dc.contributor
Universitat de Barcelona. Facultat de Física
dc.contributor.author
Torrenegra-Rico, Juan David
dc.date.accessioned
2025-04-09T09:40:20Z
dc.date.issued
2025-03-14
dc.identifier.uri
http://hdl.handle.net/10803/694220
dc.description.abstract
[eng] This thesis delves into the study of catalytic Janus particles (AP) that convert chemical
energy into mechanical motion, resulting in energy dissipation. Understanding this dissipation is challenging due to the complex interplay between chemical and mechanical processes.
Traditional thermodynamic models often fail to fully capture the dynamics of the system,
as they tend to treat active Brownian particles as minimally interactive with their environment and overlook entropy production and energy dissipation in non-equilibrium conditions.
To address this gap, the thesis introduces a new model that considers thermodynamic con-
straints related to dissipation and entropy production, providing a deeper understanding of
energy dissipation in active systems.
Expanding on this framework, the research investigates how assemblies of Janus particles
behave when exposed to varying concentrations of fuel in an inhomogeneous medium. The
study reveals a non-linear relationship between energy dissipation and the fraction of particles
that assemble, leading to a new thermodynamic criterion for self-assembly based on the
behavior of chemical potentials. This offers a clearer understanding of how microscopic
interactions drive larger-scale self-organization.
Environmental factors such as concentration gradients and
fluid flows significantly affect
the formation and stability of these active matter structures. Hydrodynamic interactions
(HI) increase the mobility of catalytic Janus particle aggregates, enabling the formation of
more complex structures. However, while these interactions can reduce the efficiency of
energy conversion, they create feedback loops between particle activity and the surround-
ing medium. In these loops, changes in substrate consumption and
fluid flow affect both
the speed of chemical reactions and the resulting structural configurations of the particles.
Managing these interactions is crucial for optimizing the performance and assembly of the
particles.
In confined environments, active particles have various applications, such as drug delivery,
in situ cancer treatments, and environmental cleanup. However, effective particle transport
in these settings remains challenging. Studies on particle transport in porous media show
that oscillating forces in channels with
exible walls can boost transport efficiency through
enhanced stochastic resonance. Further optimization occurs when channel oscillations are
synchronized with transverse forces, improving the particles' ability to navigate complex
biological and environmental settings.
A notable phenomenon identified in this research is the presence of a stochastic resonance
regime for active particles under confinement. In this regime, periodically adding substrate improves transport efficiency at specific noise levels, enabling the particles to travel longer
distances while consuming less fuel. This has practical implications for medical applications,
such as transporting particles through cell membranes and tissues, and for environmental
applications like soil remediation.
In summary, this thesis develops a comprehensive framework that integrates entropy
production, energy dissipation, chemical reactions, hydrodynamic interactions, and concen-
tration gradients in non-equilibrium systems. It addresses gaps in current thermodynamic
models, which typically focus on isolated aspects of these processes. Through its investiga-
tion of the self-assembly and transport of catalytic active particles, this research uncovers
key mechanisms that govern particle behavior, structure, and transport efficiency. The findings provide valuable insights for the design of advanced materials and devices that require
controlled self-assembly and transport properties.
ca
dc.description.abstract
[spa] El estudio explora además cómo los ensamblajes de partículas de Janus son influenciados por la concentración de combustible en un medio inhomogéneo. Se revela una relación no lineal entre la disipación de energía y la fracción de partículas ensambladas, introduciendo un
criterio termodinámico para el autoensamblaje basado en el potencial químico. Este hallazgo
profundiza nuestro conocimiento sobre cómo las interacciones microscópicas impulsan la
organización macroscópica.
Factores ambientales como los gradientes de concentración y los
flujos de fluidos afectan significativamente la estabilidad de las estructuras de materia activa. Las interacciones hidrodinámicas (HI) aumentan la movilidad de las partículas catalíticas de Janus, promoviendo la
formación de estructuras complejas. Aunque las HI pueden reducir la eficiencia energética,
crean bucles de retroalimentación entre la actividad de las partículas y el medio circundante,
afectando la cinética y las configuraciones estructurales.
En entornos confinados, como en la administración de medicamentos o la remediación
ambiental, el transporte eficiente de partículas es un desafío. Los estudios muestran que las
fuerzas oscilantes en canales de paredes deformables mejoran la eficiencia del transporte a
través de efectos intensificados de resonancia estocástica. La sincronización de estas oscilaciones con fuerzas transversales optimiza el transporte, ofreciendo estrategias para navegar
en sistemas biológicos o ambientales complejos.
ca
dc.format.extent
138 p.
ca
dc.publisher
Universitat de Barcelona
dc.rights.license
ADVERTIMENT. Tots els drets reservats. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
ca
dc.source
TDX (Tesis Doctorals en Xarxa)
dc.subject
Hidrodinàmica
ca
dc.subject
Hidrodinámica
ca
dc.subject
Hydrodynamics
ca
dc.subject
Termodinàmica del desequilibri
ca
dc.subject
Termodinámica irreversible
ca
dc.subject
Nonequilibrium thermodynamics
ca
dc.subject
Física de partícules
ca
dc.subject
Física de partículas
ca
dc.subject
Particle physics
ca
dc.subject.other
Ciències Experimentals i Matemàtiques
ca
dc.title
Dissipation in active matter systems: self-organization and transport
ca
dc.type
info:eu-repo/semantics/doctoralThesis
dc.type
info:eu-repo/semantics/publishedVersion
dc.contributor.director
Rubí Capaceti, José Miguel
dc.contributor.tutor
Franzese, Giancarlo
dc.embargo.terms
12 mesos
ca
dc.date.embargoEnd
2026-03-14T01:00:00Z
dc.rights.accessLevel
info:eu-repo/semantics/embargoedAccess
dc.description.degree
Física de la Matèria Condensada
ca