suggested in (Mont`Alverne et al., 2020). About 25–30% of MTs present 
a difficult femoral access (Mokin et al., 2020; Ribo et al., 2013; 
Gomez-Paz et al., 2021), which is associated with a lower rate of 
recanalization and a lower rate of functional independence at 90 days 
(Albers et al., 2018; Ribo et al., 2013; Alawieh et al., 2019). As a result, 
in daily practice, the absence of solid models able to predict DCA, can 
lead to sequential attempts and delays through alternate access sites (i. 
e., femoral, radial, carotid) until the LVO is finally reached. 

1.1. Recent works 

The growing number of publications aiming to unravel correlation 
between DCA indicators and tortuosity features indicates that identi-
fying patients with challenging anatomies pre-operatively represents an 
unmet need. For example, Mokin et al. (Mokin et al., 2020) (n = 100) 
found that angulation of the CCA and the extracranial ICA, as well as the 
tortuosity index of the CCA-brachiocephalic segment were significant 
indicators for difficult thrombectomy cases. Kaymaz et al. (Kaymaz 
et al., 2017) analyzed geometrical features of the supra-aortic vessels 
(take-off angles and tortuosity) and sought correlations with ICA access 
time. They found that ICA access time was significantly influenced by 
the left CCA (LCCA) take-off angle, brachiocephalic trunk (BT) take-off 
angle, and tortuosity of the CCA (n = 76). Other studies found significant 
correlation between MT difficulties and presence of kinks (Benson et al., 
2020) or vessel curvature in 2D projections of fluoroscopic images 
(Schwaiger et al., 2015). An extensive comparison between tortuosity 
features and difficult MT indicators among these studies can be found in 
the supplementary material (Table S1). 

Other papers focus on developing classification criteria for difficult 
patients with risk scores. Snelling et al. (Snelling et al., 2018) presented 
the B.A.D. score, an index based on the presence of a series of 
tortuosity-related features (AA type, presence of bovine AA, kinks, tor-
tuosity or coiling) to determine, pre-operatively and based on visual 
inspection, whether a patient’s vasculature is difficult or not. Ribó et al. 
(Ribo et al., 2013) proposed another risk score of difficult supra-aortic 
access based on patient’s clinical data. 

These studies have in common that the measurement of tortuosity- 
related features is at best semi-automatic (Mokin et al., 2020), while 
some rely on completely manual processes (Kaymaz et al., 2017; Benson 
et al., 2020; Schwaiger et al., 2015; Snelling et al., 2018; Rosa et al., 
2021). This makes them unsuitable as acute decision-making tools in the 
selection of the ideal access site. 

Few studies have presented automatic or semi-automatic quantita-
tive analysis methods to address vascular segmentation and tortuosity. 
This is the case for Deshpande et al. (Deshpande et al., 2021), who 
recently presented an automated method for segmentation and feature 
extraction to find relevant differences regarding cerebral vasculature 
between stroke and healthy subjects. However, no method for vessel 
labeling is included, heavily limiting the characterization power of the 
method over individual vessels or determined vascular pathways. 
Moreover, the validation of the extracted feature measurements is only 
inferred from a thorough validation of the segmentation algorithm. 
Chen et al. (Chen et al., 2018) present a semi-automatic method for 
artery tracing, labelling and feature extraction for the cerebral arteries, 
validated through comparing the bifurcation placement by the algo-
rithm against a human observer, lacking full automation of the artery 
tracing and labelling processes. An automatic method for labelling of the 
main aortic branches and landmark detection is described in (Tahoces 
et al., 2020), missing automatic segmentation. 

Despite the remarkable achievements of these studies, there is still a 
lack of an automatic algorithm that includes vessel segmentation, vessel 
labelling and feature extraction capable of measuring vessel-specific 
anatomical features. All these characteristics may be necessary for 
effective use in clinical setting, with an emphasis on full automation of 

the process. This research presents a comprehensive solution to the 
described drawbacks while delivering comparable or better perfor-
mance to the existing methods. 

1.2. Contributions 

This paper presents a robust, fully automated system capable of 
characterizing and measuring anatomical supra-aortic vascular tortu-
osity features using baseline computed tomography angiography (CTA). 
The methodologies used in each stage of the analysis pipeline are not 
novel individually, but the combination of such blocks in an efficient 
way and its clinical validation is completely innovative, and that pro-
vides a novel tool not available yet in the literature. The main contri-
butions of this research are:  

• A fully automated pipeline for the analysis of vascular tortuosity in 
the supra-aortic region from CTA imaging, making it possible to 
perform a comprehensive analysis of the vascular tortuosity within 
the stroke context.  

• Inclusion of an integrated automatic vessel labelling method, 
allowing for an analysis based around the extraction of vessel- 
specific tortuosity features.  

• Extensive validation of 33 measured features against two human 
observers. 

The current study is part of Arterial©,2 a vascular analysis frame-
work created with the goal of delivering an immediate, fully automated 
analysis of the vascular anatomy for each stroke patient, in order to offer 
pre-procedural decision support for the clinician ahead of MT. 

2. Methods 

The proposed framework includes four modules designed to perform 
different tasks, implemented to analyze 3D CTA images and return a 
series of geometrical and morphological features automatically. These 
modules are, in order of sequence: vessel segmentation, vascular 
centerline extraction, vessel labeling and tortuosity feature extraction. A 
flowchart of the present study, including a simplified layout of the 
implemented method, is depicted in Fig. 1. 

3. Dataset 

We performed a retrospective analysis of a prospectively maintained 
database that includes all patients who underwent MT and whose basal 
pre-operatory imaging was acquired at Hospital Vall d′Hebron (Barce-
lona, Spain) between 2018 and 2021 (n = 715). Anonymized pre- 
procedural CTA scans from 566 patients were collected (aged 74.8 
± 12.9,3 51.0% females). Ethics approval was obtained from the local 
institutional review board [project reference: PR(AG)484/2021]. 

All subjects were imaged with a standard CTA image acquisition 
protocol using a CT system (SOMATOM Definition AS+ 128-slice, 
Siemens, Erlangen, Germany). Radiation dose was set to 200 mAs with 
a tube potential of 100 kV. Collimation was configured at 128 slices of 
0.625 mm of thickness, with an increment of 0.4 mm, a rotation time of 
0.5 s and a pitch of 1. A median H20s kernel from Siemens was used for 
the image reconstruction. Each frame was recorded in a 512 × 512 
matrix with a FOV of 350 mm. Iodinated IV contrast was given in a 
single bolus to the patient at a rate between 4 and 5 ml/s with an overall 
volume of 40–80 ml of contrast solution depending on the patient. Full 
resolution images presented a median voxel size of 
0.430 × 0.430 × 0.400 mm3 and a median shape of 512 × 512 × 816. 

2 ©2021, copyright by VHIR and UB. All rights reserved.  
3 Standard deviation. Same convention used throughout the article unless 

specified otherwise. 
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DICOM images were converted to NIfTI and a preprocessing in the form 
of intensity and spatial normalization of the volumes of interest was 
applied prior to segmentation (Isensee et al., 2021). 

From each CTA scan, a series of annotated data was generated to 
train, validate and test the models involved in the proposed framework. 
Among all available patients, 165 cases with an acute ischemic stroke 
secondary to a LVO, were randomly selected to form a labelled dataset 
for segmentation. Three cases were finally discarded due to the presence 
of significant imaging artifacts, leaving the final sample at 162 patients. 
This set was segmented once by either two engineers with + 2 years of 
experience (40 by engineer I and 50 cases by engineer II out of 162) or a 
neurologist with + 5 year of experience (72 cases out of 162) using 3D 
Slicer software (version 4.11) (Fedorov et al., 2012). Centerline models 
for the whole database (n = 569) were automatically extracted and put 
into graph form. Graph nodes, representing the different centerline 
segments, were manually annotated with the corresponding artery 
names by one observer (engineer I). 

Table 1 displays the dataset organization for each of the modules that 
require testing. For segmentation, 132 cases were used for training and 
validation, while the remaining 30 cases (18.5% of the available images) 
were reserved for testing. In the 30 cases from the segmentation testing 
set, manual measurements were also performed by two expert observers 
(engineer I and the neurologist) for geometrical and morphological 
feature extraction assessment of the automatic and semi-automatic 
methods analyzed in this study, resulting in two annotation sets of 45 
measurements per case. For vessel labelling, 132 manual segmentations 
from the segmentation training set and 377 inferred segmentations 
resulting from the segmentation module were used to generate center-
line graphs, which following manual annotation were used for training 
and validation (n = 509), while 57 cases (including the 30 cases from 
the segmentation and feature extraction testing set) were used for 
testing, resulting in 10% of the overall dataset. 

An analysis of the Bayes Error Rate (BER) was made for both the 
segmentation and the labelling modules to approximate the asymptot-
ical performance of the model with a growing dataset. This can be used 
to estimate the dataset size needed to reach very close (>99%) to the 

asymptotical performance of the model without having to generate an 
infinite amount of data — a very costly process. Results for the BER that 
suggest the adequacy of the dataset sizes used for both modules can be 
found in the supplementary material (Figs. S1 and S3). 

3.1. Segmentation 

The first step towards automated tortuosity feature extraction for the 
vasculature relevant to stroke is the automatic segmentation of the ar-
teries in the supra-aortic region from CTA volumes. nnU-Net (Isensee 
et al., 2021) was used as the base framework for the automatic seg-
mentation of the volumes of interest. nnU-Net performs a thorough 
preprocessing of the training dataset, including spatial and intensity 
normalization, to automatically infer several relevant hyperparameters 
of the resulting 3D U-Net (Çiçek et al., 2016; Ronneberger et al., 2015). 
Semi-random image patching was used for data augmentation during 
training. The patch size as well as the batch size were automatically 
determined by nnU-Net, depending on the median image shape in the 
dataset and graphics processing unit (GPU) memory limitations. Sto-
chastic gradient descent (SGD) with Nesterov momentum (μ = 0.99) 
was used as the optimizer for the network, and the loss function was 
computed as the sum of binary cross entropy and Dice loss. Differently to 
the default configuration of the nnU-Net, the learning rate schedule was 
modified to PyTorch’s ReduceLROnPlateau,4 with an initial learning 
rate of 0.01, following an optimization study performed with a reduced 
dataset. nnU-Net applies a series of randomized operations over the 
selected patches for each training step for data augmentation (Isensee 
et al., 2021). 

A five-fold cross-validation strategy was employed to assess the 
performance of the trained nnU-Net model, with the dataset distribution 
described in Table 1. The Dice coefficient (Dice, 1945), recall and the 
volume correlation coefficient were used as quantitative segmentation 

Fig. 1. Flowchart of the validation of the automatic tortuosity feature extraction method. The presented method is displayed enclosed in the grey box, with each of 
the four upper blocks representing the different modules of the image processing pipeline. The main output of reach of these modules is shown in the lower blocks. 
Results from the automatic analysis are assessed by comparing them to the ground truth obtained from averaging manual measurements from two observers. 

4 ReduceLROnPlateau I parameters: factor = 0.2, patience = 10, threshold 
= 0.01, mode = “min”, threshold_mode = “rel”. 
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quality indicators. These evaluation metrics were found to be the 
strongest indicators for segmentation quality following an internal study 
involving 11 different metrics that were compared to Likert scale qual-
itative scores attributed to a sample of 20 cases by four different inde-
pendent experts. UNETR (Hatamizadeh et al., 2022) and SwinUNETR 
(Tang et al., 2021) models were also implemented for our task. The most 
recent benchmarks show an incremental improvement of transformer 
models over fully convolutional networks for medical segmentation 
tasks (Tang et al., 2021). However, for 3D vascular segmentation tasks 
like hepatic vessel segmentation, nnU-Net has delivered the best results 
in benchmarks (Tang et al., 2021), and our experiments have also 
showed the superior performance of nnU-Net for our targets. 

Robustness to noise was also tested by adding artificial random 
Gaussian noise to images increasingly to see how performance is 
maintained compared to baseline images. A detailed analysis can be 
found in the supplementary material (Fig. S2). 

3.2. Centerline extraction 

Fig. 2 displays the different steps of the analysis process from the 
input CTA up the graph generation. From the binary map obtained by 
segmentation (Fig. 2A-B), automatic surface model extraction is trivially 
performed by thresholding (Fig. 2 C), followed by smoothing and 
removal of small islands. Intracranial arteries are ignored for the rest of 
the analysis. 

Centerline models are then extracted via shortest path tracing be-
tween automatically detected extremal points (startpoint and end-
points), placed at the end of vascular structures. Paths are defined over 
the Voronoi diagram corresponding to the closed surfaces resulting from 
the binary map segmentation. Shortest paths between the startpoint and 
the endpoints are determined by minimization of a wave propagation 
integral described by the Eikonal equation (Antiga et al., 2003) 
(Fig. 2D). For centerline and surface model branching, tubes are con-
formed for each centerline segment by joining the maximal inscribed 
spheres associated to each centerline point. Tube containment re-
lationships between centerlines and tubes are defined following refer-
ence point placement (intersections between centerlines and tubes), 
which enable branch splitting for both the centerline and surface models 
(Antiga and David, 2004) (Fig. 2E). The described methods for center-
line extraction and branch splitting are implemented in the Vascular 
Modelling Toolkit (VMTK, version 1.4) (Antiga et al., 2008), used here 
for these computations. Custom modules were designed and added to 
the VMTK methods for a robust endpoint auto-detection and for circular 
centerline tracing. 

The resulting branched centerline model is used to generate a graph, 
where nodes correspond to centerlines of individual vascular segments, 
which are connected by edges to the immediately proximal and distal 
segments in contact (Fig. 2 F). 

3.3. Vessel labeling 

A graph U-Net (gU-Net) (Gao and Ji, 2019) model was used for vessel 
labelling of the centerline models. Graph nodes were characterized with 
node attributes obtained from the centerline models. A total of 24 node 
attributes were computed, including the mean, proximal, distal, 
maximum and minimum radius, proximal/distal radius ratio, Euclidean 
distance between proximal and distal bifurcation points, relative length 

(RL) of the segment, overall direction, departure direction (given by the 
vector joining the first two points of the segment), number of points of 
the centerline segment, proximal and distal bifurcation positions and 
center of mass. Data augmentation is applied in the form of increased 
connectivity of the nodes by edge linking to all those nodes within 
10 mm (found empirically) of the node’s center of mass, and normali-
zation of all attribute to their mean value averaged across the training 
set. Proximal/distal radius ratio and RL are not normalized since these 
are already relative measurements, and direction 3D vectors are 
normalized to unitary vectors. 

An optimization study, including 288 different variations for the gU- 
Net architecture and training configuration, was performed to identify 
the best combination of hyperparameters for the model. The model with 
the best testing accuracy was selected. The network’s architecture is 
characterized by four pooling steps (depth = 3), with pooling ratios of 
0.5 each, and with graph convolution network (GCN) layers at each 
level. Skip connections connect the equivalent levels from the encoder 
and decoder blocks. The number of hidden channels for the node em-
beddings was set to 64, while the batch size was set to 20. 

SGD with high momentum (μ = 0.99) and a weight decay of 10− 3 for 
regularization was used as optimizer, with an initial learning rate of 
10− 2, scheduled with ReduceLROnPlateau.5 The cross entropy was used 
as the loss criterion for node classification. Early stopping was employed 
to prevent overfitting, with validation loss serving as the early stopping 
criteria. The data organization for training, validation and testing is 
described in Table 1. Five-fold cross-validation was used to ensure the 
validity of results. Edge accuracy per case, computed as the percentage 
of correct predictions over the total sample, overall accuracy (pooling all 
predictions), overall Dice coefficient, recall, precision, class-wise Dice 
coefficient and error occurrences per case were used to assess the gU- 
Net’s performance. 

3.4. Tortuosity feature extraction 

3.4.1. Manual feature extraction 
To validate the automatically extracted tortuosity features, the 

feature extraction testing set (n = 30) was manually processed by two 
different expert observers where a total of 45 different geometric and 
morphological features were extracted directly from raw CTAs. 
Morphological features include presence of a bovine AA (Layton et al., 
2006), presence of aberrant right subclavian artery (ARSA) (Chaoui, 
Rake, and Heling, 2008) and AA type (Bajzer, 2004). Geometrical fea-
tures include proximal diameter, RL (Klís et al., 2019), and absolute and 
relative polar and azimuth departure angles. Geometrical features are 
extracted for the brachiocephalic trunk (BT), right common carotid ar-
tery (RCCA), right subclavian artery (RSA), right vertebral artery (RVA), 
left common carotid artery (LCCA), left subclavian artery (LSA) and left 
vertebral artery (LVA). In addition, the diameter at the apex was also 
measured for the AA. The presence of ARSA was finally excluded as none 
of the patients from the testing set presented it. 

3.4.2. Automatic feature extraction 
The same fundamental criteria (landmark localization) were adopted 

Table 1 
Organization of the data for vessel segmentation, vessel labelling and tortuosity feature extraction modules. Same 30 cases from the testing set of the segmentation 
module are kept for within the vessel labelling testing set and used for the feature extraction module to avoid overfitting.   

Number of annotations Annotation type Training Validation Testing 

Segmentation 162 Binary map 110 22 30 
Vessel labelling 566 Labeled graph 433 76 57 
Feature extraction 30 (×2) Manual measurements - - 30 (×2)  

5 ReduceLROnPlateau II parameters: factor = 0.5, patience = 20, threshold 
= 0.01, mode = “min”, threshold\_mode = “rel”. 

P. Canals et al.                                                                                                                                                                                                                                  

68



Computerized Medical Imaging and Graphics 104 (2023) 102170

5

for the automatic feature extraction method. All centerline branches 
with the same predicted type (i.e., vessel name) following automatic 
labelling were joint as a single vascular segment. VMTK variables from 
the branched centerline model and the clipped surface model were used 
to locate relevant landmarks (e.g., vessel origin, proximal and distal 
ends, absolute angle point, AA type landmarks). The centerline model 
was used to compute the diameter at any point, using the maximal 
inscribed sphere radius. A priori knowledge (mainly, known connection 
relationships between arteries) was used to locate the relative angle 
point and recognize bovine AA and ARSA presence. Fig. 3 shows a series 
of example sketches for most of the measurements performed for the 
automatic feature extraction process. 

Vertebral artery (VA) tortuosity features were discarded from the 
analysis due to a high number of cases with missed automatic segmen-
tations at the base of the VAs from the corresponding subclavian artery 
(SA) bifurcation, which resulted in a high percentage of missed mea-
surements. Imaging artifacts were often found to be responsible for a 
sub-optimal imaging at the VA origin in a large fraction of cases, 
resulting in underperforming segmentation at these locations. This left a 
final group of 33 tortuosity features left for analysis. 

3.5. Statistical analysis 

Inter-observer variability was assessed and used as a reference 
measure. Averaged measurements between observers were used as 
ground truth values. The performance of the automatic method was 
assessed differently for morphological and geometrical tortuosity fea-
tures. As categorical variables, morphological features were evaluated 
using the Cohen’s kappa (κ) (Cohen, 1960) in the case of the bovine AA 
presence, and the linearly weighted Cohen’s kappa (κL) for the AA type. 
For geometrical tortuosity features, the two-way mixed effects, single 
rater intra-class correlation coefficient (ICC) for absolute agreement 
(Koo and Mae, 2016) was used to assess the reliability across human 
observers and the automatic method. ICC thresholds of 0.5, 0.75 and 0.9 
were used to assess the agreement across methods as poor (ICC < 0.5), 
moderate (0.5 < ICC < 0.75), good (0.75 < ICC < 0.9) or excellent (ICC 
> 0.9). 

Bland-Altman plots (Martin Bland and Altman, 1986) were also 
drawn for all features and are available in the supplementary material 
(Figs. S5-S10). Bias and 95% CI values of the error distribution were 
computed for both methods as a complementary performance measure, 
and box plots for the absolute error (and relative error in the case of 
diameter measurements) were drawn for error distribution 
visualization. 

For inter-observer reliability assessment, values from both observers 
were compared to each other to avoid influence of co-dependency with 

ground truth values. For the automatic method, values were compared 
to the ground truth. 

Landmark placement was also quantitatively evaluated. Precision, 
recall and mean distance error were used to compare the presented 
method for landmark localization to other state-of-the-art algorithms 
proposed in the literature. For precision and recall computation, true 
positives (TPs) were recorded as landmarks placed at a distance error 
smaller than a given threshold, while false positives (FPs) were land-
marks placed outside of the local region defined by this cut-off. This 
threshold was taken as the proximal diameter of the vessel associated to 
each tortuosity feature, averaged across all cases (e.g., for the BT origin, 
the average BT proximal diameter was used as threshold). False nega-
tives (FNs) are defined as measurements that were manually recorded, 
but were missed by the algorithms. 

4. Results 

4.1. Segmentation 

The nnU-Net was the best performing model out of those tested. A 
mean Dice coefficient of 0.93 ± 0.02 and a recall of 0.93 ± 0.03 were 
obtained in testing over the five folds. The mean volume correlation 
coefficient was 0.998 ± 0.003. Table 2 shows a comparison between the 
present and other state-of-the-art 3D vessel segmentation algorithms 
applied on similar segmentation targets. 

Qualitatively, satisfactory performance of the segmentation process 
for the AA region, common carotid arteries (CCAs) and subclavian ar-
teries (SAs) (Fig. 4 A) was observed. However, VAs tended to present 
segmentation errors at the origin, as well as discontinuities along the 
vessel (Fig. 4B). Cerebral arteries were accurately segmented up to the 
circle of Willis (Fig. 4 C). Distal SAs and external carotid arteries (ECAs) 
were generally not entirely segmented, as training data did not include 
these in most manual annotations. 

Regarding architectural details of the model, the number of down-
sampling operations was determined upon choice of the patch size for 
forward processing. For the used dataset, a patch size of 
112 × 112 × 192 was selected after dataset preprocessing following 
limitations of both GPU memory and mathematical restrictions due to 
needed downsampling operations, as per nnU-Net design rules (Isensee 
et al., 2021). Thus, the network had 6 spatial resolution levels derived 
from 4 downsampling steps for the coronal and sagittal directions and an 
additional one for the axial direction. Encoder steps were constructed 
with a 3D convolutional kernel of size 3 × 3 × 3, followed by instance 
normalization (IN) and a leaky ReLU activation function. Downsampling 
was applied by strided 3D convolution (stride = 2), with kernel size of 
2 × 2 × 2, doubling the number of channels at each step. In the decoder 

Fig. 2. Data processing from the CTA images, through centerline extraction and branching, up to graph generation. (A) Original CTA volume. (B) Binary map output 
by the segmentation module. (C) Volume model from binary map. (D) Volume model with extracted centerline model. (E) Branched centerline model over clipped 
surface model output by the centerline extraction module. (F) Graph corresponding to the centerline mesh. 
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block, 3D transpose convolution kernels of shape 2 × 2 × 2 were 
employed for upsampling, and two convolutional kernels of 3 × 3 × 3 
(with IN and leaky ReLU) are applied, halving the number of channels at 
each level. Skip connections were used to concatenate feature maps from 
encoder and decoder blocks. Convolutions of 1 × 1 × 1 followed by 
softmax layers were used to determine final activation of the decoder 
block at each of the resolution levels (except the two lowest resolutions), 
and deep supervision was used for loss computation during training. For 
inference, segmentation prediction was derived from the softmax acti-
vation of the final decoder step. 

An experiment to test robustness to noise was also performed. Results 
shows how the implemented segmentation model is able to maintain 
performance with noise levels up to 5 times higher than the typical noise 
levels on CT (Fig. S2). 

4.2. Vessel labeling 

Table 3 compares the performance of the presented method to other 

state-of-the-art studies with similar labelling objectives. An edge pre-
diction accuracy per case of 0.95 ± 0.06 resulted from the gU-Net 
trainings across folds. Table 4 shows the class-wise Dice coefficient for 
each of the edge classes available for vessel labelling by the gU-Net. 
Frequent errors (mistakes repeated four or more times within the 
testing set, n = 57 cases) include wrong prediction of right external 
carotid artery (RECA) for right internal carotid artery (RICA) (5 times) 
and AA for BT segments (4). Regarding error occurrences, 1.1 labelling 
errors per graph were made on average over the testing set, with 16.8 
nodes per case, 42.1% of cases presented perfect labelling (70.2% pre-
sented one error or less). 

4.3. Tortuosity feature extraction 

Table 5 shows a comprehensive evaluation of the acquisition 
methods performance for each tortuosity feature. 

Fig. 3. Sample of automatically extracted features. (A) Oriented vascular segment for the LCCA. (B) Bifurcation between the LCCA and BT in a bovine AA. (C) Points 
A and B, and LCCA diameter D used for the AA type computation. (D) Proximal diameter measured at the LSA origin. The white circle represents the maximal 
inscribed sphere radius, projected in 2D. (E) Scheme of the RL computation for a LCCA. (F) Scheme of the absolute angle point placement for a RSA. (G) Scheme of the 
relative angle point placement for an LSA, with the preceding vessel being the AA. 

Table 2 
Comparison between the segmentation performance (Dice coefficient) of the used method (nnU-Net) and other state-of-the-art methods with similar segmentation 
targets. Black font highlights best metric (same convention used in other tables within the present study).   

Model Image modality Imaged anatomy N Dice 

Ours (2022) nnU-Net CTA Head + neck + AA 162 0.93 ± 0.02 
Ours (2022) SwinUNETR CTA Head + neck + AA 162 0.88 ± 0.05 
Ours (2022) UNETR CTA Head + neck + AA 162 0.74 ± 0.10 
Fu et al. (2020)(Fu et al., 2020) ResU-Net CTA Head + neck + AA 18,259 0.95 
Fantazzini et al. (2020)(Fantazzini et al., 2020) 2D U-Nets CTA Aorta 80 0.92 ± 0.01 
Fan et al. (2020)(Fan et al., 2020) HMRF + U-Net TOF MRA Cerebral arteries 100 0.79 ± 0.05 
ElHadji et al. (2019)(Hadji et al., 2019) ResU-Net CE-CBCT Cerebral arteries 25 0.79 ± 0.13 
Livne et al. (2019)(Livne et al., 2019) Half U-Net TOF MRA Cerebral arteries 66 0.92 
Phellan et al. (2017)(Phellan et al., 2017) Deep CNN TOF MRA Cerebral arteries 4 0.77 ± 0.01 
Isensee et al. (2021)(Isensee et al., 2021) nnU-Net CTA Hepatic vessels 443 0.69  
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4.3.1. Manual feature extraction 
Inter-observer variability is assessed in this section as a reference 

measure. Only three geometrical features presented poor reliability 
across both human observers. Fourteen features presented excellent 
agreement while 12 presented good agreement, leaving 2 with moderate 
reliability. Regarding morphological features, there was perfect agree-
ment on bovine AA presence, and moderate agreement was found for the 
AA type measurement across observers. 

Reliability across observers was weaker for diameter measurements 
(4 out of 6 features presented weak to moderate agreement), good to 
excellent for angle measurements and excellent for all RL measurements. 

4.3.2. Automatic feature extraction 
The automatic method presented comparable performance to the 

manual feature acquisition. Only three features presented poor reli-
ability compared to the ground truth values. Ten features presented 
excellent agreement, while 9 showed good reliability. The remaining 9 
features had moderate agreement with reference values. For morpho-
logical features, performance of the automatic method was equivalent to 
human performance. 

Missed segmentations and inaccurate vessel labelling can make some 
measurements impossible to perform in automatic feature extraction, as 
some landmarks are not located. However, the number of missed land-
marks was low, only a 2.6% of the total number of landmarks across all 
cases, yielding a total of 3.3% missed measurements across the complete 
sample. These values were omitted for the computation of the ICC and 
error distributions. 

Fig. 5 shows a visual representation of the error distribution for each 
geometrical feature and method. The proposed method presented very 
similar error distributions compared to the inter-observer variability 
found for most features, with a slightly higher median value and broader 
interquartile ranges across the feature set. 

Table 6 shows precision, recall and mean error for the landmark 
placement, comparing the manual and proposed methods against other 
state-of-the-art algorithms with similar landmark localization targets in 
vascular anatomies. The error distribution across methods for the 
landmark placement can be found in the supplementary material 
(Fig. S4). 

5. Discussion 

To our knowledge, this is the first research introducing a fully 
automatic pipeline for the characterization of vascular tortuosity in the 
supra-aortic region. We implemented, adapted and combined several 

Fig. 4. error distance maps between the predicted segmentations obtained from the automatic segmentation through the nnU-Net, and the manual segmentations. 
(A) Distance maps for the whole segmentation target, showing good behavior in the supra-aortic region. (B) Missed segmentations at the base of the VAs. (C) Distal 
cerebral arteries are not accurately segmented in a significant number of cases. Positive distances represent over-segmented regions, while negative distances 
highlight under-segmentations. 

Table 3 
Overall vessel prediction accuracy, precision, recall and Dice coefficient for the presented gU-Net and other state-of-the-art methodologies proposed for similar 
labelling tasks. *Method from (Chen et al., 2020) was implemented and tested with our data.   

Method Target Accuracy Precision Recall Dice 

Ours (2022) Graph U-Net Head + neck + AA 0.94 0.94 0.94 0.94 
Yao et al. (2020) (Yao et al., 2020) GCN-point cloud Head + neck + AA 0.93 - - 0.92 
Chen et al. (2020)(Chen et al., 2020) GNN Cerebral arteries 0.92 - - - 
Chen et al. (2020) * GNN Head + neck + AA 0.82 0.84 0.83 0.83 
Dunås et al. (2016)(Dunås et al., 2016) ATLAS Cerebral arteries 0.93 - - - 
Tahoces et al. (2020)(Tahoces et al., 2020) A priori knowledge Aorta branches - 0.99 0.92 -  

Table 4 
Number of vessels (N), TPs, FPs, FNs and Dice coefficient for each of the possible 
vessel types present in the node classification by the gU-Net, over predictions 
with the testing set. BA: basilar artery.  

Vessel type N TP FP FN Dice 

Other  30  23  5  7  0.79 
AA  226  225  9  1  0.98 
BT  57  52  1  5  0.95 
RCCA  56  54  0  2  0.98 
LCCA  60  56  1  4  0.96 
RSA  95  91  4  4  0.96 
LSA  100  94  6  6  0.94 
RVA  50  44  8  6  0.86 
LVA  57  51  9  6  0.87 
RICA  51  44  3  6  0.91 
LICA  50  44  3  6  0.91 
RECA  53  51  8  2  0.91 
LECA  56  52  4  4  0.93 
BA  15  13  2  2  0.87 
Total  956  894  62  62  0.94  
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state-of-the-art solutions to develop a robust method for the character-
ization of vascular tortuosity. Compared to similar previously published 
studies, this research includes several key aspects such as full automa-
tion of the entire analysis pipeline, inclusion of multiple human ob-
servers for the manual acquisition of feature measurements or the 
inclusion of vessel-specific features. 

As an objective and fast feature extraction method, automatic tor-
tuosity characterization of patients can provide a basis for the devel-
opment of predictive AI models that could confer valuable information 
to the clinician pre-operatively about the difficulties they might expe-
rience when navigating through the AA and the supra-aortic region. This 
immediate characterization system is the necessary first step in the 
development of a decision support tool able to guide neuro-
interventionalists in their procedural planning. As a result, the initial 
approaches in MT procedures could be efficiently programmed, 
reducing access failures and workflow times, and ultimately improving 
clinical outcomes. 

Full automation has several key advantages over semi-automatic and 
manual methods. Firstly, it allows the measurements process to be 
rapidly performed in a small amount of time. We performed the full 
analysis with the automatic method with all cases from the feature 
extraction testing set (n = 30), and measured an average computation 
time of 4 min 49 s ± 0 min 53 s6 across cases. Several factors may in-
fluence the computation time such as the input image size, the number 

of separate segments after segmentation or the thermal throttling of the 
hardware components. Manual segmentation in CTA volumes of the 
arteries relevant for MT can typically take between 20 and 60 min per 
case depending on the patient, the observer’s experience and the 
required segmentation quality. Manual vessel labelling, in comparison, 
is a relatively quick process, taking approximately 1–5 min per case if 
made by an experienced user. The manual feature extraction process is 
also quite intricate, taking between 45 and 60 min per case. A com-
parison between the time needed for each step of the process across 
methods is found in Table 7. The advantage of the automatic method in 
this regard is clear and represents the main argument for the use of the 
presented method, as the manual alternative is simply not feasible in the 
stroke treatment context due to the time needed to perform the analysis. 

Secondly, bypassing any human interaction provides objectivity, 
repeatability and robustness to the measurement acquisition, all of 
which are considered key aspects for ensuring a valid characterization 
for each patient, independently of the rater. The third main advantage is 
that no specialized or trained personnel is needed to perform the anal-
ysis, which is a crucial factor for its applicability in clinical practice over 
any semi-automatic method. 

The error distribution for most features is very similar between the 
manual and the automatic methods, with the addition of a few occa-
sional outliers in the automatic case (Fig. 5, Figs. S5-S10). Generally, the 
automatic analysis yields accurate results for most cases in the testing set 
but, on occasion, some landmarks are placed far from the ground truth 
values causing the presence of outliers. These outliers are non-existent in 
manual acquisition across different observers, as virtually all landmarks 
were located by both observers within a reasonable distance. This makes 
the analysis very demanding for the automatic methodology, as the 

Table 5 
Performance of the acquisition methods for all analyzed features. ICC, bias and 95\% CI of the error distribution for the inter-observer variability (manual) and the 
automatic method are displayed for geometrical features. Those features with poor agreement are highlighted in red. Below, κ and κL values for the bovine AA presence 
and the AA type are exhibited, respectively.  

Geometrical feature ICC Bias (error 95% CI) 

Manual Automatic Manual Automatic Units 

AA diameter 0.89  0.78  -1.04 (2.57)  1.00 (3.41) mm 
BT proximal diameter 0.70  0.67  -0.73 (3.57)  -0.44 (5.31) mm 
RCCA proximal diameter 0.37  0.59  -0.21 (3.13)  -0.32 (2.03) mm 
RSA proximal diameter 0.40  0.62  -0.28 (3.67)  1.00 (2.47) mm 
LCCA proximal diameter 0.53  0.27  -1.31 (3.11)  -0.25 (5.60) mm 
LSA proximal diameter 0.48  0.76  -1.85 (3.38)  -0.03 (1.96) mm 
BT relative length 0.99  0.89  < 0.01 (0.03)  0.01 (0.07) - 
RCCA relative length > 0.99  0.58  < 0.01 (0.01)  0.08 (0.32) - 
RSA relative length > 0.99  0.51  < 0.01 (0.02)  0.02 (0.23) - 
LCCA relative length > 0.99  0.98  < 0.01 (0.01)  < 0.01 (0.04) - 
LSA relative length > 0.99  0.54  0.01 (0.02)  0.02 (0.28) - 
BT abs polar angle 0.81  0.87  -0.07 (0.31)  -0.06 (0.42) rad 
BT abs azimuth angle 0.91  0.83  0.05 (0.58)  -0.35 (1.61) rad 
BT rel polar angle 0.86  0.87  0.16 (0.24)  0.15 (0.37) rad 
BT rel azimuth angle 0.85  0.83  -0.04 (0.15)  -0.06 (0.28) rad 
RCCA abs polar angle 0.83  0.53  -0.02 (0.39)  -0.03 (0.61) rad 
RCCA abs azimuth angle 0.85  0.71  -0.04 (0.32)  -0.01 (1.00) rad 
RCCA rel polar angle 0.96  0.92  0.05 (0.22)  0.01 (0.33) rad 
RCCA rel azimuth angle 0.88  0.94  0.05 (0.34)  0.04 (0.61) rad 
RSA abs polar angle 0.79  0.82  0.07 (0.58)  0.02 (0.51) rad 
RSA abs azimuth angle 0.98  0.43  -0.04 (0.31)  -0.14 (1.12) rad 
RSA rel polar angle 0.93  0.96  -0.04 (0.32)  -0.10 (0.21) rad 
RSA rel azimuth angle 0.87  0.84  -0.09 (0.30)  -0.10 (0.96) rad 
LCCA abs polar angle 0.91  0.76  < 0.01 (0.19)  -0.08 (0.31) rad 
LCCA abs azimuth angle 0.99  0.94  0.03 (0.23)  0.10 (1.40) rad 
LCCA rel polar angle 0.84  0.15  0.11 (0.26)  0.09 (0.66) rad 
LCCA rel azimuth angle 0.97  0.94  0.01 (0.10)  -0.08 (0.32) rad 
LSA abs polar angle 0.94  0.93 

333  
< 0.01 (0.15)  -0.08 (0.15) rad 

LSA abs azimuth angle 0.98  0.98  -0.01 (0.35)  0.07 (0.69) rad 
LSA rel polar angle 0.87  0.94  0.14 (0.20)  0.03 (0.13) rad 
LSA rel azimuth angle 0.83  0.90  < 0.01 (0.12)  -0.03 (0.18) rad 
Morphological feature Automatic 
Bovine AA presence (κL) 1.00 
AA type (κ) 0.52  

6 Time measurements for image processing with the automatic method were 
performed in a Linux server with an Intel® Xeon™ W-2275 CPU, 128 GB of 
RAM, and Nvidia RTX A5000 GPU (24 GB). 
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presence of only a small number of outliers heavily influences ICC 
measurement and the error distribution values. 

Table 2, Table 3 and Table 6 compare the obtained results for each of 
the presented modules with other published methods applied on similar 
tasks. In all three cases, state-of-the-art results are achieved with our 
methods, demonstrating the performance of each of the modules 
individually. 

The error sources in the measurement of tortuosity features are 
diverse, due to the high number of automated operations present in the 
pipeline. These were identified and classified into the following cate-
gories (ordered by decreasing relevance): incorrect vessel labelling, sub- 
optimal segmentation, incorrect centerline extraction, incorrect data 
processing, unreliable azimuth angle due to steep polar component, 

imaging artifacts and reasonable landmark displacements. 
Future work within the Arterial© framework will explore predictive 

tasks relative to stroke patients and MT procedures, that will rely on the 
measurements obtained with the presented tortuosity feature extraction 
method. The accuracy delivered by these predictive models will ulti-
mately determine if the performance of the tool in vessel anatomy 
characterization is sufficient to design efficient predictive algorithms. 

One important limitation of this study is the inclusion of features that 
could be validated against human measurements. That significantly 
limits the number and the type of features that could be included in this 
validation assessment compared to the true potential of the presented 
method. Features such as mean diameter, waviness of the vessel 
(Hathout and Huy, 2012) or vessel volume are some examples of fea-
tures that could be easily extracted by the algorithm in its current 
version but could not be directly validated against human measure-
ments. In addition, tortuosity descriptors can be gathered in different 
scales. In this research, we have mainly looked at segment-scale features 
(e.g., RL, departure angles, or proximal diameters) and global features 
(e.g., presence of bovine AA, AA type). Features at a more local scale (e. 
g., curvature at any point of the centerline, diameter at any point) may 
also be relevant and contain valuable information to describe vascular 
tortuosity. Our framework offers the flexibility needed to encode all this 
information. 

Another limitation for the current methodology is that it is limited to 
CTA imaging. However, since the only point of contact of the analysis 

Fig. 5. Box plots of the relative error for diameter measurements and absolute error for RLs, absolute angles and relative angles, for error comparison for 
both methods. 

Table 6 
Precision, recall and mean error for the landmark placement of the analyzed methods compared to other state-of-the-art methodologies. Italic font indicates non- 
algorithmic acquisition methods.   

Target Precision Recall Mean error (mm) 

Manual Head + neck + AA landmarks 0.98 1.00 2.9 ± 2.1 
Ours (2022) Head + neck + AA landmarks 0.81 0.97 2.7 ± 2.2 
Chen et al. (2018) (Chen et al., 2018) Intra-cranial arteries bifurcations 0.94 0.85 0.3 ± 0.4 
Tahoces et al. (2020) (Tahoces et al., 2020) Aorta landmarks - - 5.7 ± 7.3  

Table 7 
time comparison between manual and automatic acquisition for the time needed 
to perform each stage of the image processing. *Sensitive to the chosen 
resolution.  

Process Manual (approximation) Automatic 

Segmentation (nnU-Net inference) 40 min 2 min 3 s 
Centerline extraction 5 min 1 min 17 s 
Branch and clipped model computation - 1 min 18 s* 
Graph generation - < 1 s 
Vessel labelling (gU-Net inference) 1 min < 1 s 
Feature extraction 45 min 9 s 
Total 91 min 4 min 49 s  
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process with the input imaging is the segmentation model, this limita-
tion could be resolved by adapting the segmentation module to other 
imaging sources. Such segmentation model could be trained using other 
kinds of imaging modalities (e.g., MRA, 3DRA, etc.) so that the analysis 
could be performed regardless of the input data form. The use of data 
originated from a single medical center and CT manufacturer are other 
limitations of this study. 

6. Conclusion 

We present a thorough validation study of a fully automatic method 
for segmentation, vessel labelling and feature extraction for vascular 
tortuosity analysis. Thirty-three geometric and morphological charac-
teristics of the arteries in the supra-aortic region that are relevant to MT 
procedures were extracted by an automatic model, and results were 
compared to manual measurements acquired by two independent expert 
observers. Performance of the proposed methodology was comparable 
to human performance, with the advantage of a significant time 
reduction needed for the analysis, making it compatible with the stroke 
setting for pre-operatory patient assessment. 
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5.2 Deep learning‐based model for difficult transfemoral access

prediction comparedwith humanassessment in stroke thrombec‐

tomy

The second publication of the compendium explores the value of vascular tortuosity fea

tures automatically obtained with ARTERIAL for difficult or impossible TFA (DTFA)

prediction. From the publication of the first article of the compendium, the feature ex

traction module was redesigned to deliver a richer and more robust set of features. Main

modifications included:

• Redefinition of how segments were treated for feature extraction: in the previous

version of ARTERIAL, feature extraction functions were tailored for each vas

cular segment depending on the assigned vessel label. The implemented method

ology was too dependent on assumptions based on normal configurations of the

vascular centerline tree. This could be detrimental to measurement accuracy and

cause a high percentage of missing measurements in cases where these assump

tions were not fulfilled. On occasion, these assumptions could be broken either by

the actual configuration of the vascular tree of the patient, or as a result of center

line extraction irregularities that were not errors necessarily. This was identified

and the definition of a vascular segment was unified across different vascular

segment types for more robust feature extraction.

• Integration of new features: there were 33 features evaluated in the first paper

for anterior circulation arteries. This number was increased to 49 in the second

publication, with the inclusion of segment features such as extreme angular mea

surements and betterdefined metrics involving consecutive segments.

• Arterial mapping of the centerline model from TFA to the occlusion site: cen

terline maps and arterial labels were used to automatically determine the actual

centerline pathway relevant to the EVT procedure for each patient. Path trac
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ing was done by minimizing a weighted cosine similarity between prespecified

vessel type sequences to the vessel type sequences along each possible centerline

path from the descending aorta (the startpoint) to all other endpoints of the arterial

tree. This ensured that only relevant features were included for the prediction, in

creasing the reliability of the anatomical characterization towards the predictive

model for DTFA.

A dataset of consecutive patients between February 2017 to December 2022, with a

LVO in the anterior circulation, that received EVT from TFA and with available pre

procedural CTAwas retrieved from the database of Hospital Universitari Vall d’Hebron.

The final used sample encompassed 513 patients, for whom either T1A or reported im

possible TFAwas known. For the purpose of the paper, the definition of DTFA included

patients with T1A>30 min (upper 10percentile of patients with registered T1A) as well

as reported impossible access. The problem was treated as a regression task, using T1A

as a surrogate of access difficulty*. The predicted T1A was then treated as a probability

distribution to separate DTFA positive and negative predictions for a binary output.

A random forest model with extreme gradient boosting (XGBRF) was used for this

task197. A recursive feature elimination (RFE) algorithm, that used feature importance

as the feature gain in the XGBRF model and validation performance was used to select

the most relevant features for DTFA prediction within our sample. Monte Carlo cross

validation (MCCV)was employedwith a training/validation split of 80/20 and 100 folds

for the final results.

In order to set a baseline for the model, a set of 116 cases was sampled from the

database. This validation set included all cases with impossible DTFA, as well as ran

domly sampled cases from the rest of the dataset. The selected cases were indepen

dently assessed by three raters (two seasoned and one fellow neurointerventionalists)

for DTFA, as well as radial access preference over femoral using a custommade web

*In cases with impossible access, T1A was imputed using a uniform random variable defined within
the upper 1% of cases with longer T1A in the observed distribution (i.e., between 78 min and 143 min).
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application. The raters’ assessment was done using CTA and the 3D vascular automatic

reconstruction of the arterial tree, obtained using ARTERIAL’s segmentation module.

The sample was purposely biased to make the manual assessment task manageable for

the raters, while including a decent number of positive cases in the sample, not to make

the final classification results overly sensitive to single assessment errors. We argue

that, within the biased set, the comparison between raters and the model was fair.

The main objectives of the paper were to assess the predictive performance of the

model in the DTFA distribution in the complete sample, and against a human baseline

with the reduced sample. Secondary objectives included identifying the most relevant

features participating in DTFA prediction after RFE, and evaluating the use of 3D vas

cular segmentation as compared to CTA for DTFA human prediction for the expert

assessment experiment.
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Global summary of results
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6.1 Segmentation and vessel labelling in ARTERIAL

Vascular segmentation is the basis of the proposed characterization pipeline. Pretrained

ViTbased models UNETR198 and SwinUNETR199 finetuned on the manually seg

mented dataset delivered worse performance (Dice coefficient mean ± std UNETR:

0.88 ± 0.05; SwinUNETR: 0.74 ± 0.10) than nnUNet trained from scratch (0.93

± 0.02). Distance error 3D maps for some predicted segmentations compared to the

ground truths are displayed in figure 6.1, showcasing generally accurate segmentation

of large arteries up to the cerebral branches. A tendency for undersegmenting distal

cerebral arteries as well as the VAs was observed.

Figure 6.1: Error distance maps between the predicted segmentations from the nnUNet and
the manual segmentations. (A) Good performance in the aortic and supraaortic regions. (B)
Missed segmentations at the base of the vertebral arteries. (C) Inaccuracies in segmenting dis
tal cerebral arteries. Positive distances represent oversegmentations, while negative distances
indicate undersegmentations. VAs: vertebral arteries.

For the vessel labelling task, the 57 test cases presented amean number of segments of

16.8. Testing of the vessel labelling graph UNet showed a percase prediction accuracy

of 0.95 ± 0.06 (mean ± std). In 70.2% of cases only one error or less were made,

achieving perfect labelling in 42.1% of cases. Table 6.1 shows the classwise Dice

coefficient for each of the anatomical labels in the testing set.
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Table 6.1: Classification metrics for each vessel type for all segments in the testing set. TP: true
positive. FP: false positive. FN: false negative. AA: aortic arch. BT: brachiocephalic trunk.
R/L: right/left. CCA: common carotid artery. SA: subclavian artery. VA: vertebral artery. ICA:
internal carotid artery. ECA: external carotid artery. BA: basilar artery.

Vessel type N TP FP FN Dice Vessel type N TP FP FN Dice
AA 226 225 9 1 0.98 LVA 57 51 9 6 0.87
BT 57 52 1 5 0.95 RICA 51 44 3 6 0.91
RCCA 56 54 0 2 0.98 LICA 50 44 3 6 0.91
LCCA 60 56 1 4 0.96 RECA 53 51 8 2 0.91
RSA 95 91 4 4 0.96 LECA 56 52 4 4 0.93
LSA 100 94 6 6 0.94 BA 15 13 2 2 0.87
RVA 50 44 8 6 0.86 Other 30 23 5 7 0.79

6.2 Geometrical and morphological feature extraction

Feature extraction agreement was assessed by the comparing the intraclass correlation

coefficient (ICC) or Cohen’s kappa (κ) and the error distributions between manual mea

surements made by human observers and the automatic presented method. Figure 6.2

shows the error distribution for all geometrical features with both manual and automatic

methods.

Figure 6.2: Box plots for the error distribution for the manual (blue) and automatic (green)
methods. Absolute errors are shown for all features except for diameter, where relative error is
displayed.
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The error distribution was comparable across methods for most of the features, with

larger bias for the automatic method and a higher fraction of outliers. BlandAltman

plots can be found in the supplementary material (figures S5S10, appendix ??). Table

6.2 shows the ICC and κ values for manual measurements by both human raters and for

the automatic method. With the proposed method, the majority of the 31 geometrical

features showed excellent (10) or good (9) agreement with ground truth values. Nine

of the remaining features presented moderate agreement with reference values, with

only 3 achieving poor reliability. The two morphological features presented identical

agreement between the model and ground truth to the interrater variability.

Table 6.2: Agreement between manual measurements by human raters and the automatic
method. For manual assessment, measurements between both human raters are compared with
each other. For the automatic method, measurements extracted by the algorithm are compared
with the ground truth values, i.e., the mean across observers. ICC: intraclass correlation coef
ficient. κL: linearlyweighted κ.

ICC ICC
Manual Automatic Manual Automatic

Geometrical features
AA diameter 0.89 0.78 RCCA abs azimuth angle 0.85 0.71
BT prox. diameter 0.70 0.67 RCCA rel polar angle 0.96 0.92
RCCA prox. diameter 0.37 0.59 RCCA rel azimuth angle 0.88 0.94
RSA prox. diameter 0.40 0.62 RSA abs polar angle 0.79 0.82
LCCA prox. diameter 0.53 0.27 RSA abs azimuth angle 0.98 0.43
LSA prox. diameter 0.48 0.76 RSA rel polar angle 0.93 0.96
BT relative length 0.99 0.89 RSA rel azimuth angle 0.87 0.84
RCCA relative length >0.99 0.58 LCCA abs polar angle 0.91 0.76
RSA relative length >0.99 0.51 LCCA abs azimuth angle 0.99 0.94
LCCA relative length >0.99 0.98 LCCA rel polar angle 0.84 0.15
LSA relative length >0.99 0.54 LCCA rel azimuth angle 0.97 0.94
BT abs polar angle 0.81 0.87 LSA abs polar angle 0.94 0.93
BT abs azimuth angle 0.91 0.83 LSA abs azimuth angle 0.98 0.98
BT rel polar angle 0.86 0.87 LSA rel polar angle 0.87 0.94
BT rel azimuth angle 0.85 0.83 LSA rel azimuth angle 0.83 0.90
RCCA abs polar angle 0.83 0.53

κ κL
Manual Automatic Manual Automatic

Morphological features
Bovine AA presence 1.00 1.00 AA type 0.52 0.52
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With the first version of ARTERIAL as presented in the original article, time needed

for full feature extraction pipeline was measured at 4 min 49 s± 0 min 53 s*, with most

of the time being allocated to segmentation (43% of the time) and centerline extraction

and branching (54%).

6.3 Predictive model for DTFA

For the development of the DTFA predictivemodel, a total of 513 patients were included

in the final sample (81 years, IQR 7188, 57.5% women). The inclusion chart for the

study can be found in appendix ?? (figure A1). DTFA was experienced in 59 cases

(11.5%). Within the DTFA group, impossible DTFA was found in 16 cases (3.1%), and

43 cases experienced a T1A>30 min (8.4%). Baseline characteristics for the complete

sample and both target groups are collected in table 6.3.

On visual assessment of the centerline pathways extracted using ARTERIAL, 474

(92.4%) were found to be completely correct of lacking major errors impeding the cor

rect computation of features. The remaining 39 cases (7.6%) presented errors signifi

cantly affecting the computation of included features. These were not removed for the

rest of the study.

From the initial 49 computed features, 20 were removed due to being quasiconstant

or missing in over 10% of cases. RFE reduced the number of features from the included

29 to the final 6 features in 16 iterations. A diagram of the RFE algorithm can be found

in figure A3 (appendix ??). Selected features were, in order of importance (see figure

A4 in appendix ??): TI of the complete segment, maximum azimuth angle difference

between the AA and the ipsilateral CCA, TI of the ipsilateral CCA, AA length, stan

dard deviation (SD) of the complete segment and minimum polar angle of the complete

segment. Figure 6.3 shows the evolution of the training and validation performance in

terms of the area under the receiver operating characteristic curve (AUROC) along RFE

*Timemeasurements made on Intel®Xeon™W2275CPUw/ 128GBRAM, andNvidia RTXA5000
GPU (24 GB).
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Table 6.3: Baseline characteristics compared across relevant groups. For p value computation,
the MannWhitney Utest was employed for numerical variables and the χ2 test was used for
categorical variables. †Impossible access group excluded. DTFA: difficult transfemoral access;
IQR: interquartile range. mRS: modified Rankin Scale; ASPECTS: Alberta Stroke Program
Early CT Score; IV: intravenous; TICA: ICA terminus; mTICI: expanded treatment in cerebral
ischemia; TFP: time to first pass; PT: procedural time.

All Normal access DFTA p value
N 513 454 59 
Age, years [median (IQR)] 81 (7188) 81 (7087) 86 (7790) 0.003
Female (%) 57.6 56.6 64.4 0.325
Left hemispheric stroke (%) 49.8 49.6 51.7 0.876
NIHSS at presentation [median (IQR)] 16 (1020) 16 (1020) 17 (1120.5) 0.370
Baseline mRS [median (IQR)] 1 (02) 1 (02) 1 (12) 0.251
ASPECTS at presentation [median (IQR)] 9 (810) 9 (810) 9 (710) 0.479
IV thrombolysis (%) 31.6 36.0 37.9 0.889
TICA occlusion (%) 18.3 18.5 16.4 0.834
M1 occlusion (%) 48.6 48.3 50.9 0.823
M2 occlusion (%) 33.1 33.2 33.7 1.000
mTICI ≥ 2B (%) 88.4 89.4 80.0 0.100
mTICI ≥ 2C (%) 62.9 65.2 44.0 0.004
Nº passes [median (IQR)] 1 (13) 1 (13) 2 (13) 0.891
T1A†, min [median (IQR)] 11 (816) 11 (815) 42 (3467.5) <0.001
TFP†, min [median (IQR)] 23 (1834) 22 (1730) 53 (42.578.5) <0.001
PT†, min [median (IQR)] 35 (2458) 32 (2349) 72 (54103.5) <0.001
NIHSS at discharge [median (IQR)] 4 (112) 4 (111) 8 (316) 0.009
mRS at 90d [median [IQR]) 3 (13) 2 (13) 3 (24) 0.099

iterations, as well as an illustration for each of the selected features.

The final model was finetuned and validated including the selected 6 features using

the 100fold MCCV validation scheme. Upon finetuning, the XGBRF depth and num

ber of estimators were chosen at 3 and 1,000, respectively. For training, an aggressive

subsampling rate of 0.07 applied across trees was necessary to prevent overfitting. Op

timal feature sampling rate was 0.8. A regression plot can be found in figure 6.4 along

the receiver operating characteristic (ROC) curve for DTFA binary prediction.

The model achieved an AUROC of 0.76 (95% CI 0.750.77) in validation. The opti

mal threshold (22.0 min, 95% CI 21.422.7) was computed by averaging the predicted

T1A threshold maximizing the Youden’s index for each fold. Under this criterion, the

model displayed a sensitivity of 0.65 (95% CI 0.620.68), a specificity of 0.80 (95% CI
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Figure 6.3: (A) Results of the RFE experiment. Training and validation AUROC (95% CI)
are plotted at each iteration. (B) Illustration of all included features in the final model. [B1]
Total TI: red solid line represents centerline of total segment and blue dashed line represents
Euclidean distance between both ends of the segment. [B2] AACCA maximum azimuth angle
difference: the maximum azimuth angle formed by any two points of the AA (red) and the CCA
(green), only considering points where tangent presents a polar angle below 50°. [B3] CCA TI:
same as B1, reduced to the CCA segment. [B4] AA length: only the part of the AA segment
proximal (from femoral access) to the left CCA bifurcation is only considered (red). [B5] Total
diameter SD: radius profile of the total segment. [B6] Total minimum polar angle: point with the
lowest polar angle (orange), in this case in the BT. AUROC: area under the receiver operating
characteristic curve. CI: confidence interval. max az dif: maximum azimuth angle difference.
SD: standard deviation. TI: tortuosity index. Train: training. Val: validation.

0.780.82) and an F1score of 0.42 (95% CI 0.410.43) for DTFA classification. When

averaging validation predictions across folds, the model was found to be more sensitive

to impossible cases than for cases with T1A>30 min (sensitivity impossible cases: 0.90,

92



Figure 6.4: (Left) Regression plot for the validation predictions. Individual regression pre
dictions were estimated by averaging validation values across crossvalidation folds. Normal
access (no DTFA), difficult (DTFA, T1A>30 min) and impossible (DTFA, impossible) cases
are colored green, yellow, and red, respectively, with error bars showing 95% CI. Average op
timal threshold for DTFA classification (with 95% CI bands) is shown in blue. (Right) ROC
curve for training (blue) and validation (red) results of DTFA classification. Bands represent
the standard deviation of true positive rate. AUC: area under the curve. CI: confidence interval.
DTFA: difficult transfemoral access. ROC: receiver operating characteristic. T1A: time to first
angiography series. Train: training. Val: validation.

95%CI 0.810.94; T1A>30min: 0.54, 95%CI 0.470.63). An asymmetry was observed

with stroke side, with leftsided arterial pathways achieving more sensitivity than right

sided pathways (left: 0.70, 95% CI 0.650.77; right: 0.56, 95% CI 0.500.64), with both

groups presenting similar specificity (left: 0.82, 95%CI 0.770.86; right: 0.81, 95% CI

0.760.84). Inference was 10% faster than reported in the previous publication (4 min

19 s, IQR 3 min 56 s, 4 min 47 s).

6.4 Human benchmark for DTFA prediction

Evaluation of DTFA by three human experts was qualitatively assessed on a subsam

ple of 116 cases. In this cohort, 26 cases presented DTFA (22.4%), including the 16

cases with impossible TFA (13.8%). The remaining 100 cases were randomly sampled

from the complete dataset, with 10 having T1A>30 min (8.6%) and the remaining 90
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achieving T1A≤30 min (77.6%).

Regarding human ability for DTFAdiscrimination, averageAUROCwasworsewhen

assessed on CTA (0.67, 95%CI 0.600.73) as compared to automatic 3D vascular seg

mentation (0.74, 95% CI 0.690.78). Interobserver agreement was comparable on both

modalities (κ CTA: 0.56, 95% CI 0.490.63; 3D seg: 0.50, 95% CI 0.460.55). The

model’s performance on the subsample was estimated by bootstrapping validation pre

dictions across MCCV folds. Table 6.4 shows a comparison of DTFA classification

metrics across raters with CTA, raters with automatic 3D segmentation and the model.

The model was more sensitive than human raters in detecting cases with T1A>30 min

(humans w/ CTA: 0.60, 95% CI 0.440.76; 3D Seg 0.53, 95% CI 0.430.64; model:

0.71, 95% CI 0.600.90), as well as impossible cases (humans w/ CTA: 0.67, 95% CI

0.580.75; 3D Seg 0.81, 95% CI 0.750.87; model: 0.90, 95% CI 0.810.94). Figure

6.5 shows the regression plot and the ROC curve comparison for the human baseline

experiment.

Table 6.4: Comparison of classification metrics on the reduced sample across expert raters
using CTA, automaticallygenerated 3D reconstruction of vessels and the proposed method. The
95% CI are reported in brackets for all metrics. MCC: Matthew’s correlation coefficient. CI:
confidence interval.

Method Sensitivity Specificity F1 MCC
Experts (CTA) 0.64 (0.530.76) 0.62 (0.510.73) 0.43 (0.370.50) 0.22 (0.120.32)
Experts (3D Seg) 0.71 (0.680.73) 0.67 (0.580.76) 0.50 (0.460.54) 0.32 (0.260.38)
Proposed method (2024) 0.83 (0.770.92) 0.84 (0.790.89) 0.70 (0.650.75) 0.61 (0.530.68)

6.5 Tortuosity feature interpretation

Figure 6.6 shows the feature distribution across DTFA groups. Statistical differences

across distributions were analyzed using the MannWhitney Utest (see table A3 in the

appendix ??).

Total TI and CCA TI are global markers for presence of tortuosity along the global

pathway and the CCA segment in particular, respectively. These were significantly

larger in the DTFA group (p total TI: <0.001; CCA TI: 0.039). A gradual increase was
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Figure 6.5: (Left) Regression plot for the validation predictions in the subsample evaluated
by human raters. Same conventions as in figure 6.4 apply. (Right) ROC curve for examples
within the subsample for model validation (red), humans with CTA (green) and humans with 3D
segmentation (yellow). Bands represent the standard deviation of true positive rate. AUC: area
under the curve. CI: confidence interval. DTFA: difficult transfemoral access. ROC: receiver
operating characteristic. T1A: time to first angiography series.

Figure 6.6: Kernel density estimation plots for the final group of included features. Distribu
tions for the groups with no DTFA (green), T1A>30 min (yellow) and impossible TFA (red) are
displayed. TI: tortuosity index. SD: standard deviation.

observed in the distribution for both features, with larger mean values for cases with

T1A>30 min compared to cases with T1A≤30 min, although not statistically signifi
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cant (p total TI: 0.110; CCA TI: 0.313), and significantly larger values for cases with

impossible TFA compared to T1A>30 min (p total TI: 0.006; CCA TI: 0.048). For

AACCA maximum azimuth angle, almost all cases with impossible TFA displayed a

difference of π rad (maximum possible value for the feature), while the distribution was

broader for both normal cases and cases with T1A>30 min (p Normal vs. T1A>30 min:

0.168; T1A>30 min vs impossible: <0.001). This suggests that, practically in all cases

with impossible access, an extreme change of transversal direction is present between

the AA and the ipsilateral CCA. However, it does not seem to be specific for impossible

TFA.

AA length was larger in cases with DTFA compared to nonDTFA (p 0.001), and

was not statistically different between impossible cases and cases with T1A>30 min (p

0.165). It is worth noting that this feature encompasses the length captured in the CTA

between the endpoint placed at the descending aorta and the bifurcation to the corre

sponding supraaortic branch. The fraction of the AA visible in CTA can vary across

acquisitions, which could raise some concerns regarding the robustness this feature.

However, this effect should be independent of the access difficulty, therefore the sta

tistically significant difference of the feature’s distributions across groups remains an

interesting finding. AA length may be a strong marker for AA elongation.

Total minimum polar angle, which refers to the most downwardfacing polar compo

nent of the centerline tangential vector profile, does not present significant differences

across any of the groups. Finally, there is a gradual trend towards higher distribution

values for total diameter SD in cases T1A>30 min and impossible cases with respect

to cases with T1A≤30 min, although these differences do not reach statistical signifi

cance (p Normal vs. T1A>30 min: 0.076; Normal vs. impossible: 0.052). This feature

may be related to the increased presence of atheromatosis in the vessel walls, although

further testing is needed for confirmation.
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Global summary of discussions
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Our research introduces themost complete automatic vascular characterization frame

work tailored to EVT for stroke to date among the available literature. In addition, we

demonstrate stateoftheart performance and potential applicability of a DTFA predic

tive model using ARTERIAL as a fully automatic feature extraction tool.

7.1 Novelty of ARTERIAL over previous methods

The initial goal when designing ARTERIAL was to have a characterization system to

replicate anatomical measurements found in previously available research attempting

to understand the impact of tortuosity on EVT122,129,138,139 in a fully automatic fash

ion. Such system may allow investigation on large cohorts of the relationship between

tortuosityrelated features on procedural variables such as PT or DTFA, which has been

constrained by the need for manual measurements up until this point.

Compared to previously published research144,146–148, our framework introduces a

combination of segmentation and vessel labelling on vascular centerline models that

allows for interpretable feature extraction with a level of automation that was not avail

able in prior public research. Automation is not only crucial for feasibility of largescale

feature extraction, but also for objectivity and repeatability of measurements. More im

portantly, full automation and the reasonably short inference time opens the possibility

of practical implementation of advanced anatomical analysis in the AIS scenario, po

tentially impacting treatment decisions.

7.2 Automatic feature extraction accuracy

The reliability of ARTERIAL as a feature extractionmethod was assessed by comparing

direct measurements of two human raters. This was a strict validation methodology

compared to previous research, where feature extraction reliability was only inferred

by landmark positioning or segmentation accuracy.

Good to excellent agreement with human experts was observed for most features
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based on the interpretation of ICC and κ values. However, it is important to analyze

BlandAltman plots to understand how the model behaves for each individual feature.

These were not included in the main document for conciseness, are displayed in ap

pendix ?? (figures S5S10). For example, focusing on the features with poor reliability

(ICC < 0.5), i.e., LCCA proximal diameter, RSA absolute azimuth angle or LCCA

relative polar angle, the presence of few outliers (710% of the total sample) with large

errors greatly penalizes the error distribution parameters and agreement coefficients,

even if the rest of the error distribution is similar to that of the human raters.

A deep inspection of outliers revealed the primary mechanisms leading to large er

rors. Main sources were, ordered by decreasing influence on final measurement error

distribution: incorrect vessel labelling, suboptimal segmentation, error in centerline

extraction or unreliability of the azimuth angle due to a steep polar component. For

example, an incorrect labelling of a vessel may lead to physically nonsensical mea

surements (e.g., an LCCA diameter of 20 mm) that could result in outliers originating

large disagreements between distributions, even if these only affect a small fraction of

cases. Of course, this effect is generally not observed in human assessment. The lack

of awareness as to what are reasonable measurements is a limitation of the feature ex

traction method.

7.3 Predictive model for DTFA

The proposed model achieved superior discrimination ability in predicting DTFA com

pared to previous research while adding automation to the characterization method at

the same time121,125. This supposes an important leap for the field.

Out of the 29 features considered, only 6 were used in the final model following

RFE. The combination of the 6 selected features captures anatomical characteristics

from all parts of the analyzed vasculature (aortic, supraaortic and cervical regions).

This results supports the idea that DTFA could be caused by a combination of several
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influential factors in different anatomic regions, as opposite to being caused to one spe

cific morphology or configuration. Feature distribution analysis after feature selection

revealed that patients with DTFA presented higher TI for the CCA and for the complete

arterial pathway from the descending aorta to the occlusion site. We also found that

practically all patients with impossible access describe a 180º angle on the transversal

plane at some point of the ipsilateral CCA compared to the AA, and that greater aortic

elongation was also predictive of DTFA.

The model achieved high accuracy in identifying cases with impossible access (90%,

95% CI 8194%). Conversely, the model exhibited a significantly lower performance

in classifying cases where T1A exceeded 30 minutes (only 54%, 95% CI 4763%). An

interpretation of this result may be that impossible TFA is a much purer consequence of

difficult vascular anatomy, while procedural delays could be caused by many different

reasons such as the neurointerventionalist ability, device choice, time of day for EVT

(day/night) or preparedness of EVT material upon groin puncture.

Our analysis revealed that the model outperformed human observers in a subset of

patients enriched with cases exhibiting impossible TFA. Our results support the hypoth

esis that human discriminatory ability in identifying DTFA is moderate to poor, partic

ularly when relying on CTA imaging. Results improved when assessing DTFA on a 3D

model of the reconstructed arteries on CTA. Following these results, visualization of

reconstructed 3D vascular models before puncture is recommended for enhanced iden

tification of DTFA. Vascular segmentation on CTA is fast (on average, segmentation

took 2 min 28 s, IQR 2 min 13 s to 2 min 45 s) and very robust.

7.4 Implications of DTFA prediction

A confident DTFA prediction before arterial puncture could serve as decision support

for the neurointerventionalist to selectively prioritize an alternative access to TFA as

firstline. As seen in SFERA130 and largemetaanalyses131,132, TRA seems to be equiva
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lent to TFA in terms of complications, recanalization success rates and procedural times.

However, the rate of impossible access does not seem to be inferior for TRA as com

pared to TFA, and in many of the cases when an alternative access is attempted (all

cases in SFERA130, TFA to TRA: 8.6%; TRA to TFA: 12.1%; in the metaanalysis by

Penide at el.120, from 4.4% of patients experiencing impossible TFA a reduction to 3.6%

was observed after an alternative access was attempted), the occlusion site is reached.

This supports the thesis that, with current devices, an advanced assessment on a patient

specific basis may be needed to reduce the rate of difficult or impossible access in EVT.

A direct comparative prediction between TFA and TRA could be more informative than

DTFA prediction towards decision support in the acute phase. A system as such may

not only lead to reduced rates of impossible access, but also to reduce intervention times

overall systematically choosing the most adequate access for each patient.

7.5 Limitations

The presented research has several limitations. Although validation against humanmea

surements is strict standard for measurements such as those presented in the first article

of the compendium, this restricts the amount of features and examples and type of fea

tures that could be measured and validated in the study.

The use of interpretable features for DTFA prediction is an important limitation of

the model. Although this is done to preserve interpretability and understand the asso

ciation of tortuosity markers to DTFA, robust computation of these features presents a

huge challenge. Additionally, asymmetries or relevant assumptions may limit the flexi

bility of the model, resulting in worse performance in specific subgroups or making the

predictive model unsuited for similar tasks. One example of this effect is the observed

asymmetry in right and leftsided pathways, whose difference in performance may be

explained by the lack of consideration of BTrelated features, resulting in worse perfor

mance in rightsided cases (these may not be as wellcharacterized as leftsided ones).
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Another example is the unsuitability of proposed characterization for TRA assessment.

Moreover, this featurization strategy can limit the characterization power of ARTE

RIAL for predictive tasks such as DTFA prediction. In contrast, the use of lowlevel

features (e.g., curvature, torsion, tangential components along centerline points) may

be a more robust and expressive characterization strategy. Future predictive models

may be designed to incorporate mechanisms to process and leverage this information,

as well as strategies for model explainability. With increasing opacity of deep learn

ing models, the implementation of explainability methods becomes paramount for their

realworld clinical application. Explainability fosters trust in the model’s predictions

among healthcare professionals, thereby facilitating its integration into clinical work

flows.

Other limitations are the lack of assessment of arterial pathways from radial access

or in posterior circulation. Correctly identifying DTFA and selecting TRA as firstline

approach may not be enough to avoid impossible access. Future models may need to

perform a comparative assessment as discussed above to avoid difficult access. Pos

terior circulation LVO accounts for approximately 20% of all AIS treated with MT.

Analysis of posterior circulation arterial pathways may be addressed similarly to those

in anterior circulation. However, vascular segmentation is not as reliable for proximal

VA segmentation on CTA, mainly due to frequent minor imaging artifacts caused by

venous contrast flow, which could significantly reduce the robustness of the feature

extraction method for posterior circulation arterial pathways.

The arteries in the abdomen or legs cannot be assessed with this methodology as

these are typically not imaged in CTA protocols for stroke. Even though the preva

lence of impossible access due to complications in the aortoiliac and femoral vascular

segments is low (0.2% of all reasons for reperfusion failure) compared with the aortic

arch and supraaortic vessels (4.0%)120, the inability to properly address these cases is

a limitation of the DTFA model.
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Finally, a significant limitation of the research included in this thesis is the use of

retrospective data from a prospectively maintained database and from a single medical

center. The use of retrospective data may introduce selection bias, which may be impor

tant for the DTFA prediction task due to the scarcity of positive cases. The use of data

from a single center could also add bias in the observed distribution of DTFA (e.g., fac

tors such as neurointerventionalist ability or resources can vary from center to center),

and could cause AI methods such as the segmentation model or the DTFA prediction

model to overfit to data from our center. An advantage of our methodology is that the

segmentation module is the only contact point between ARTERIAL and the original

imaging, which means that if the segmentation model generalizes well, feature extrac

tion is likely to perform satisfactorily. This applies to data from other centers as well

as other imaging modalities such as MRA. However, empirical validation is needed to

confirm this hypothesis. The absence of a holdout dataset for internal testing, as well

as the usage of validation metrics for decisions concerning model design (i.e., RFE al

gorithm used in the development of the DTFA predictive model is based on validation

AUROC of randomly sampled train/validation splittings) could also be other sources

of overfitting. Generalizability of the presented results should be further evaluated in

future research.
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Conclusions
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The conclusions of the doctoral thesis are:

1. Deep learning for vascular segmentation and vessel labelling enabled automatic

and reliable characterization of vascular features from preprocedural angiographic

stroke imaging.

2. Within a singlecenter retrospective dataset, extracranial vascular tortuosity was

associated to DTFA. A set of six anatomical characteristics from the aortic, supra

aortic and cervical regions was identified as predictive of DTFA.

3. Stateoftheart performance for DTFA prediction in MT was achieved using

automaticallyextracted vascular anatomical markers. The model was particu

larly effective at correctly classifying impossible TFA.

4. The DTFA prediction model based on automatic vascular characterization was

better than human experts at identifying DTFA in the same cohort. Experts’

DTFA discrimination ability improved using an automaticallyreconstructed 3D

model of the arterial system as compared to using CTA, which is the standard in

current practice.
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Future research
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9.1 Developing more advanced models for DTFA prediction

Our primarymotivations for tackling the DTFA prediction task as presented, i.e., relying

on handcrafted interpretable features, were the following:

• Numerous studies, as well as expert intuition, had identified potential anatomical

markers associated to DTFA and longer PT prior to our research. Developing an

effective prediction model can serve as a method to identify features playing an

important role in causing DTFA. This was one of the main goals of this research.

• Grounding the prediction of DTFA on interpretable features can foster trust to

wards the model predictions.

• Preselecting potentially relevant features based on domain knowledge (i.e., in

tuition and experience by seasoned interventionalists) can be an effective method

to reduce dimensionality for the characterization of training examples towards

learning tasks, alleviating the need for very large datasets to achieve effective

learning.

As explained in the limitations of the discussion summary (see section 7.5), the use

of interpretable features for DTFA prediction supposes important constraints. On the

one hand, automatic, robust and reliable feature engineering presents a huge challenge.

On the other hand, we may be omitting relevant information derived from arterial trees

and CTA images that is not captured by engineered features. This information could

potentially be leveraged by more advanced predictive models.

Endtoend deep learning models excel at leveraging lowlevel descriptors and rela

tionships within the data without the need of feature engineering. Imagebased models,

such as CNNs200–202 or visual transformers (ViT)199,203,204 may be a suitable option for

DTFA prediction. However, training an imagebased model on CTA for DTFA predic

tion with our current dataset poses several significant challenges. First, the size of our

dataset, ranging from 500 to 1000 images, is relatively modest. This is less problematic
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in segmentation tasks as effective data augmentation techniques like pseudorandom

patching (as employed by nnUNet193) and the intrinsic nature of segmentation as voxel

wise classification (i.e., the number of individual examples is much larger) enable more

efficient learning. These advantages may not translate well to learning of classifica

tion tasks. Moreover, our dataset is heavily imbalanced, particularly when impossible

TFA is used as the classification target (only 34% of cases), which complicates the

classification problem even further.

In addition, CTA are highdimensional objects*. Learning tasks based on highdimensional

data present additional constraints due to the large computational load needed to pro

cess the data, and complicate the optimization task by making the search space for the

optimal solution too large. There are data preprocessing strategies that can reduce di

mensionality at the cost of losing detail, such as resampling to lower (but acceptable)

resolutions, limiting the volume of interest to the anatomy that is presumed to be most

relevant or applying transforms during training for data augmentation. However, it may

still not be enough to achieve satisfactory performance in our task, although empirical

testing may be needed to confirm these hypothesis.

At the time of submitting this dissertation for evaluation, we have begun explor

ing the use GNNs as potential models for tasks such as predicting impossible TFA.

GNNs205 are geometric deep learning models that can leverage connectivity relation

ships and lowlevel features between unstructured data presented as graphs. GNNs have

achieved stateoftheart performance in all kinds of graphrelated tasks such as node

classification, edge prediction, graph regression and graph classification206.

Centerline maps can be trivially represented as graphs, with nodes encoding center

line positions and geometrical descriptors of centerline trajectories, and edges repre

senting the connectivity between centerline points. GNNs have unique capabilities that

make them wellsuited for processing graphs derived from vascular centerline maps.

*At a resolution of 0.43×0.43×0.4 mm3, which is the native resolution of CTA in our medical center,
median image shape is 512×512×861 within our dataset.
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These include the ability to manage inputs of varying sizes and to encode attributes in

both nodes and edges efficiently, all while maintaining low computational cost. Overall,

the use of GNNs operating on centerline graphs can be seen as a method for dimension

ality reduction, which may make our classification task tractable with our dataset.

A model based on graph attention207, enabling feature encoding at various scales

from centerline graphs generated automatically using ARTERIAL, has already been

tested for impossible TFA prediction within our cohort. Figure 9.1 shows a conceptual

overview this model. This approach was inspired by the use of GNNs for time of ar

rival estimation in real traffic scenarios208. Preliminary results are promising, although

further validation is needed.

Figure 9.1: Graphical overview of the ArterialGNet implementation for impossible TFA pre
diction using arterial centerline pathways extracted from CTA by ARTERIAL.

An important aspect that we want to investigate is the implementation of explain

ability methods over newer more opaque models to understand the mechanisms and

rationale of the model. However, this has not been explored in our task so far.

Beside GNNs, another option that could be less affected by our limitations regard

ing data availability is the use of pretrained models. Pretrained ViT models leverag

ing selfsupervised learning have been explored in the last few years, although in the

3D medical image domain, these are typically designed for segmentation tasks199,203.

Large foundational visionlanguage models are typically trained on large amounts of
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crossdomain data tend to generalize well in zeroshot or fewshots classification sce

narios. It is becoming increasingly common for institutions or companies with extensive

resources to opensource large model weights. These models incorporate powerful vi

sion encoders that can be finetuned for unseen tasks. However, generalpurpose large

foundation models that are pretrained effectively for 3D medical images are still scarce

(as of June 2024), although there are recent examples of powerful models that have

been released209. This could be another option for alleviating the lack of large datasets

for difficult classification tasks such as DTFA prediction. These models possess other

interesting capabilities such as semantic vision, which could be used as a method for

explainability.

9.2 Validating automatic characterization and DTFA prediction

model on external data

One of themain limitations of this research is the lack of external data for validation. We

are actively working in recruiting potential collaborators from Europe and the United

States to share data for this purpose. The main research focus in the short term will

be to extensively validate published research and new predictive models with a larger

multicentric dataset.

9.3 Implementing ARTERIAL for prospective use

Implementation for prospective use within our medical center can enable exploration of

realtime use of ARTERIAL. As demonstrated by our results, the addition of automatic

3D vascular segmentation from CTA to the acute workflow can augment the practi

tioner’s capacity to detect DTFA prior to arterial puncture. This could already have a

meaningful impact in treatment effect, potentially reducing the number of patients with

impossible access. Novel predictive methods could be successively added on top of

vascular segmentation visualization.
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Upon proper validation of the predictivemodels, the possibility to carry out a prospec

tive trial is contemplated to test the effectiveness of adding advanced image analysis

tools like ARTERIAL in the acute workflow of patients. A web application was de

signed for 3D visualization of vascular segmentations, as well as for CTA. As of June

2024, talks have been held with the informatics department of our CSC for the prospec

tive implementation of ARTERIAL, although the implementation process has not be

gun.

9.4 Expanding analysis to intracranial arteries

The main focus throughout the thesis has been set on extracranial vascular tortuosity.

However, intracranial artery tortuosity may play a significant role in the likelihood of

success for MT or the risk of complications. The anatomy of intracranial arteries might

influence force transmission between device, clot and vessel walls111, possibly affecting

the success of MT112. There may be differences on recanalization success likelihood

across different retrieval techniques depending on vessel tortuosity113.

The presence of acute intracranial vascular tortuosity may also be associated to in

creased risk of complications114. This may be specially relevant for distal occlusions,

where vessels are smaller and vessels are generally more tortuous. Within our sample,

distal MCA occlusions account for approximately 15% of all treated anterior circulation

occlusions. Results from large RCTs79–81 assessing the efficacy ofMT on distal MeVOs

are yet to be released, but preliminary data suggests that the risk of complications may

be higher than proximal LVOs78.

A similar approach to ArterialGNet could potentially be developed for FPE likeli

hood or risk of safety complications prediction with CTA or DSA imaging data, prior to

performing a first thrombectomy pass. Early investigations are already active within our

group, and include exploring associations between anatomical markers of intracranial

vessels extracted with ARTERIAL to recanalization success and rate of complications.
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Appendix A - Supplementary material 
A fully automatic method for vascular tortuosity feature extraction in the 
supra-aortic region: unraveling possibilities in stroke treatment planning 

A.1 Vascular tortuosity and difficult catheter access for 
stroke endovascular treatment 

Several studies have explored the correlations between several tortuosity features and 
difficult mechanical thrombectomy (MT) indicators. A summary of tortuosity features and their 
correlations to difficult MT indicators is some of the most relevant studies in the field (Mokin et al. 
2020; Kaymaz et al. 2017; Benson et al. 2020; Schwaiger et al. 2015; Snelling et al. 2018) can 
be seen in Table S1. 

 Mokin et al. (2020) Kaymaz et al. (2017) Benson et al. (2019) Schwaiger et al. (2015) Snelling et al. (2018) 

Number of patients 100 (156) 76 (105) 120 159 61 

TI (L-CCA) Age, TTO, FT - - - - 

TI (R-CCA) Age, TTO, FT - - - - 

TI (L-ecICA) Age, TTO, FT - - - - 

TI (R-ecICA) Age, TTO, FT - - - - 

TI (L-icICA) No correlation 
found 

- - - - 

TI (R-icICA) No correlation - - - - 

TI (overall) No correlation - - - - 

Angulation (L-CCA) No correlation ICA-AT - - - 

Angulation (R-CCA) No correlation ICA-AT - - - 

Angulation (L-ecICA) No correlation ICA-AT - - - 

Angulation (R-ecICA) No correlation ICA-AT - - - 

Angulation (L-icICA) No correlation ICA-AT - - - 

Angulation (R-icICA) No correlation ICA-AT - - - 

Aortic arch type 2 presence No correlation - - - TTO, TICI, ICH, mRS 

Aortic arch type 3 presence No correlation - - - TTO, TICI, ICH, mRS 

Bovine aortic arch presence No correlation ICA-AT - - TTO, TICI, ICH, mRS 

Take-off angle (BT) - ICA-AT - - - 

Most relevant angle (BT-CCA) No correlation ICA-AT - - - 

Take-off angle (L-CCA) - ICA-AT, RT - - - 

Most relevant angle (L-CCA) No correlation ICA-AT - - - 

Most relevant angle (ICA) - ICA-AT - - - 

ICA-CCA angulation No correlation ICA-AT - - - 

Take-off angle (BT-CCA) - ICA-AT - - - 

Presence of kink(s) (ICA) - - Recanalization rate - TTO, TICI, ICH, mRS 

Presence of loop(s) (ICA) - - No correlation - TTO, TICI, ICH, mRS 

Presence of coil(s) (ICA) - - No correlation - TTO, TICI, ICH, mRS 

Presence of tortuosity (ICA) - - No correlation - - 

ICA-M1 angle - - - Recanalization rate - 

M1-M1 angle - - - Recanalization rate - 

M1-M2 angle - - - Recanalization rate - 

Indicators for difficult MT 
analyzed 

Age, TTO, FT, nº of 
passes 

ICA-AT, RT, mTICI, 
age, NIHSS, sex 

PT, recanalization 
rate, nº of passes 

Recanalization rate TTO, TICI, ICH, mRS 
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Table S1: correlation findings between tortuosity indicators and difficult catheter access in 
relevant literature. RL: relative length; TI: tortuosity index (1 - RL); L: left; R: right; CCA: common 
carotid artery; ICA: internal carotid artery; ecICA: extracraneal ICA; icICA: intracranial ICA; TTO: 
time from groin to occlusion; FT: fluoroscopy time; BT: brachiocephalic trunk; ICA-AT: ICA access 
time; RT: recanalization time; mTICI: modified thrombosis in cerebral ischemia; PT: procedure 
time; mRS: modified Rankin Scale. ICH: intracranial hemorrhage. 

A.2 Segmentation 

A.2.1 Bayes error rate for segmentation dataset size estimation 
The Bayes error rate (BER) can help estimate the dataset size needed to reach close to the 

asymptotic maximum performance of a supervised learning model. We performed several training 
sessions with an increasing number of images for training, validation and testing, and results from 
the testing and training sets were compared for each dataset size to observe the asymptotic 
behavior of the performance curves with the dataset size. Figure S1 shows the results from these 
experiments.  

 
In order to estimate the asymptotic values for the training and testing accuracy, we 

approximated exponential curves with the least squares method. A curve of the form 
 

𝑦(t) =  A + (C −  A) × exp(−B × t) , 
 

was used to approximate the behavior of the training and testing accuracy, where A, B and C are 

the parameters to be estimated, y is the value of the accuracy and t is the dataset size. For the 
training accuracy, we used Ctrain = 1. For the testing accuracy, we set the Atrain parameter from the 

training accuracy estimation as an upper bound for Atest. From the curve drawn by the results, we 

could infer an asymptotic maximum testing Dice of 0.931 and a number of images needed to get 
to 99% of that performance of 64 images. 

Figure S1: estimation of asymptotic accuracy for the segmentation model. Training accuracy is 
plotted in red while testing accuracy is plotted in blue. Dataset sizes used are 10, 30, 50, 75, 100 
and 125. 
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A.2.2 Testing segmentation robustness to noise 
We performed an experiment to demonstrate robustness of the segmentation nnU-Net to 

noise. We added artificial noise with a random Gaussian noise filter to the original testing CTA 
volumes, increasing the standard deviation of the filter logarithmically (from 10 Hounsfield units 
[HU] to 2000 HU), keeping the mean to zero. Figure S2 shows the evolution of the segmentation 
performance with increasing levels of noise. 

 
Noise is usually defined as the standard deviation of the intensity values in homogeneous 

tissue. From the literature, we can see that standard noise levels in CTA usually have values of 
5-20 HU (Wisselink et al. 2021; Anam et al. 2020). From Figure S2, we can see how segmentation 
performance is maintained for noise levels below 100 HU, proving the robustness of the model 
used for normal noise levels. 

 

A.3 Vessel labelling 
A.3.1 Bayes error rate for vessel labelling dataset size estimation 

Again, we have performed a BER study for the dataset size estimation of the labelling module. In 
the same way as for the segmentation module, we have performed several training sessions with 
an increasing number of graphs for training, validation and testing, and results from the testing 
and training sets have been compared for each dataset size to observe the asymptotic behavior 
of the performance curves with the dataset size. Figure S3 shows the results from these 
experiments.  

The same analysis as described in section A.2.1 was employed here. From the curve drawn 
by the results, we could infer an asymptotic maximum testing accuracy of 0.939 and a number of 
training (training and validation) graphs needed to get to 99% of that value (0.929) of 
approximately 394 labelled graphs. Our sample, made of 509 graphs for training and validation is 
well above that value.  

 

A.4 Feature extraction  
A.4.1 Landmark detection 

Landmark detection is at the core of the measurement methods employed by the presented 
automatic method. To assess the performance of landmark placement, we draw the box plots of 
the error distribution for both manual and automatic displacements for the landmark localization 

Figure S2: mean Dice coefficient of the predicted segmentations on the test set for the nnU-Net 
model with increasing noise levels. The blue band represents the standard deviation of the Dice 
coefficient. 
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in figure S4. 

 
 

A.4.2 Bland-Altman plots for feature extraction 
Bland-Altman plots help to quickly visualize the error distribution of a measurement method 

versus a reference method, and the bias and 95% confidence intervals are used to validate 
models, if these are within reasonable values that are clinically acceptable for medical purposes. 
Figures S5-S10 display the Bland-Altman plots of all tortuosity features to compare the error 
distribution between human raters and between manual acquisition and the automatic method. 

Figure S4: box plots for the distance error in the landmark placement from the manual and 
automatic acquisition methods. 

Figure S3: estimation of asymptotic accuracy for the labelling model. Training accuracy is plotted 
in red while testing accuracy is plotted in blue. Dataset sizes used are 100, 200, 300, 400 and 
509. 
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Figure S5: Bland-Altman plots of the error distribution for diameter measurements, comparing the 
manual method (left) to the automatic method (right). Values for the bias and 95% CI of the error 
distribution can be found in table 5. 
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Figure S6: Bland-Altman plots of the error distribution for relative length, comparing the manual 
method (left) to the automatic method (right). Values for the bias and 95% CI of the error 
distribution can be found in table 5. 
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Figure S7: Bland-Altman plots of the error distribution for absolute polar angles, comparing the 
manual method (left) to the automatic method (right). Values for the bias and 95% CI of the error 
distribution can be found in table 5. 
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Figure S8: Bland-Altman plots of the error distribution for absolute azimuth angles, comparing the 
manual method (left) to the automatic method (right). Values for the bias and 95% CI of the error 
distribution can be found in table 5. 
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Figure S9: Bland-Altman plots of the error distribution for relative polar angles, comparing the 
manual method (left) to the automatic method (right). Values for the bias and 95% CI of the error 
distribution can be found in table 5. 
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Supplementary material 

Deep Learning-based Model for Difficult Femoral Access Prediction Compared to Human 

Assessment in Stroke Thrombectomy 

Appendix A - Additional analysis 

A.1 Previous vascular tortuosity characterization methods and predictive scores 

There have been a few attempts to develop an anatomy-based score or a classification methodology to 

identify patients most susceptible of presenting difficult transfemoral access (DTFA) mainly based on 

imaging [1]–[6]. However, important limitations shared across existing studies may be considered: 1) 

due to data incompleteness, almost no attention is placed on patients that were impossible to catheterize, 

which may be the most relevant, 2) most of the scores or classification methods are based on retrospective 

manual imaging assessment, 3) none combine advanced analysis of the aortic and supra-aortic region 

with cervical vessels and 4) lack of consensus for a shared definition of DTFA. Table A1 shows a 

comparison across relevant previous studies. 

 

Study N Method description Classification goal Performance Limitations 

Ribó et al. (2013) 130 

Vascular risk factor score > 2 for DTFA: add 1 

point if patient has 1) Hypertension, 2) >75y, 3) 

Dyslipidemia, 4) Left side stroke. 

Patients in Q4 of time 

from groin puncture to 

target carotid 

catheterization (> 30 min) 

Sensitivity = 84% 

Specificity = 74% 

Very old cohort, may not be representative 

No information on anatomy considered 

Snelling et al. (2018) 61 

BAD score ≥ 2 

B: bovine arch, A: AA type, D: ICA 

dolichoarteriopathy 

High BAD score 

predicted groin to first-

pass time > 20 min 

OR = 2.84 (95% CI, 

1.18-6.85, p = 0.02) 

Small cohort 

Based on manual assessment 

Not a difficult access classification score 

No impossible accesses mentioned 

Alves Rosa et al. (2021) 92 

ASMET score ≥ 3 

BAD w/ additional assessment of supra-aortic 

vessel dolichoarteriopathy 

High ASMETS predicted 

high groin to first-pass 

time 

Statistically significant 

different time 

distribution (p = 

0.002) 

Based on manual assessment 

Not a difficult access classification score 

No impossible accesses mentioned 

Gomez-Paz et al. (2021) 212 ICA TI = (actual/straight length - 1) × 100 

ICA TI < 10 predicted 

early reperfusion (TRev < 

60 min) 

OR = 2.3 (95% CI, 

1.11-4.78, p = 0.025) 

Ignores AA and supra-aortic vessels 

Not a difficult access classification score 

No impossible accesses mentioned 

Holswilder et al. (2022) 828 
Logistic prediction model w/ tortuosity of 

cervical ICA and cervical ICA stenosis ≥ 99% 

Procedural duration > 60 

min 

AUROC = 0.66, 95% 

CI 0.62-0.70 

Impossible access excluded 

Based on manual assessment 

Ignores AA and supra-aortic vessels 
 

Nageler et al. (2023) 316 

Semi-automatic segmentation for automatic 

classification of ICA angle (dichotomized with 

90º as threshold) 

ICA angle ≥ 90º 

associated with long 

procedural times 

Wilcoxon-MW p = 

0.001 

Ignores AA and supra-aortic vessels 

Not a difficult access classification score 

Potential for full automation 

Holswilder et al. (2023) 1998 

Ridge regression model with manual/observed 

evaluation of tortuosity markers from AA, ICA 

and CCA 

Failure of transfemoral 

access 

AUROC = 0.69, 

95%CI 0.62, 0.75 
Based on manual assessment 
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Table A1. Comparison of preceeding research exploring strategied for identification of difficult femoral 

catheter access prior to MT. DTFA: difficult transfemoral access. AA: aortic arch. ICA: internal carotid 

artery. CCA: common carotid artery. OR: odds ratio. TI: tortuosity index. AUROC: area under receiver 

operating characteristic. CI: confidence intervals. MW: Mann-Whitney. 

A.2 Study population: patient inclusion chart and baseline characteristics 

A description of the inclusion criteria can be found in the main article. Figure A1 shows the study 

inclusion chart. Table A2 shows the baseline characteristics of the included population. 

Figure A1. Flowchart of the study population. MT: mechanical thrombectomy; LVO: large vessel 

occlusion; T1A: time to first angiography series; DTFA: difficult transfemoral access.  
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 All Normal access  DFTA p value 

N 513 454 59 - 

Age, years [median (IQR)] 81 (71-88) 81 (70-87) 86 (77-90) 0.003 

Female (%) 57.6 56.6 64.4 0.325 

Left hemispheric stroke (%) 49.8 49.6 51.7 0.876 

NIHSS at presentation [median (IQR)] 16 (10-20) 16 (10-20) 17 (11-20.5) 0.370 

Baseline mRS [median (IQR)] 1 (0-2) 1 (0-2) 1 (1-2) 0.251  

ASPECTS at presentation [median (IQR)] 9 (8-10) 9 (8-10) 9 (7-10) 0.479 

IV thrombolysis (%) 31.6 36.0 37.9 0.889 

TICA occlusion (%) 18.3 18.5 16.4 0.834 

M1 occlusion (%) 48.6 48.3 50.9 0.823 

M2 occlusion (%) 33.1 33.2 33.7 1.000 

eTICI ≥ 2B (%) 88.4 89.4 80.0 0.100 

eTICI ≥ 2C (%) 62.9 65.2 44.0 0.004 

Nº passes [median (IQR)] 1 (1-3) 1 (1-3) 2 (1-3) 0.891 

T1Aa, min [median (IQR)] 11 (8-16) 11 (8-15) 42 (34-67.5) <0.001 

TFPa, min [median (IQR)] 23 (18-34) 22 (17-30) 53 (42.5-78.5) <0.001 

TReca, min [median (IQR)] 35 (24-58) 32 (23-49) 72 (54-103.5) <0.001 

NIHSS at discharge [median (IQR)] 4 (1-12) 4 (1-11) 8 (3-16) 0.009 

mRS at 90d [median [IQR]) 3 (1-3) 2 (1-3) 3 (2-4) 0.099 

Table A2. Baseline characteristics compared across relevant groups. aImpossible access group excluded. 

DTFA: difficult transfemoral access; SD: standard deviation; IQR: inter-quartile range. mRS: modified 

Rankin Scale; ASPECTS: Alberta Stroke Program Early CT Score; IV: intra-venous; TICA: ICA 

bifurcation; M1/2: middle cerebral artery first/second ramifications; eTICI: expanded treatment in 

cerebral ischemia; TFP: time to first pass; TRec: time from puncture to recanalization. 
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A.3 Time to first angiography series (T1A) distribution and imputation in impossible cases 

The T1A was unavailable for cases with impossible femoral access (3.1%, 16/513 cases). Imputation of 

T1A in these cases was performed by means of a random variable following uniform probability between 

the 99-percentile (78 min) and the maximum (143 min) of the observed distribution. Figure A2 shows 

the time distribution with the imputed values. 

Figure A2. Distribution of T1A for the observed values (blue) and imputed values (red) corresponding 

to cases that presented impossible transfemoral catheterization. T1A: time to first angiography series. 

A.4 Recursive feature elimination algorithm 

A recursive feature elimination (RFE) protocol based on feature importance and validation performance 

was applied to reduce the number of features and understand their impact on classification performance. 

Figure A3 shows a diagram of the RFE protocol. 

 

Gain was used as feature importance parameter. Two arms of twenty training runs (using random 

train/validation splits) were performed at each iteration. Gain of the resulting fitted model for each fold 

was recorded for each feature. At the end of each iteration gain was averaged across folds and the feature 

importance profile was compared across the two arms. Features that were among the five least relevant 

features in both arms were discarded towards the next iteration. When there were only 10 features left, 
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the number of reviewed features was reduced to 1. If no feature was repeated in both groups, the feature 

with the overall lowest importance was removed.  

Figure A3. Recursive feature elimination (RFE) algorithm used for feature selection. MCCV: Monte 

Carlo cross-validation. 

 

At every iteration, validation performance on 50 Monte Carlo cross-validation folds was reviewed. If 

the removal of the selected features in a given iteration resulted in worse performance, features with the 

overall least importance across both arms were iteratively selected for elimination in ascending 

importance order. This process was interrupted when the eliminated feature caused performance to 

improve, moving on to the next iteration of the RFE protocol. 

 

When removing any of the features would decrease performance, remaining features were eliminated 

one by one in ascending importance order until there was only one feature left. 

 

A.5 Feature importance of the final model 

Feature importance was assessed by feature gain of the final model, averaged across all Monte Carlo 

cross-validation (MCCV) folds. Gain represents the percentage of times a feature appears in the 

decision nodes of a tree-based model. Figure A4 shows the feature importance profile of the included 

features. 
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Figure A4. Feature importance (gain) for features included in the final model. Feature importance 

profiles were averaged across all models from the 100 MCCV folds. MCCV: Monte Carlo cross-

validation; AA: aortic arch; CCA: common carotid artery; XGBoost: extreme gradient boosting; RF: 

random forest. 

 

A.6 Distributions of important features 

Kernel density estimation (KDE) plots were drawn to observe the distribution of the included features in 

the final model across the different groups of interest (figure A5). The statistical difference between 

distributions of the no DTFA or normal group (T1A≤30min), the cases with delayed access (T1A>30min) 

and the group where transfemoral access was impossible. Table A3 shows the resulting p-value for the 

Mann-Whitney U-test across all comparisons between groups of interest. 

 

These results highlight the distribution differences between the normal group and the impossible group 

across most of the features of interest. This effect is less accentuated between the normal and T1A>30min 

groups, or the T1A>30min and the impossible groups. 
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Figure A5. KDE plots of the feature distribution for all features included in the final model, drawn for 

the normal (T1A≤30min, green), difficult (T1A>30min, orange) and impossible (red) subgroups. KDE: 

kernel density estimation; T1A: time to first angiography series.  

Table A3. Resulting p-values for the Mann-Whitney U-tests between feature distributions across groups 

of interest. DTFA: difficult transfemoral access; T1A: time to first angiography series; TI: tortuosity 

index; AA: aortic arch; CCA: common carotid artery; SD: standard deviation. 

A.7 Multi-rater evaluation of femoral access difficulty: protocol description 

 

A subgroup of N=117 cases was selected for a blinded assessment by three raters for femoral access 

difficulty. For each case, vascular 3D segmentations were automatically generated using the previously 

described segmentation module of the Arterial framework [7], based on the nnU-Net semantic 

 

p-value (Mann-Whitney U-test) 

Feature Normal vs DTFA Normal vs T1A>30min T1A>30min vs Impossible Normal vs Impossible 

Total TI < 0.001 0.110 0.006 < 0.001 

AA-CCA max azimuth dif. < 0.001 0.168 < 0.001 0.000 

CCA TI 0.039 0.313 0.048 0.008 

Total diameter SD 0.076 0.338 0.229 0.052 

AA length 0.001 0.035 0.165 0.003 

Total min polar angle 0.497 0.173 0.192 0.352 
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segmentation framework [8]. In the experiment, each case was evaluated following two approaches; the 

classical one, currently used in standard clinical practice, which consists in scrolling through the CTA 

bidimensional reconstruction in any of the three anatomical planes, and an alternative approach based on 

3D vascular reconstruction visualization. Two equivalent web apps were designed for the study. For CTA 

visualization, a custom viewer was implemented, similar to commonly used commercially available 

viewers, allowing the user to scroll along any of the three anatomical axes. For 3D visualization, a 

rendering scene was designed. 

 

A blinded, retrospective evaluation of the selected subgroup was performed by a total of three human 

raters: two senior and one fellow neurointerventionalist. Raters were asked to assess all cases with each 

of the two methods. Cases were randomly sampled from the database, independently on both web apps. 

Observers were first asked to locate the large vessel occlusion. Upon answering, the web app confirmed 

the occlusion location and evaluators were then asked to assess the presumed transfemoral access 

difficulty to the ipsilateral carotid artery, using a Likert-like scale [9]. Values ranged from 0 to 5, with 0 

being attributed a patient with extremely easy catheterization, and 5 being considered an impossible 

access. Raters were finally asked for each case if radial seemed a better firstline option than femoral 

access. The total time needed for assessment was also recorded. 

 

Upon dataset assessment completion, rater-wise Z-score normalization was applied on all Likert 

evaluations and such normalized values were used as a moving threshold for DTFA classification. A 

receiver operating characteristic (ROC) could be derived for each assessment method (CTA and 3D 

segmentation) and rater. Resulting curves were interpolated over 100 points and averaged across raters 

to obtain mean ROCs with 95% confidence intervals (CI). The mean and standard deviation (SD) of the 

area under the curve (AUC) of the ROC was used as the main parameter defining classification 

performance. Optimal sensitivity and specificity were computed by optimizing for maximum Youden's 

index. Linear correlations between Likert values and T1A were computed by means of the Pearson 

correlation coefficient (R). T1A from impossible cases was imputed as the maximum value of the 

remaining sample. 
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Inter-rater variability was assessed by means of the quadratic-weighted Cohen's Kappa (κ) [10]. 

Normalized Likert values were aggregated across observer pairs and quantized into 6 different categories 

(maintaining the number of classes in the Likert scale) using equispaced percentiles before computing κ. 

A.8 Rater's answers to evaluation formularies for CTA and 3D segmentation assessment 

Table A4 shows a summary of the raters' answers to the questions from the evaluation formularies 

included in the CTA and 3D vascular segmentation assessment. 

 CTA 3D Segmentation 

 Rater 1 Rater 2 Rater 3 Mean, 95% CI Rater 1 Rater 2 Rater 3 Mean, 95% CI 

Likert eval. [mean ± SD] 2.0 ± 1.2 2.6 ± 1.0 2.0 ± 1.6 2.2 (0.7-3.7) 2.3 ± 1.2 3.1 ± 0.9 1.9 ± 1.7 2.4 (0.8-4.0) 

Likert eval. (no DTFA) [mean ± SD] 1.9 ± 1.2 2.5 ± 0.9 1.7 ± 1.5 2.1 (0.6-3.5) 2.0 ± 1.1 2.9 ± 0.9 1.6 ± 1.6 2.2 (0.7-3.7) 

Likert eval. (DTFA) [mean ± SD] 2.7 ± 1.3 3.2 ± 0.9 3.4 ± 1.5 3.1 (1.7-4.5) 3.5 ± 1.1 3.8 ± 0.6 3.2 ± 1.8 3.5 (2.1-4.9) 

AUROC 0.63 0.62 0.75 0.67 (0.60-0.73) 0.79 0.73 0.69 0.74 (0.69-0.78) 

R (correlation), p  0.23, 0.012 0.23, 0.015 0.41, <0.001 0.29 (0.19-0.39) 0.47, <0.001 0.42, <0.001 0.37, <0.001 0.42 (0.38-0.46) 

Radial better [%] 29.3 45.7 19.8 31.6 (19.2-43.7) 46.6 40.5 25.0 37.4 (27.1-47.6) 

Radial better (no DTFA) [%] 23.3 41.1 14.4 26.3 (13.8-38.8) 34.4 31.1 21.1 28.9 (22.5-35.3) 

Radial better (DTFA) [%] 50.0 61.5 38.5 50.0 (39.3-60.7) 88.5 73.1 38.5 66.7 (43.0-90.3) 

LVO location [acc.] 0.79 0.79 0.88 0.82 (0.77-0.87) 0.79 0.80 0.95 0.85 (0.75-0.95) 

LVO loc. (M1&M2*) [acc.] 0.90 0.91 0.95 0.92 (0.91-0.93) 0.88 0.93 0.97 0.93 (0.88-0.98) 

Assessment time [s, mean ± SD] 125.6 ± 45.6 67.0 ± 33.5 70.3 ± 62.6 87.5 (57.3-117.7) 51.9 ± 21.3 45.4 ± 22.0 30.2 ± 15.7 42.5 (32.2-52.8) 

Table A4. Summary of the raters' responses to the case formularies for both modalities, as well as 

averaged results across raters. *Ipsilateral M1 and M2 considered as correct localization. SD: standard 

deviation; CI: confidence intervals. 

 

LVO location accuracy was low compared to reported values for the included type of occlusions [11]. 

We observed that a large fraction of the errors made by the expert raters in this regard were M2 occlusions 

classified as M1 and vice versa. Raters used a custom viewer that did not have contrast tools for the raters 

to modify. Moreover, most of the rater evaluation were done from a mobile device. We believe that these 

factors may have had an impact in the rater's ability to correctly classify the LVO location. Results of the 

LVO detection without a distinction between M1 and M2 occlusions are also reported in table A4. 

 

A.9 Human benchmark expanded results 
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Individual Likert evaluations for each rater, as well as individual receiver operating characteristics 

(ROCs) for each modality are displayed in figure A6. 

Figure A6. Difficulty assessment using CTA (left) and 3D segmentations (middle) for each rater. 

Resulting ROCs (left) are also displayed for each rater individually. 

 

Results from the model were estimated on the subgroup used for the human expert assessment by 

averaging out-of-fold results, taking advantage of the MCCV design. All validation predictions across 

the 100 random train/validation splits for a given sample, were averaged, yielding an average prediction 

(hard class, 0 or 1) for each case. CIs were estimated by bootstrapping validation folds over 1000 

iterations. A ROC curve for the model was estimated in the subgroup based on the raw T1A predictions 

by the model. Figure A7 presents a regression plot of the averaged predictions in the evaluated subgroup, 
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as well as a comparison between rater-averaged ROCs (CTA and 3D segmentation) and the model's ROC 

over the human benchmark subgroup. 

 

Figure A7. (Left) Regression plot for the validation predictions of the human benchmark subgroup. 

Individual regression predictions with CI were estimated by averaging validation samples across cross-

validation folds. Normal (no DTFA), difficult (DTFA | T1A>30 min) and impossible (DTFA | 

impossible) cases are colored green, yellow and red, respectively, with error bars showing 95%CI. 

Average optimal threshold for DTFA classification (with 95%CI bands) is shown in blue. (Right) ROCs 

for DTFA classification by the experts with CTA (orange), experts with 3D segmentation (green) and 

the model (red). Colored bands represent SD of true positive rate. DTFA: difficult transfemoral access; 

T1A: time to first angiography series; CI: confidence intervals; ROC: receiver operating characteristic; 

AUC: area under the curve.  
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Appendix B - Example visualizations 

Some examples from our dataset are included in this appendix for the reader to be able to visualize the 

relevant vascular anatomy with some examples from the source imaging (CTA) and the 3D vascular 

segmentations. Figure B1 shows correctly predicted cases. Figure B2 shows cases that were erroneously 

predicted. 

Figure B1. CTA visualizations (coronal and sagittal planes) and 3D model of the vascular segmentation 

for cases in the dataset. A and C are true positives (correctly predicted as DTFA), while B and D are true 

negatives. Red line in 3D models represents the centerline pathway that was automatically derived and 

used to make tortuosity measurements. 
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Figure B2. Same as for Figure B1, but in this case only cases that were incorrectly predicted are included 

in the figure. A and D represent false positives, i.e., cases that were incorrectly predicted as DTFA, while 

B and C were incorrectly predicted as normal (T1A<30min). In C, the blue rectangle zooms in in a 

segmentation error (marked by the black arrow) that caused a flawed centerline extraction. 
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