dc.contributor
Universitat Politècnica de Catalunya. Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports de Barcelona
dc.contributor.author
Mocci, Alice
dc.date.accessioned
2021-09-01T08:45:53Z
dc.date.available
2021-09-01T08:45:53Z
dc.date.issued
2021-07-22
dc.identifier.uri
http://hdl.handle.net/10803/672325
dc.description.abstract
Piezoelectricity, the two-way coupling between electric polarization and strain is the basic
mechanism behind most electromechanical transduction technologies. It is possible only
in a limited number of materials, namely those exhibiting a non-centrosymmetric atomic
or molecular structure. Flexoelectricity, the two-way coupling between strain gradient and
polarization, and conversely polarization gradient and strain, is a universal property of all
dielectrics. For most materials the flexoelectric coupling is relatively weak, and thus requires
large gradients, which are attainable at small scales. Flexoelectricity thus provides a route to
design alternative materials and devices for electromechanical transduction exploiting field
gradients at small scales, by itself or as a complement to piezoelectricity. It also broadens the
class of materials that can be used in these applications, overcoming the limitations of piezoelectrics
regarding biocompatibility, toxicity and operating temperature. The present thesis
focuses on exploring theoretically the engineering concepts for the rational design of piezoelectric
metamaterials and devices exploiting the flexoelectric effect in general dielectrics,
including non-piezoelectrics.
This work relies on the premise that the material polarity required for an effective piezoelectric
response, can be imprinted in the metamaterial through material architecture at
the microscale, thus eliminating the need for a non-centrosymmetric atomic and molecular
structure of the base-material. This concept is explored in detail and demonstrated in the
thesis through accurate self-consistent simulations, showing that significant effective piezoelectricity
can be achieved in non-piezoelectrics by accumulating the flexoelectric response
of small features under bending or torsion. This thesis proposes low area-fraction bendingdominated
piezoelectric 2D periodic lattice metamaterial designs. The effective piezoelectric
response is quantified and the effect of lattice geometry, orientation, feature size and areafraction
is revealed. Through computational homogenization, the full effective piezoelectric
tensor is characterized, and a simple shape optimization study is presented, showing significant
enhancements relative to the initial designs. Designs for flexoelectric devices combining
multiple materials are also proposed, analyzed and quantified. As a possible building
block for three-dimensional metamaterials, the flexoelectric response of bars under torsion
is studied in detail, identifying the conditions under which such a response is possible. Furthermore,
this study has allowed us to propose an experimental setup to quantify the elusive
shear flexoelectric coefficient, one of the three independent components in cubic flexoelectric
systems
dc.description.abstract
Este trabajo se basa en la premisa de que la polaridad del material requerida para una respuesta piezoeléctrica efectiva, puede imprimirse en el metamaterial a través de la arquitectura del material a microescala, eliminando así la necesidad de una estructura atómica y molecular no centrosimétrica del material base. Este concepto se explora en detalle y se demuestra en la tesis a través de simulaciones precisas y autoconsistentes, mostrando que se puede lograr una piezoelectricidad efectiva significativa en materiales no piezoeléctricos mediante la acumulación de la respuesta flexoeléctrica de pequeñas características bajo flexión o torsión. Esta tesis propone diseños de metamateriales piezoeléctricos 2D de celosía periódica de baja fracción de área dominada por la flexión. Se cuantifica la respuesta piezoeléctrica efectiva y se revela el efecto de la geometría, la orientación, el tamaño de los elementos caracteristicos y la fracción de área. A través de la homogeneización computacional, se caracteriza el tensor piezoeléctrico efectivo completo, y se presenta un estudio de optimización de forma simple, que muestra mejoras significativas en relación con los diseños iniciales. También se proponen, analizan y cuantifican diseños de dispositivos flexoeléctricos que combinan múltiples materiales. Como posible bloque de construcción para metamateriales tridimensionales, se estudia en detalle la respuesta flexoeléctrica de barras sometidas a torsión, identificando las condiciones en las que dicha respuesta es posible. Además, este estudio nos ha permitido proponer un montaje experimental para cuantificar el elusivo coeficiente flexoeléctrico de cizalla, uno de los tres componentes independientes en los sistemas flexoeléctricos cúbicos.
dc.format.mimetype
application/pdf
dc.publisher
Universitat Politècnica de Catalunya
dc.rights.license
ADVERTIMENT. Tots els drets reservats. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.title
Computational modeling and rational design of flexoelectric metamaterials and devices
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.contributor.director
Arias Vicente, Irene
dc.rights.accessLevel
info:eu-repo/semantics/openAccess
dc.identifier.doi
https://dx.doi.org/10.5821/dissertation-2117-351105
dc.description.degree
Enginyeria civil
dc.description.degree
DOCTORAT EN ENGINYERIA CIVIL (Pla 2012)